
Lightweight concurrency: working notes
July 17, 2006

Olin Shivers Simon Peyton Jones

Abstract
This is a set of brain-dump working notes only. Don’t take it too
seriously.

1. What we want do to
GHC has quite sophisticated support for concurrency. It supports:

• The notion of a thread. Threads are supposed to be extremely
lightweight; it’s fine to have millions of threads.

• A scheduler that decides what threads to run. The ocncurrency
is pre-emptive.

• MVars, which allow threads to communicate, including the
mechanism for blocking when rreading an empty MVar [5].

• Transactional memory [1].
• Support for multi-processors. In particular, GHC has a per-

(virtual-)processor allocation area and run-queue. Threads stick
to one processor by default (to get good locality), but idle
processors can steal threads from busyones.

The trouble with all this is that most of it is implemented in the
run-time system (RTS), which itself is written in C. This has three
undesirable consequences. First, the RTS is rather large, and easy
to get wrong. Second, only GHC HQ (and Simon Marlow in partic-
ular) can modify it. Third, many policy decisions are “baked into”
this substrate.

We’d like to move a good chunk of GHC’s concurrency support
into a Haskell library, built on lower-level primitives. That would
mean that Haskell programmers could swap out the GHC-supplied
library, and use their own instead, if they wanted to experiment with
different policies. Furthermore, the concurrency support is more
likely to be correct if it’s written in Haskell rather than C.

2. How we propose to do it
The idea of writing a concurrency library in the language itself is
as old as the hills — well, as old as Mitch Wand anyway [?]. The
basic idea is to suspend a thread by capturing its continuation, and
resume it by invoking the continuation.

Other relevant papers:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

• Scheme “parameters” see http://download.plt-scheme.
org/doc/301/html/mzscheme/mzscheme-Z-H-7.html#node
sec 7.9

• Engines [2].
• Featherweight concurrency in C– [?].
• what else?

Nevertheless, it’s not obvious exactly how to do the job.

3. Vocabulary and context
Vocabulary:
• The substrate is everything that is not written in Haskell; it is

the foundation on which the concurrency library is written.
• The concurrency library implements the concurrency system

presented to the programmer, using the substrate primitives.

The name of the game is to specify the types, and the operations
over those types, provided by the substrate.

The concurrency library must support at least the following inter-
faces:

forkIO :: IO a -> IO ThreadId -- Fork a threads

-- MVars
newMVar :: a -> IO (MVar a)
takeMVar :: MVar a -> IO a -- Blocks if empty
putMVar :: MVar a -> a -> IO () -- Blocks if full

-- Transactional memory
atomic :: STM a -> IO a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()
retry :: STM ()
orELse :: STM a -> STM a -> STM a

For the moment we are neglecting (a) asynchronous exceptions [3],
(b) bound threads [4]

4. Things we agree on
• The substrate has a data type for continuations, and some oper-

ations over continuations (such as callcc).
• A thread has a continuation (which says how it will proceed

when next run. But it may have lots of other stuff too, such as
a thread-id, thread-local state, priority, parent thread (if threads
have a parent-child relationship), and maybe more besides.

• Therefore the substrate has no business knowing about threads
at all. Threads are built by the concurrency library.

• Similarly, the substrate knows nothing about scheduling threads;
that too must be done by the library.

1 2006/7/17

• Since blocking involves threads, and the substrate does not
know about threads, operations that involve blocking or re-
awakening threads must be under the control of the concurrency
library. Similarly transactional memory.

• We would like to be able to program hierarchical schedulers.
That is, a scheduler is a Haskell function that divides cycles
among multiple threads (whatever its notion of a “thread” might
be) – but any of those threads might in turn run a scheduler, and
so on.

5. A first stab
Simon’s first thoughts.

5.1 The IO Monad

One of the things provided by the substrate is the IO monad. The
IO monad supports mutable state.

instance Monad IO

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

But see Section 5.8.

5.2 Continuations

The substrate provides a type of quasi-continuations, with the fol-
lowing operations:

data QCont a -- Opaque
cutTo :: QCont a -> a -> IO b
newCont :: IO a -> QCont ()
callCC :: (QCont a -> IO b) -> IO a

A value of type QCont a is a continuation expecting to be given
a value of type a. We call these things “quasi-continuations”,
where the “quasi” means “like continuations but not entirely, so
watch out”. We will often say “continuation” rather than “quasi-
continuation” from now on.

The function cutTo transfers control to a continuation, giving
it the value it is awaiting. The function newCont makes a new
continuation that, when awoken by cutTo, will run the specified
I/O computation. Lastly, callCC does the usual thing. However,
it captures a delimited continuation: it captures the continuation
that represents the “rest of the current thread”, and not the “rest of
the entire program”. In the vocabulary of delimited continuations,
newCont pushes a prompt, and callCC captures the continuation
down to that prompt.

The design of quasi-continuations deliberately exposes their ex-
pected implementation: a continuation is represented by a stack:

• newCont allocates a new stack object, and initialises it to run
the given I/O computation when someone cuts to it.

• cutTo transfers control from one stack to another or possilby
to a continuation lower down in the same stack.

• callCC is dirt cheap: it captures a pointer into the stack.

So callCC is like setjmp, and cutTo is like longjump.

Because of this intended implementation, a quasi-continuation is a
value, but it is not fully first class:

1. A quasi-continuation is linear, or one-shot. That is, you can
only cutTo a continuation once, and then it is used up.

2. When you capture a continuation with callCC f, the continu-
ation passed to f dies if f returns.

These properties are not statically checked, and violating them
might lead to unspecified behaviour. It would be nice to provide
static guarantees that the properties are met, but that would almost
certainly require something new from the type system. But we
might be able to have dynamic (run-time) checks: see Section 5.6.

5.3 Threads

The details of how a thread is implemented are the business of the
concurrency library, but to make it possible to write examples we’ll
suppose that the concurrency library (not the substrate) defines:

data Thread a
getThreadCont :: Thread a -> IO (QCont a)
setThreadCont :: Thread a -> IO (QCont a)
threadId :: Thread a -> ThreadId

Here a Thread value contains some mutable objects, and hence
one can perform side-effecting operation like setThreadCont on a
Thread. There are likely to be other operations on threads, though:
creation, changing priority, and so forth. But these are enough for
now.

A Thread contains a continuation, which itself is parameterised on
the type of value it’s expecting, and hence so is Thread. That is, a
Thread can be blocked awaiting a return value.

5.4 Running a continuation

The concurrency library makes a thread by allocating a mutable
structure containing (at least) a continuation, of type QCont (),
representing the rest of that computation of that thread.

If a scheduler wants to run a thread for a bit, it grabs the thread’s
continuation and runs it using the following substrate primitive:

run :: Int -> QCont () -> IO RunResult
data RunResult = More (QCont ()) | Done

If the continuation finishes, run returns Done. If the continuation
yields voluntarily, or its time slice expires, run returns More k,
where k is the continuation to run next.

Incidentally, Done does not necessarily mean that the thread is
finished, only that the scheduler is no longer responsible for it. See
Section 5.7, for example.

The Int is the number of cycles (ticks, microseconds, whatever)
that the caller of run is prepared to allocate to the called continu-
ation. The caller itself may be inside his caller’s run. So run 3 c
doesn’t really mean “run c for 3 ticks”; rather, it means “run c for
the next 3 ticks that are given to me by my caller”.

Dual to run is stop:

stop :: RunResult -> IO Void

The idea is that stop returns the specified runResult to the en-
closing run. So a voluntary yield could be written like this:

yield :: IO ()
yield = callCC (\k -> stop (More k))

In this way, a thread can voluntarily yield to its scheduler. But it can
also yield involuntarily, something that must be supported directly
by the substrate:
• The “time slice expires”. Then the substrate packages up the

continuation and returns a More k result to run. Just which
run is re-activated depends on which time-slice has expired.
For example:

do { c <- newCont (do { More d’ <- run 6 d
; run 6 d’ }

; More c’ <- run 10 c
; ..more... }

2 2006/7/17

The outer run devotes 10 ticks to d. It devotes 6 ticks to d, and
(assuming d does indeed return More d’, c tries to devote a
futher 6 ticks to d’. However, after 4 of those ticks, the outer
run expires, and c is arrested, returning control to ..more...
The continuation c’ can be scheduled with another run, which
will resume execution with the last 2 ticks of d’.

• The thread evaluates a thunk that is locked, becuase it is being
evaluated by another thread. In that case, again the substrate
packages up the continuation and returns it to the enclosing run.
But see Section 5.5.

The substrate must be able to find the enclosing run(s) somehow.

5.5 Thunks

In old GHC, when a thread blocks on a locked thunk, the suspended
thread was actually queued on the thunk itself, so that it could be
un-blocked when the thunk was updated. Since thunk evaluation is
definitely part of the substrate, this would be an awkward interac-
tion of the different levels.

However, GHC no longer attaches the blocked thread to the thunk.
Reason: that makes the act of updating a thunk much more epen-
sive, becuase it must check whether there is a queue of blocked
threads; and must do so using atomic instructions. Instead, the
blocked thread polls the thunk; the thunk update plays no part in
freeing the blocked thread.

This new mechanism is much easier for us. When a computation
evaluates a locked thunk, the substrate can just package up the
continuation and return it to the enclosing run. The polling process
could amount to just running the thread again; if the thunk is still
locked, the same thing will happen all over again (though perhaps
this is not fantastically efficient).

Perhaps RunResult should indicate what took place, because the
scheduler might want to schedule such threads differently.

5.6 Guaranteeing quasi-continuation usage

If a quasi-continuation is mis-used, you might get a seg-fault. You
might think it is terrible for this to happen in allegedly-statically-
typed language. However, it’s still better do to this stuff in Haskell
rather than C, for the reasons given above. It’s a bit like having
unsafePerformIO.

Idea. Maybe we can guarantee condition (2) statically after all.
What if the argument to callCC was guaranteed never to return?
Then we can be sure that k never dies, except perhaps by being
cutTo, anbd condition (1) says you can only do that once. We can
(nearly) statically guarantee that f doesn’t return. Suppose there is
no value of type Void [Simon: what about bottom?]:

callCC :: (QCont a -> IO Void) -> IO a
cutTo :: QCont a -> a -> IO Void

If the only way we can manufacture an IO Void is using cutTo
and stop (or perhaps simply diverging) then we can be sure that
the function passed to callCC does not return. Cool.

In any case, it’s very easy to dynamically check condition (2): if the
function called by callCC returns, report a runtime error.

5.7 MVars

When a thread blocks on an empty MVar, we want to attach the
sleeping thread to the MVar itself. So the concurrency library might
implement MVars like this:

newtype MVar a = MV (IORef (MVState a))
data MVState a = Full a [(a,Thread ())]

| Empty [Thread a]

If an MVar is full, it can have zero or more threads waiting to put
its value; if it is empty, there may be zero or more threads waiting
to take its vaulue.

Here’s the code for take. We’re assuming that the operations on
mutable state take place atomically.

takeMVar :: MVar a -> IO a
takeMVar (MV mv)

= do { cts <- readIORef mv
; take mv cts }

take mv (Full x [])
= do { writeIORef mv (Empty [])

; return x }
take mv (Full x ((x’,t):ts))

= do { writeIORef mv (Full x’ ts)
; makeRunnable t
; return x }

take mv (Empty ts)
= callCC $ \k ->

do { t <- currentThread
; setThreadCont t k
; writeIORef mv (Empty (t:ts))
; stop Done }

Notice that the last block of code returns Done to the scheduler even
though the thread is far from finished. Nevertheless, the scheduler
can now ignore it, and in that sense it’s Done.

To do this we’ve used a couple of new functions:

makeRunnable :: Thread -> IO ()
currentThread :: IO Thread

Since both involve threads, they can’t be substrate primitives. Both
require access to a structure created and owned by the enclosing
run. This strucure might contain mutable variables (e.g. the run
queue for that scheduler). This is a kind of thread-local state and
we Must Have It: see Section 6.

While I think about it, though, notice that we could get away
without the RunResult (I think) result of run. The yield function
could put the current thread into the run queue. Aha, but the implicit
yield from pre-emption could not do so.

5.8 Multiprocessor issues
• I have been writing readIORef, writeIORef etc, but in a

multiprocessor the substrate must provide something akin to
CAS. I’m not sure what the exact signature should. Probably
at least a multi-word CAS, so as to support STM commit.

• Something about how to get N schedulers started when we
have N processors. Perhaps the Right Thing is just to have the
substrate expose the OS facilities:

forkOS :: IO a -> IO OsThreadId

The idea is that we spawn a real OS thread here. The business
of multiplexing lightweight Haskell threads onto OS threads is
then 100% done by the concurrency library.

5.9 Atomicity

We need some primitive notion of atomicity (“primitive” meaning
“implemented by the substrate”). Here are two possibilities:

• Add compare-and-swap to IORefs, and make that the primitive.
That’s what real machines have.

• Implement transactional memory in the substrate. Possibly
without retry and orElse?

3 2006/7/17

5.10 Par

GHC supports the par combinator:

par :: a -> b -> b

pat puts a spark (thunk) into a spark pool. Idle processors look for
work in the spark pool. We might have per-processor spark pools;
along with stealing to grab sparks from the spark pool of another
processor.

There are lots of different spark-pool strategies, and we’d like that
to be programmable too. But here the task is a bit harder, because
par is pure, but side-effecting the spark pool is, well, a side effect.
We’ll need to use something unsafePerformIO-like here... and
the unsafePerformIO must be able to get at the per-procesor
spark pool.

6. Thread-local state
See Adrian Hey’s page http://www.haskell.org/hawiki/
GlobalMutableState, and Ian Stark’s ACIO message http://
www.haskell.org/pipermail/haskell-cafe/2004-November/
007664.html.

As Brian Hulley put it, at the moment, there is a strange unnatural
discrepancy between the fixed set of built-in privileged operations
such as Data.Unique.newUnique which are ”allowed” to make use
of global state, and user defined operations which have to rely on a
shaky hack in order to preserve natural abstraction barriers between
components such as a user-defined Unique, Atom, and anything
involving memoisation or device management etc.

The kind of applications we have in mind (please add more) are:

• A source of random numbers, or of unique numbers. This
should be on a per-thread basis.

• The value of ’stdin’ or ’stdout’. We don’t want to mutate this
(although note that the handle itself ¡em¿contains¡/em¿ mutable
state), but we might want to set the value for sub-computations,
including any spawned threads.

6.1 A straw man

The basic idea is this:

• Each thread has access (via the IO or STM monad) to a ”dictio-
nary” that maps a (typed) key to a value of that type.

• The dictionary is not mutable, but the values might themselves
be mutable cells (think of ’stdin’). More concretely:

A new built-in data type, Key a, an instance of Eq, but not
Ord. It’s a “thing with identity” (TWI), and called a “fluid”
in Scheme [?].

A new built-in data type of dictionaries, ¡code¿Dict¡/code¿,
which maps a typed key to a typed value:

lookup :: Dict -> Key a -> Maybe a
insert :: Dict -> Key a -> a -> Dict
union :: Dict -> Dict -> Dict
etc

Yes, it’ll need a massive interface, like Data.Map.

• You can allocate a fresh (globally unique) key in the IO monad

newKey :: IO (Key a)

• However, we add a new top-level declaration to allocate new
top-level key:

key rng :: Key StdGen

x, y ∈ Variable
r, t ∈ Name

c ∈ Char

Value V ::= r | c | \x ->M
| return M | M >>=N
| putChar c | getChar
| throw M | catch M N
| run V M | cutTo V M

Term M, N ::= x | V | M N | · · ·

Heap Θ ::= r ↪→ H
Heap values H ::= M Mutable locations

| E Continuations

Evaluation
contexts

E ::= [·] | E >>=M | catch E M

Action a ::= !c | ?c | ε

Figure 1. Syntax

This is useful independent of mutability. For example, GHC has
lots of code going

thenIdKey = mkPreludeIdKey 3
returnIdName = mkPreludeIdKey 4

etc, where we hand out unique identifiers by hand. Easy to
screw up.

• Each thread has an implicit, thread-specific dictionary:

getDict :: IO Dict
letDict :: Dict -> IO a -> IO a

(Think of myThreadId.) Notice that letDict does not mutate
the dictionary; it just sets the implicit dictionary for a nested
sub-computation.

The thread-specific Dict can map a key to an IORef or MVar.
That makes it possible for one thread to mutate the implicit state
of another thread; or, in the case of thread-private mutable state,
for a thread to mutate its own private state.

• A forked thread inherits its parent’s dictionary.

6.2 Initialisation

Initialisation is the big question here. A library may want to allocate
a key, and an initialiser to be run the first time the key is accessed,
without the client of the library needing to know about it at all.
A second issue that we may sometimes want to implicitly (?) re-
initialise (or clear) all or part of the dictionary when forking a
thread.

7. Semantics
Here’s a start at an operational semantics.

References
[1] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable memory

transactions. In ACM Symposium on Principles and Practice of Parallel
Programming (PPoPP’05), June 2005.

[2] C. Haynes and D. Friedman. Engines build process abstractions.
In Conference Record of the 1984 ACM Symposium on Lisp and
Functional Programming, 1984.

[3] S. Marlow, S. Peyton Jones, A. Moran, and J. Reppy. Asynchronous
exceptions in Haskell. In ACM Conference on Programming

4 2006/7/17

I/O transitions M ; Θ
a−→ N ; Θ′

E[putChar c]; Θ
!c−→ E[return ()]; Θ (PUTC)

E[getChar]; Θ
?c−→ E[return c]; Θ (GETC)

E1[run n t]; Θ[t 7→ E2] −→ E1[running n E2[()]]; Θ (RUN)
E[stop M]; Θ −→ return M ; Θ (STOP)

E[callCC M]; Θ −→ (M t >> throw BadCallCC); Θ[t 7→ E] t 6∈ dom(Θ) (CALLCC)
E1[cutTo t M]; Θ[t 7→ E2] −→ E2[M]; Θ (CUTTO)

E[running 0 M]; Θ −→ E[return (More t)]; Θ[t 7→ (return [·] >> M)] t 6∈ dom(Θ) (PPEEMPT)

M −→ N
E[M]; Θ −→ E[N]; Θ

(ADMIN)

n > 0 M ; Θ −→ N ; Θ′

E[running n M]; Θ −→ E[running (n− 1) N]; Θ′
(RUNNING)

Administrative transitions M −→ N

M −→ V if V[[M]] = V and M 6≡ V (EVAL)
return N >>=M −→ M N (BIND)
throw N >>=M −→ throw N (THROW)

catch (throw M) N −→ N M (CATCH1)
catch (return M) N −→ return M (CATCH2)

Figure 2. Operational semantics of STM Haskell

Languages Design and Implementation (PLDI’01), pages 274–285,
Snowbird, Utah, June 2001. ACM Press.

[4] S. Marlow, S. Peyton Jones, and W. Thaller. Extending the Haskell
Foreign Function Interface with concurrency. In Proc Haskell
workshop, Snowbird, Utah, pages 57–68, 2004.

[5] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In
23rd ACM Symposium on Principles of Programming Languages
(POPL’96), pages 295–308, St Petersburg Beach, Florida, Jan. 1996.
ACM Press.

5 2006/7/17

