
Formally Based Profiling for Higher-Order Functional
Languages

PATRICK M. SANSOM and SIMON L. PEYTON JONES

University of Glasgow

We present the first source-level profiler for a compiled, nonstrict, higher-order, purely functional
language capable of measuring time as well as space usage. Our profiler is implemented in a
production-quality optimizing compiler for Haskell and can successfully profile large applications.
A unique feature of our approach is that we give a formal specification of the attribution of
execution costs to cost centers. This specification enables us to discuss our design decisions in
a precise framework, prove properties about the attribution of costs, and examine the effects of
different program transformations on the attribution of costs. Since it is not obvious how to map
this specification onto a particular implementation, we also present an implementation-oriented
operational semantics, and prove it equivalent to the specification.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids; D.3.2 [Programming Languages]: Language Classifications—applicative lan-
guages; D.3.4 [Programming Languages]: Processors—compilers; optimization; F.3.2 [Logics
and Meanings of Programs]: Sematics of Programming Languages—operational semantics

General Terms: Languages, Theory

Additional Key Words and Phrases: Attribution of costs, cost centers, cost semantics, execution
profiling, program transformation, space profiling, source-level profiling

1. MOTIVATION AND OVERVIEW

Everyone knows the importance of profiling tools: the best way to improve a pro-
gram’s performance is to concentrate on the parts or features of a program that
are “eating the lion’s share” of the machine resources [Bentley 1982; Ingalls 1972;
Knuth 1971]. One would expect profiling tools to be particularly useful for very
high-level languages where the mapping from source code to target machine is
much less obvious to the programmer than it is for (say) C. Despite this obvious
need, profiling tools for such languages are very rare. Why? Because profilers can
only readily measure or count low-level execution events, whose relationship to the

An earlier version of this article appeared in Proceedings of the ACM Symposium on Principles of
Programming Languages, 1995, under the title “Time and space profiling for non-strict, higher-
order functional languages.”
This work was partly supported by the Commonwealth Scholarship Commission and the Engi-
neering and Physical Sciences Research Council (grant GR/J12994).
Authors’ address: Department of Computer Science, The University of Glasgow, Glasgow G12
8QQ, U.K.; email: {sansom; simonpj}@dcs.glasgow.ac.uk.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 1997 ACM 0164-0925/97/0300-0334 $03.50

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997, Pages 334–385.

Profiling for Higher-Order Functional Languages · 335

original high-level program can be far from obvious.
With this in mind, we have developed a profiler for Haskell, a higher-order non-

strict, purely functional language [Hudak et al. 1992]. We make three main contri-
butions:

(1) We describe a source-level profiler for a compiled, nonstrict language capable of
measuring both execution time and space usage. Nonstrict languages are usually
implemented using some form of lazy evaluation, whereby values are computed
only when required. For example, if one function produces a list which is
consumed by another, execution alternates between producer and consumer in
a coroutine-like fashion. Execution of different parts of the program is therefore
finely interleaved, which makes it difficult to measure how much time is spent
in each “part” of the program.

Our profiler solves this problem; indeed, though the results depend on the
degree of evaluation, they are entirely independent of the order in which the
evaluation proceeds. This issue has been independently addressed by Clack et
al. [1995]; our new contribution is to deal with a production-quality compiled
implementation of a fully featured language (Haskell).

(2) We support the profiling of large programs by allowing the systematic subsump-
tion of execution costs under programmer-controlled headings, or “cost centers.”
Most profilers implicitly attribute costs to the function or procedure which in-
curred them. This is unhelpful for languages like Haskell, which encourage a
modular programming style based on a large number of small functions, for
two reasons: first, there are simply too many functions in a large program; and
second, it does not help much to be told (say) that the program spends 20%
of its time in the heavily used library function map. Cost centers allow the
programmer to choose an appropriate granularity for profiling, ranging from
whole program phases to individual subexpressions in a single function.

(3) We provide a formal specification of the attribution of execution costs to cost
centers. Higher-order languages make it harder to give the programmer a clear
model of where costs are attributed. For example, suppose a function produces
a data structure with functions embedded in it. Should the execution costs of
one of these embedded functions be attributed to the “part” of the program
where it is called or to the part which produced the data structure?

A unique contribution of this article is that we back up our informal de-
scription of cost attribution (Section 3.1) with a formal specification, or cost
semantics (Sections 3.2-3.4). In this framework we prove properties about the
cost attribution (Sections 3.5 and 4.3), examine the effects of different program
transformations on the attribution of costs (Section 5), and explore the design
space in a precise way (Section 8).

While our approach can handle nonstrict languages such as Haskell, it is not
restricted to them: it can also accommodate strict languages such as SML, though
many of the issues we address here are simplified — see Section 8.4.

From a practical point of view, our technique is relatively straightforward to
implement. In Section 4 we describe a full implementation of the profiler in the
Glasgow Haskell Compiler, a state-of-the-art compiler for Haskell [Peyton Jones et
al. 1993].

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

336 · Patrick M. Sansom et al.

As well as an informal description of the implementation (Section 4.1), we present
a state-transition system which describes it formally and prove it equivalent to the
specification (Section 4.2). In Section 5 we consider program transformation in the
presence of profiling. Using the formal specification we establish conditions under
which the transformations performed by the compiler do not affect the attribution
of costs. This enables us successfully to profile optimized code. The run-time
overheads of the profiler are discussed in Section 6. Even though these are quite
significant (61%), we believe that they are not excessive in practice.

The profiler is publicly distributed with the compiler, and its design has been
significantly influenced by user feedback (Section 7) — a modified cost semantics
is introduced in Section 7.2.

In Section 8 we discuss some alternative approaches, including the inheritance of
costs (Section 8.3) and the profiling of strict languages (Section 8.4). Finally, we
discuss related work (Section 9) and draw some conclusions (Section 10).

2. AN OVERVIEW OF THE PROFILER

We begin with an overview of the profiler, as seen from the programmer’s point of
view.

2.1 Cost Centers

All profilers attribute execution costs to the “parts” of the program. Most pro-
filers implicitly identify such “parts” with functions or procedures. Since Haskell
is an expression-based language, we take a more flexible approach, identifying the
“parts” of the program by associating a cost center , to which execution costs are
attributed, with each expression of interest. For example, consider the following
function definition:

f x y = x + (scc "test" factorize y)

The scc construct explicitly annotates an expression with a cost center, to which
the costs of evaluating that expression are attributed. In the example above, the
costs of evaluating factorize y are attributed to the (arbitrarily named) cost
center "test". Associated with each scc annotation is an entry count which is
incremented each time the scc is evaluated. This count is equivalent to the function-
call-counts of conventional profilers.

From a syntactic point of view scc (short for “set-cost-center”1) is a language
construct, like let or case, and not a function. The cost center is a literal string,
not a computed value; and scc has lower precedence than function application, i.e.,
its scope extends as far to the right as possible.

The scc construct annotates an expression rather than a function definition. This
distinction is largely cosmetic: an expression can easily be made into a function by
lambda lifting. Nevertheless we have found that it is often convenient to be able
to profile subexpressions of the main function of a program without lambda lifting.
More importantly, the expression form gives us a convenient language in which to
discuss the effect of program transformations (see Section 5).

1The irony of this imperative-sounding name is not lost on us.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 337

2.2 Introducing the scc Annotations

Our profiler offers two mechanisms for introducing scc annotations into a program:
automatically by the compiler or manually by the programmer. These two mech-
anisms support the two main approaches used in practice by programmers to find
performance bugs: bottom-up and top-down.

The bottom-up method is used when profiling a library module, such as an
abstract data type. Using a compiler flag, the programmer can annotate every
top-level function definition with an eponymous cost center, without altering the
source code itself. This annotation can be done for selected modules or indeed for
all modules. The latter case is equivalent to the function-based profiling provided
by conventional profilers.

The top-down method starts with the main function of the program, which usu-
ally contains calls to a number of other functions. Each of these calls is annotated
explicitly by the programmer with a suitable scc. A run of the program often now
reveals that one of these calls is taking a substantial fraction of the total execution
time, in which case that function can be annotated in the same way as before. In
this fashion the programmer can “home in” on the culprit.

The two methods are complementary. The bottom-up method answers the ques-
tion “is this abstract data type too slow (regardless of where it is called from),”
while the top-down method addresses the question “is this phase of the program
too slow (regardless of which abstract data types it uses).”

2.3 Using the Profiler

To profile a program all modules (whether or not they contain scc annotations)
must be compiled and linked with the -prof option. The program can then be run
normally, except that it produces some extra output files containing the profiling
information. A number of runtime flags can be used to request different profiling
outputs.

Any explicit scc annotations in the source are ignored when a program is com-
piled without the -prof option.

Figures 1 and 2 give an example of output produced by the profiler. (They show
the results of profiling the compiler itself, using the top-down approach, in which
the call to each each of the main passes in the compiler was explicitly scc’d in the
main function.)

The cost center profile in Figure 1 reports basic profiling information aggregated
over the whole run of the program. For each cost center the profiler reports the
following:

scc: The number of times the scc annotation was evaluated. This count is
equivalent to the function-call counts of conventional profilers.

%time: The proportion of execution time consumed by evaluation of the expression
annotated with the cost center.

%alloc: The proportion of heap allocation attributed to evaluation of the expres-
sion annotated with the cost center.

inner: The number of scc annotations evaluated within the scope of this cost
center. This provides a reminder that some of the costs of evaluating the
expression were attributed to an inner cost center.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

338 · Patrick M. Sansom et al.

Tue May 18 17:03 1993 Cost Center Profile
hsc-0.13 +RTS -H25M -p -RTS -C -hi ...

total time = 240.48 secs (12024 ticks@20ms)
total alloc = 619,779,088 bytes

51,846,277 closures
COST CENTER scc %time %alloc inner
TypeChecker 1 45.4 44.6 0
Renamer 1 25.0 27.0 0
builtinNames 1 7.6 14.4 0
PrintRealC 1 4.5 4.3 0
Core2Core 1 3.9 2.5 0
MAIN 1 2.7 2.7 1
CodeGen 1 1.5 1.1 0
rdModule 1 1.8 1.2 0
Stg2Stg 1 1.1 0.5 0
FlattenAbsC 1 0.7 0.5 0
cvModule 1 0.6 0.5 1
Core2Stg 1 0.6 0.3 0
...

Fig. 1. Cost Center profile of the Glasgow Haskell compiler.

hsc-0.13 +RTS -hC -i1.0 -RTS -C -hi ...

254,942,256 bytes x seconds Fri May 28 13:38 1993

seconds0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0

by
te

s

0k

500k

1,000k

1,500k

2,000k

2,500k

OTHER

Main:DeSugarer

Main:cvModule

AbsPrel:CAF:std_gie

Main:Stg2Stg

Main:FlattenAbsC

Main:Core2Stg

Main:rdModule

Main:Renamer

Main:Core2Core

Main:CodeGen

Main:TypeChecker

Main:PrintRealC

ReadPrefix:rdImports

Fig. 2. Heap profile of the Glasgow Haskell compiler.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 339

The heap profile in Figure 2 shows the composition of the (live) heap data, by
cost center, plotted against time, in the style of Runciman and Wakeling [1993]. As
with Runciman and Wakeling [1993], it is possible to break down the contents of
the heap by other criteria, such as the type of the heap object or the particular data
constructor. It is also possible to restrict the heap profile to a subset of interest,
selecting by cost center, type, constructor, etc.

3. A SEMANTICS FOR COST ATTRIBUTION

For a profiler to be useful it must be possible to explain to a programmer the exact
way in which execution costs are attributed to the headings under which the profiler
reports them — that is, we must give a specification of the profiler. For a higher-
order, nonstrict language such as Haskell, we have found that this specification is
remarkably slippery. Every time we came up with an informal specification we
found new examples for which the specification was inadequate!

This experience eventually led us to develop a formal specification of the way in
which our profiler attributes costs. In this section we give an informal model of
cost attribution, show how it is inadequate, and then describe our formal model.

An important constraint is that the profiler should do “what the programmer
expects” in commonly occurring cases. The formal specification is useful for ob-
scure or difficult cases, but programmers should not need to refer to it most of the
time. The formal system plays exactly the same role as the formal semantics of
a programming language: it is a guide to implementors and is the final arbiter of
obscure cases.

3.1 Informal Cost Attribution

Given an expression scc cc exp, the general idea is that the cost of evaluating exp
should be attributed to cc. However, consider the following examples:

—scc "cc1" x+1. In a nonstrict language x may not be evaluated when the evalu-
ation of x+1 begins: should the cost of evaluating x be attributed to cc1? Surely
not, because if the evaluation order was (legitimately) changed by the compiler
so that x was already evaluated by the time the x+1 was started then the cost
attribution would change radically.

—scc "cc2" (f x, g x). In a nonstrict language, the second component of the
pair (say) might never be evaluated. The profiler should presumably therefore
only attribute the cost of the call (g x) to cc2 if the second component of the
pair turns out to be required.

—scc "cc3" (\x -> f x, True). Should the costs of evaluating the calls to f
— and there could be many such calls — be attributed to cc3 or to the cost
centers enclosing the places where the lambda abstraction is applied? We make
the former choice; the issue is discussed further in Section 8.1.

Here, then, is an informal specification of our profiler’s cost attribution, which tries
to answer questions such as those above:

Given an expression scc cc exp, the costs attributed to cc are the entire
costs of evaluating the expression exp as far as the enclosing context
demands it, including

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

340 · Patrick M. Sansom et al.

(a) the cost of evaluating any functions called during the evaluation of
exp and

(b) the cost of evaluating the bodies of any lambda abstractions in exp
(however many times they are called),

but excluding
(c) the cost of evaluating the free variables of exp and
(d) the cost of evaluating any scc-expressions within exp or within any

function called from exp.

This definition has the following consequences:

Cost Centers Scope Statically. If cc is the innermost cost center statically en-
closing a subexpression e, then the costs of evaluating e are attributed to cc. This
simple notion ensures that the profiling results are easy to interpret.

Costs are Aggregated. If no cost center statically encloses an expression, then
its costs are dynamically attributed to the caller of the function of which that
expression is part. For example, consider the example:

my_fun xs = scc "mapper" map square xs
square x = x * x

The function square does not have an scc construct, so its costs are attributed to
the cost center of its caller, in this case "mapper". Similarly, the cost of executing
this call to the library function map is attributed to "mapper" as well.

Shared functions are dealt with correctly, of course: other calls to square are
attributed to the cost center of their callers, not to "mapper".

In short, except where explicit scc constructs specify otherwise, the costs of
callees are automatically subsumed into the costs of the caller.

Cost Attribution is Independent of the Order of Evaluation. When my_fun is
called, its argument xs may not be fully evaluated, and its further evaluation may
ultimately be forced by map called from within my_fun. Nevertheless, the costs of
evaluating xs is not attributed to "mapper" but rather to the cost center which
encloses the producer of xs. Similarly, the result of my_fun is a list, which may
be evaluated fully, partially, or not at all. The costs of whatever evaluation is
performed are attributed to "mapper", no more and no less.

In effect, the programmer does not need to understand the program’s evaluation
order to reason about which costs are attributed to which cost center. This property
is formalized in Section 3.5.

The Degree of Evaluation Performed is Unaffected. The result of my_fun is eval-
uated no more and no less than would be the case in an unprofiled program. It
follows that the costs attributed to "mapper" depend on how much of my_fun’s
result is evaluated by its caller. The results are independent of the order of evalu-
ation; they are not independent of the degree of evaluation!

Costs are Attributed to Precisely One Cost Center. Thus, the sum of all the time
costs attributed to all the cost centers of a program is equal to the total runtime
of the program; no time is lost, nor double-counted. An alternative approach is to
arrange for costs to be inherited by each cost center in the stack of enclosing cost
centers. This is discussed in Section 8.3.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 341

Values: z ::= λx.e
| C x1 · · ·xa a≥0

Expressions: e ::= z
| e x
| x
| let x1=e1, . . . , xn=en in e n>0

| case e of {Cj xj1 · · ·xjaj -> ej}nj=1 n>0

| scc cc e

Program: prog ::= x1=e1, . . . , xn=en n>0

Fig. 3. Language syntax.

Despite our attempt at precision, our definition is still vague, especially when
higher-order functions are concerned. For example, what costs are attributed to
"tricky" in the expression scc "tricky" (f,g), where f and g are functions
defined elsewhere? Are the costs of any calls to the first or second components of
this pair attributed to tricky or not? What about scc "tricky" (f x), where
f is a function of two arguments? In order to be able to answer such questions
precisely we developed a formal model for cost attribution which we discuss next.

3.2 Language

The language we consider is given in Figure 3. In order to make the theory tractable
we restrict ourselves to a rather small language. However, we believe that it is still
close enough to Haskell to be meaningful to a programmer.

The language looks at first like no more than a slightly sugared lambda calculus,
with mutually recursive lets, saturated data constructors, case, and scc. However,
it has an important distinguishing feature: the argument of a function application
is always a simple variable. A nonatomic argument is handled by first binding it to
a variable using a let expression. This has a direct operational interpretation: a
nonatomic function argument must be constructed in the heap (the let expression)
before the function is called (the application). This language embodies the essential
features of the Core language used in the Glasgow Haskell compiler.

For notational convenience, we use the abbreviation {xi = ei} for the set of
bindings x1=e1, . . . , xn=en. Similarly we write [yi 7→ ei] for the finite mapping
[y1 7→ e1, . . . , yn 7→ en] and e[ei/xi] for the substitution e[e1/x1, . . . , en/xn]. We
also abbreviate x1 · · ·xa with xa and drop the n

j=1 in the case alternatives. We use
≡ for syntactic identity of expressions.

3.3 The Judgment Form

Our model is based on Launchbury’s operational semantics for lazy graph reduction
[Launchbury 1993; Sestoft 1997], augmented with a notion of cost attribution. We
express judgments about the cost of evaluating an expression thus:

cc,Γ : e ⇓θ∆ : z, ccz

This should be read “In the context of the heap Γ and cost center cc, the expression
e evaluates to the value z, producing a new heap ∆ and cost center ccz; the costs
of this evaluation are described by the cost attribution θ.” We use the following

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

342 · Patrick M. Sansom et al.

Table I. Abstract Costs
Cost of Denoted

Application A
Case expression C
Evaluating a thunk V
Updating a thunk U
Allocating a heap object H

Entering an scc E

vocabulary:

—cost center (cc): a label to which costs are attributed.
—cost attribution (θ): a finite mapping of cost centers to costs. A cost attribution

records the total costs attributed to each cost center. Two cost attributions are
combined using (an overloaded) + . We also use − to remove costs from an
attribution. (θ1+

attr
θ2)(cc) = θ1(cc) +

cost
θ2(cc)

(θ1−attrθ2)(cc) = θ1(cc)−
cost

θ2(cc)

—heap (Γ,∆,Θ,Ω): an annotated mapping from variable names to expressions.
We use the notation Γ[x cc7→ e] to extend the heap Γ with a mapping from x to
the expression e annotated with cost center cc.

In general, the cost center attached to a heap binding is the cost center which
enclosed that binding. It serves two purposes: to ensure correct cost attribution
when a thunk (unevaluated heap closure) is evaluated and to enable cost center
attribution when a heap census is taken (Section 4.1).

The abstract costs are denoted by the symbols in Table I. One should not
think of these costs as constants. The cost semantics specifies which cost center
is attributed with the cost of (say) performing a heap allocation. The semantics
makes no attempt to specify exactly what costs are attributed; it just attributes
“H.” The implementation attributes the actual execution costs (of time and space)
to the cost center specified by the semantics; it does not count every A, C, and so
on, at all.

The only exception to this is the “cost,” E, of entering an scc. Since an scc is
just an annotation, there is no real cost associated with executing it. Rather, our
intention is to count the number of times each scc annotation is evaluated, in the
same way that conventional profilers count the number of times each function is
called.

The cost attribution of evaluating the whole program, θMAIN , is obtained from
the judgment

"MAIN",Γinit : main ⇓θMAIN∆ : z, ccz.

The initial cost center is "MAIN", to which all costs are attributed, except where
an scc construct specifies otherwise. The initial heap, Γinit, binds each top-level
identifier to its right-hand side. What cost center should be associated with these
bindings? A top-level binding defines either a function (if it has arguments) or a
constant applicative form (if it does not). The costs of top-level functions should
be subsumed by their caller, so we give their bindings in Γinit the special pseudo-
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 343

cost-center "SUB" to indicate this fact. The "SUB" cost center is treated specially
by the rules which follow. We discuss the treatment of constant applicative forms
in Section 7.

The semantics is a “big-step” semantics, so it does not say anything about the
cost attribution of nonterminating programs. This is more of a technical problem
than a practical one. In practice, we arrange that if the program is interrupted
then the profiling information accumulated to that point is dumped into the profile
files before execution is finally terminated.

3.4 The Rules

The cost-augmented semantics is given in Figure 4. The following paragraphs
discuss the rules.

The cost center on the left-hand side of the judgment is the “current cost center,”
to which the costs of evaluating the expression should be attributed. A useful
invariant is that the current cost center is never "SUB". The last rule, SCC , is easy
to understand: it simply makes the specified cost center, ccscc, into the current cost
center. In addition it counts the evaluation of the scc by attributing E to ccscc.

It is less obvious why we need a cost center on the right-hand side, which we call
the “returned cost center.” The Lam and Con rules show where it comes from: in
both cases the expression to be evaluated is in head normal form, so it is returned,
along with the current cost center. (The other rules simply propagate it.) What use
is made of the returned cost center? To see this we must look at the two rules which
“consume” head normal forms, namely App (where a function is evaluated before
applying it) and Case (where a data value is evaluated before taking it apart):

—In the Case rule the returned cost center ccC is simply ignored. The appropri-
ate alternative is chosen, and its right-hand side is evaluated in the context of
the original cost center enclosing the case. That is as one would expect: the
costs of evaluating the alternatives accrue to the cost center enclosing the case
expression.

—In the App rule, the function e is evaluated, delivering (presumably) a λ-
abstraction λy.e′ and a returned cost center ccλ. The body of the abstraction,
e′, is then evaluated in the context of the returned cost center ccλ. In this way
the costs of evaluating the body of the λ-abstraction accrue to the cost center
enclosing the declaration of the λ-abstraction (see Section 4.3).

Lastly, we deal with the Let and Var rules, which concern the construction and
evaluation of heap-allocated thunks. The Let rule extends the heap with bindings
for newly allocated closures. The yi are freshly chosen names, directly modeling
heap addresses and are substituted for the corresponding xi throughout. This
substitution ensures that two instantiations of the same let expression do not
interfere with each other by binding the same variable twice.

The current cost center is pinned on each binding created by the Let rule. The
two Var rules shows how this cost center is used:

—When a variable is to be evaluated, and it is already bound to a value, the
Var(whnf) rule says that the value is returned, with an unchanged heap, and
the returned cost center is that pinned on the binding ccz. However, if ccz is

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

344 · Patrick M. Sansom et al.

cc,Γ : λy.e ⇓{}Γ : λy.e, cc Lam

cc,Γ : C xa ⇓{}Γ : C xa, cc Con

cc,Γ : e ⇓θ1∆ : λy.e′, ccλ ccλ,∆ : e′[x/y] ⇓θ2Θ : z, ccz
cc,Γ : e x ⇓{cc 7→A}+θ1+θ2Θ : z, ccz

App

cc,Γ[x ccz7→ z] : x ⇓{cc 7→V}Γ[x ccz7→ z] : z, S (ccccz) Var(whnf)

where S
(cc
"SUB"

)
= cc

S (ccccz) = ccz

cce,Γ : e ⇓θ∆ : z, ccz
cc,Γ[x cce7→ e] : x ⇓{cc 7→V}+θ+{ccz 7→U}∆[x ccz7→ z] : z, ccz

e 6≡ z Var(thunk)

cc,Γ[yi
cc7→ ei[yi/xi]] : e[yi/xi] ⇓θ∆ : z, ccz

cc,Γ : let {xi = ei} in e ⇓{cc 7→n∗H}+θ∆ : z, ccz
yi fresh Let

cc,Γ : e ⇓θ1∆ : Ck xak , ccC cc,∆ : ek[xi/yki] ⇓θ2Θ : z, ccz
cc,Γ : case e of {Cj yjaj -> ej} ⇓{cc 7→C}+θ1+θ2Θ : z, ccz

Case

ccscc,Γ : e ⇓θ∆ : z, ccz
cc,Γ : scc ccscc e ⇓{ccscc 7→E}+θ∆ : z, ccz

SCC

Fig. 4. Formal cost semantics.

"SUB", the current cost center is returned instead. This ensures that the invariant
mentioned above is maintained. It has the effect of subsuming the costs of top-
level functions into their callers, regardless of the choice made in the App rule.

—The Var(thunk) rule deals with the situation when the variable is bound to an
as yet unevaluated expression, or thunk. In this case, the expression to which
the variable is bound is evaluated, in the context of the cost center pinned on
the binding cce. The newly calculated value is recorded in the resulting heap,
replacing the previous binding for the variable; and the costs of entering the
thunk and updating the heap (V and U) are recorded in the cost attribution.

It is the Var(thunk) that implements the call-by-need behavior expected of
nonstrict languages. When the thunk for x is evaluated the heap is modified
to bind x to its newly calculated value. Subsequent attempts to evaluate x can

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 345

therefore use this value, rather than recomputing it as call-by-name would do.
Notice that the new binding, of the variable to its value, has the returned cost

center ccz pinned on it and that the cost of the update is attributed to ccz. This
is the second way in which the returned cost center is used. Finally observe that
cce can never be "SUB", since this cost center is only ever attached to top-level
function values.

The crucial point is that these rules give us a language in which to discuss cost
attribution in a precise manner. They provide a formal framework in which alter-
native design choices can be examined. For example, an alternative formulation
of the App rule might evaluate the body of the λ-abstraction in the context of cc,
the cost center enclosing the application. This particular alternative is discussed in
Section 8.1.

Notice that the cost attribution is a conservative extension of the rules presented
by Launchbury [1993]. The shape of a proof tree, and the value produced by such
a proof, never depend on the current cost center, the heap annotations, or on θ,
so the new cost-attribution mechanism does not change the results produced by a
computation — an easy result, but an important one.

3.5 Cost Attribution and Evaluation Order

In Section 3.1 we claimed that the profiling results are independent of the order of
evaluation. Given the formal cost semantics we can now state and prove that this
is indeed the case (Theorem 2). A consequence of this is that the cost attribution is
not dependent on the particular order of evaluation — only the extent of evaluation,
i.e., if a closure is evaluated then it can be evaluated early without affecting the
cost attribution (Corollary 3.5.2). This is important, as it means that strictness
optimizations, which evaluate needed variables early, do not change the attribution
of costs.

Theorem 3.5.1.
2

If cc1,Γ : e1 ⇓θ1∆ : z1, ccz1 and cc2,Γ : e2 ⇓θ2Θ : z2, ccz2

Then cc1,Θ : e1 ⇓θ′1Ω : z1, ccz1 and cc2,∆ : e2 ⇓θ′2Ω : z2, ccz2

and θ2+θ′1 = θ1+θ′2
The theorem states that if two expressions, e1 and e2, can be evaluated in the
context of a heap Γ and cost center cc, then they can be evaluated sequentially, in
any order, giving the same results, final heap, and total cost attribution. That is,
the following commuting diagram holds:

Γ

∆ Θ

Ω

e1

θ1
��~
~
~
~
~
~ e2

θ2

@
@
@
@
@

��

e2

θ′2
��

�

�

�

�

�

�

�

�

�

�

�

�

�

e1

θ′1
�� �

�

�

�

�

�

�

�

�

�

�

�

�

2In the statement of Theorem 2 (and Corollary 3.5.2) we have omitted details about renaming.
These are addressed in Appendix B.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

346 · Patrick M. Sansom et al.

Proof. See Appendix B.

Corollary 3.5.2.

If cc,Γ[y
ccy7→ ey] : e ⇓θe ∆[y

cczy7→ zy] : z, ccz, ey 6≡ zy
and ccy,Γ : ey ⇓θey Θ : z′y, cc

′
zy

Then zy ≡ z′y and cczy ≡ cc′zy
and cc,Θ[y

cczy7→ zy] : e ⇓θ′e ∆[y
cczy7→ zy] : z, ccz

and θe = θey+{cczy 7→U}+θ′e
This states that if a closure y

ccy7→ ey is evaluated during the evaluation of e and if it
is possible to evaluate ey immediately, then evaluating e in the context of the heap
returned by the immediate evaluation of ey with an updated binding for y gives
the same result and total cost attribution. This is summarized by the following
commuting diagram:

Γ[y
ccy7→ ey]

Θ[y
cczy7→ zy]

∆[y
cczy7→ zy]

ey

θey+{cczy7→U}

?
?
?
?
?
?

��

e

θe ��

ey
�� e

θ′e�� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Proof. Applying the Var(thunk) rule (using ⇓θey as the premise) we have

cc,Γ[y
ccy7→ ey] : y ⇓θyΘ[y

cc′zy7→ z′y] : z′y, S

(
cc
cc′zy

)
where θy = {cc 7→V}+θey+{cc′zy 7→U}.

Applying Theorem 2 to ⇓θe and ⇓θy we have

cc,Θ[y
cc′zy7→ z′y] : e ⇓θ′eΩ : z, ccz and cc,∆[y

cczy7→ zy] : y ⇓θ′yΩ : z′y, S

(
cc
cc′zy

)
and θy+θ′e = θe+θ′y.

Since ⇓θ′y can be derived from the Var(whnf) rule, we have

zy ≡ z′y, cczy ≡ cc′zy , Ω ≡ ∆[y
cczy7→ zy] and θ′y ≡ {cc 7→V}.

And finally, we have
θe = θy+θ′e−θ′y = {cc 7→V}+θey+{cczy 7→U}+θ′e−{cc 7→V}

= θey+{cczy 7→U}+θ′e.
Note that this proof only applies to the profiling results captured by the seman-

tics, i.e., time and allocation. It does not guarantee that the transformation leaves
the program’s residency3 unchanged. Indeed, changing the order of evaluation can
result in significant changes in the heap requirements of a program.

3The residency of a program is the amount of reachable data, averaged over time; it gives a good
measure of memory requirements and garbage collection cost and is only loosely related to the
amount of allocation.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 347

4. IMPLEMENTATION

We begin our description with an informal overview of the measurement technol-
ogy (Section 4.1). Since there is quite a large gap between the (big-step) cost
semantics of Section 3 and a concrete implementation, we present a small-step cost
semantics and prove that it implements exactly the same cost attribution as the
big-step semantics (Section 4.2). We also show that it implements the simple no-
tion of “static scope” (Section 4.3). We conclude with some observations about the
concrete implementation of the small-step semantics (Sections 4.4).

4.1 Implementation Overview

The profiling information presented in Section 2.3 is collected in the following way:

—At any moment the “current cost center” is stored in a known memory location
ccc.4 For example, when an scc annotation is evaluated, the annotating cost
center is stored in ccc. A cost center is represented by a pointer to a static block
of store which holds all the counters in which the costs attributed to that cost
center are accumulated.

—A regular clock interrupt executes a service routine which increments a tick
counter of the cost center currently stored in ccc. This enables the relative
time of the different “parts” of the program to be determined and reported (the
%time column in Figure 1). This statistical sampling works in much the same
way as any standard Unix profiler; the more clock ticks that have elapsed, the
more accurate the results. However, by attributing each sample to the current
cost center (instead of the block of code currently being executed) time spent exe-
cuting any library or system routines is attributed to the source code responsible
for calling the routine.

—The compiler plants in-line code to increment an allocation counter held in the
current cost center whenever a new heap object is allocated. In this way the
profiler is able to record how much heap was allocated by each cost center (the
%alloc column in Figure 1).

—When evaluation of (an instance of) an scc expression is begun, we increment
the scc entry count of the new cost center and the subcc count of the enclosing
cost center. The final counts are reported in the profile in the cost center profile
(Figure 1).

—An extra field is added to the front of every heap object. This field is initialized
from the current-cost-center register when the object is allocated. At regular
intervals (multiples of a clock tick) a census of all live heap objects is taken.
This allows the profiler to produce a heap profile which breaks down the contents
of the heap by cost center, an example of which is given in Figure 2. Other
heap censuses are also supported e.g., by constructor, type, module, etc. It is
also possible to restrict a census to a particular subset of the heap e.g., profile
the constructors produced by a particular cost center, or profile the cost centers
which produced a particular constructor.

4The current cost center is stored in a memory location, rather then a machine register, so that
it is available to the interrupt service routine.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

348 · Patrick M. Sansom et al.

Naturally, the space required for this additional field is discounted when gath-
ering any profiling data.

—The cost center field in heap objects plays an additional role for thunks (sus-
pensions). It records the cost center which was current when the thunk was
allocated. When the thunk is subsequently evaluated, the current-cost-center
register is loaded from the field in the thunk, thus neatly restoring its value at
the moment the thunk was created. This is just what one would expect from the
Var(thunk) rule of Figure 4.

All of this is quite easily done; indeed, one of the beauties of the approach is that
the runtime implementation is so straightforward. What takes a little more care is
to make sure that every pass of our optimizing compiler respects cost attribution:
that is, it must not move costs from one cost center to another. We return to this
question in Section 5.

4.2 An Operational Semantics

There is a large gap between the formal cost semantics of Figure 4 and the im-
plementation just described, because the cost semantics is “big-step,” specifying
the final result on the right-hand side of a judgment, while the implementation is
necessarily “small-step,” specifying intermediate steps in the computation.

Sestoft [1997] bridges this gap in his derivation of an abstract machine from
Launchbury’s natural semantics. We present a version of Sestoft’s small-step state
transition semantics, augmented with the manipulation of cost centers and a notion
of cost attribution. This enables us to highlight a number of implementation-related
design decisions, which are applicable to a number of different abstract machines
(see Section 4.4).

The state transition rules, which include the manipulation of cost centers, are
given in Figure 5. The state consists of a 5-tuple (ccc,Γ, e, S, θ) where ccc is the
current cost center; Γ is the annotated heap; e is the expression currently being
evaluated or the control ; S is the stack (initially empty); and θ is the cost attribution
of the evaluation to date.

The state transition rules correspond directly to rules in the abstract cost se-
mantics. There is one state transition rule which initiates the evaluation associated
with each subproof of each semantic rule. In addition the Var(thunk) rule gives rise
to a second state transition rule which updates the heap with the computed result.
The correspondence between the abstract semantic rules and the state transition
rules is summarized in Table II.

The key new component of the state transition rules is the stack. This is used
to record any information which is required once the evaluation of a subproof has
completed. There are three places where this is necessary:

—In the App rule the argument x is pushed onto the stack while the function
expression e is evaluated (rule app1). When the λ-abstraction is evaluated it
retrieves this argument off the stack and evaluates its body (rule app2).

—In the Var(thunk) rule an update marker #x is pushed onto the stack while the
thunk e is evaluated (rule var2). When evaluation is complete the result value z
(a λ-abstraction or constructor) encounters the update marker on the stack and
updates the heap (rule var3).

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

P
ro

fi
lin

g
for

H
ig

h
er-O

rd
er

F
u

n
ctio

n
al

L
an

g
u

ag
es
·

3
4

9

ccc Heap Control Stack θ =⇒ ccc Heap Control Stack θ Rule

cc Γ e x S θ =⇒ cc Γ e x :S θ+{cc 7→ A} app1

ccλ Γ λy.e x :S θ =⇒ ccλ Γ e[x/y] S θ app2

cc Γ[x ccz7→ z] x S θ =⇒ S (ccccz) Γ[x ccz7→ z] z S θ+{cc 7→ V} var1

cc Γ[x cce7→ e] x S θ =⇒ cce Γ e #x :S θ+{cc 7→ V} var2

ccz Γ z #x :S θ =⇒ ccz Γ[x ccz7→ z] z S θ+{ccz 7→ U} var3

cc Γ let {xi=ei} in e S θ =⇒ cc Γ[yi
cc7→ êi] ê S θ+{cc 7→ n∗H} let

cc Γ case e of alts S θ =⇒ cc Γ e (alts,cc) :S θ+{cc 7→ C} case1

ccC Γ Ck xak (alts,cc) :S θ =⇒ cc Γ ek[xi/yki] S θ case2

cc Γ scc ccscc e S θ =⇒ ccscc Γ e S θ+{ccscc 7→ E} scc

In the var1 rule S (ccccz) is as defined in Figure 4.
In the var2 rule e 6≡ z.
In the let rule the introduced variables, yi, must be distinct and fresh. The notation ê means e[yi/xi].
In the case rules alts stands for the list {Cj yjaj -> ej} of alternatives.
In the case2 rule ek is the right-hand side of the kth alternative.

Fig. 5. State transition rules for lexical scoping.

A
C

M
T

ra
n
sa

c
tio

n
s

o
n

P
ro

g
ra

m
m

in
g

L
a
n
g
u
a
g
e
s

a
n
d

S
y
ste

m
s,

V
o
l.

1
9
,

N
o
.

2
,

M
a
rch

1
9
9
7
.

350 · Patrick M. Sansom et al.

Table II. Correspondence between Abstract and State Transition Semantics
Abstract Rule State Transition Rule(s)

Lam n.a.
App app1, app2

Var(whnf) var1
Var(thunk) var2, var3

Let let
Con n.a.
Case case1, case2
SCC scc

—In the Case rule the alternatives alts are saved on the stack while the case
expression e is evaluated (rule case1). When the evaluation of the constructor is
complete the appropriate alternative is selected and evaluated (rule case2). We
also save the current cost center on the stack with the alternative, since it has to
be restored when the alternative is evaluated.

The next step is to prove that the small-step semantics of Figure 5 is correct
with respect to our earlier big-step cost semantics (Figure 4). This result is far
from obvious. One merit of having a formal model of cost attribution is that it
enables us to give both a programmer-oriented model and an execution-oriented
model and to prove them equivalent.

Theorem 4.2.1.

(cc,Γinit, e, [], {})⇒∗ (cc′,∆, z, [], θ) if and only if cc,Γinit : e ⇓θ∆ : z, cc′

Proof. See Appendix C.

The proof is an extension of the correctness proof of Sestoft’s original small-step
state transition semantics [Sestoft 1997].

4.3 The Static Scope of Cost Centers

Our intuition about our profiling semantics is that all runtime costs are attributed
to the cost center which statically enclosed the expression being evaluated. We now
formalize this notion and prove that this is indeed the case, using the operational
semantics.

Definition 4.3.1. We identify the static scope of a cost center using ϕcc[e] which
labels e with its statically enclosing cost center cc and labels all subexpressions of
e with their statically enclosing cost center.

ϕcc[λx.e] = (λx.ϕcc[e])cc

ϕcc[e x] = (ϕcc[e] x)cc

ϕcc[x] = xcc

ϕcc[let {xi = ei} in e] = (let {xi = ϕcc[ei]} in ϕcc[e])cc
ϕcc[C xa] = (C xa)cc

ϕcc[case e of {Cj xjaj -> ej}] = (case ϕcc[e] of {Cj xjaj -> ϕcc[ej]})cc
ϕcc[scc ccscc e] = (scc ccscc ϕccscc [e])cc

For example, labeling the expression
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 351

let f = scc "f" λx.(+) x ((*) x x) in f (f v)

(once it has been desugared) with enclosing cost center e gives
ϕe[let f = λx. scc "f" let a1 = (*) x x in (+) x a1

in let a2 = f v in f a2]
=⇒∗
(let f = (λx.(scc "f" (let a1 = (((*)f x)f x)f in (((+)f x)f a1)f)f)e)e

in (let a2 = (fe v)e in (fe two)e)e)e

Observe that the scope of the scc annotation is labeled with the annotating cost
center f, not e, and that all nonatomic arguments are bound to labeled expres-
sions. The arguments themselves, which must be atomic, are not labeled (but see
Section 8.2).

Definition 4.3.2. For any labeled expression el, lab(el) = l. Observe that
lab(ϕcc[e]) ≡ cc, since ϕcc[e] always labels e with cc (see Definition 4.3.1).

Definition 4.3.3. For any labeled expression el, U [el] recursively removes all the
labels, i.e., U [ϕcc[e]] ≡ e.

Definition 4.3.4. A reduction sequence over labeled expressions

(cc,Γ, e, S, θ)⇒∗lab (cc′,Γ′, e′, S′, θ′)

is a reduction sequence where all control and heap-bound expressions have been
labeled with their statically enclosing cost center. In the initial state

(ccinit,Γlabinit, e
lab
init, [], {})

elabinit ≡ ϕccinit[einit] and the top-level subsumed functions, bound in Γlabinit, are la-
beled with the "SUB" cost center.5 When a subsumed function is entered, a modified
var1 rule relabels the duplicated right-hand side with its subsuming cost center.

(cc,Γ[x ccz7→ z], xl, S, θ) ⇒var1
lab (S (ccccz),Γ[x ccz7→ z], labsub(ccz , cc, z), S, θ+{cc 7→V})

where labsub("SUB", cc, (λy.e)l) = ϕcc[U [(λy.e)l]]
labsub(ccz , cc, z) = z

Since the control is a labeled expression, all dynamic heap bindings are created
with labeled right-hand sides.

We are now ready to state the main result, namely that an expression is always
evaluated in the context of its statically enclosing cost center.

Theorem 4.3.5.

(ccinit,Γlabinit, e
lab
init, [], {})⇒∗lab (cc,Γ, e, S, θ) ⇒ cc ≡ lab(e) and cc 6≡ "SUB"

The theorem says that when an expression e is about to be evaluated the current
cost center cc will always be the one that statically encloses e, namely lab(e).
Since the state transition rules only attribute costs to the current cost center (see

5We address the labeling of constant applicative forms in Γlabinit in Appendix D.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

352 · Patrick M. Sansom et al.

Figure 5), it follows that costs are always attributed to the statically enclosing cost
center.

The theorem also establishes the fact that no expression is ever evaluated in the
context of the "SUB" cost center, i.e., all costs arising from subsumed top-level
functions are actually subsumed (an invariant mentioned in Section 3.4).

Proof. See Appendix D.

Though it would be possible to express and prove Theorem 4.3.5 in the abstract
semantics, it is more convenient to do this in the operational semantics, since this
naturally captures the idea that the property holds for every intermediate state in
the computation.

4.4 Implementing the Operational Semantics

The state transition semantics are easily mapped onto a number of different ab-
stract machines, including the G-machine [Augustsson and Johnsson 1989], the
STG-machine [Peyton Jones 1992], and the TIM [Fairbairn and Wray 1987], since
these abstract machines are all based on the same form of push-enter stack-based
model of execution which captures the behavior of our abstract state transition se-
mantics. (The particular abstract machines differ in their organization of lower-level
details such as the representation of environments and the update mechanisms em-
ployed.) We make no attempt to prove this step correct. However, since the state
transition semantics of Figure 5 is small-step, we have much greater confidence
that our implementation is faithful to the original semantics than if we had tried
to implement the latter directly.

A flavor of the low-level execution details for our implementation, which is based
on the STG-machine, was given in Section 4.1. A key operational property of the
state transition semantics (Figure 5) is that costs are only attributed to the current
cost center. This property justifies the implementation sketched in Section 4.1, in
which the consumption of time and space is simply attributed to the current cost
center.

5. TRANSFORMATION

In general, there is a tension between compiler optimizations and accurate profil-
ing. On the one hand, optimizations tend to “mix together” originally separate
parts of the program, making it harder for the programmer to interpret profiling
measurements; but on the other hand, it is futile to profile only unoptimized code,
since its behavior may be quite different to the fully optimized program.

To permit meaningful profiling, the optimizer must maintain some invariant con-
cerning execution costs. What invariant should that be? Clearly it should not be
required to maintain the cost of evaluating an expression, because the whole point
of optimization is to reduce these costs! Fortunately, a weaker invariant suffices,
namely that the optimizer should preserve the attribution of cost. To be more
precise we can say that

No transformation should transfer cost from one cost center to another.

A transformation is, of course, free to reduce the cost attributed to any cost center.
Only those transformations which transfer costs from one cost center to another
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 353

must be avoided.
With this goal in mind we now show that

(1) Local transformations within the static scope of a cost center do not move cost
from one cost center to another (Section 5.1).

(2) The inlining of top-level functions does not move cost from one cost center to
another (Section 5.2).

It follows immediately that the optimization of a large program is largely unaffected
by a modest number of scc annotations. Transformations are only hindered at scc
boundaries, and the most important nonlocal transformation, inlining, is unaffected.

Some programs may have many scc annotations, however. We therefore also
address the issue of performing transformations at the scc boundaries introduced
by the programmer (Section 5.3), developing some additional scc transformations
which preserve the attribution of costs and enable subsequent transformations to
proceed. In practice, to ensure that the code we profile is as close as possible to
the fully optimized code, we do perform certain scc transformations that transfer
a small fixed cost between cost centers.

Our approach has a shortcoming that is occasionally important, concerning res-
idency. The cost semantics carefully accounts for allocation, but it gives no infor-
mation whatsoever about residency (that is, the amount of live data). We have
found one program whose residency is substantially affected by the mere act of pro-
filing. Some transformation that happens to improve residency is being prevented
by the profiler, a very unfortunate “Heisenberg effect.” Controlling residency is
notoriously difficult, and we leave this as further work [Röjemo 1995].

5.1 Local Transformations

The Glasgow Haskell compiler makes use of many simple local transformations to
optimize the code [Santos 1995]. Some examples are given in Figure 6.

In Section 4.3 we proved that an expression is always evaluated in the context of
its statically enclosing cost center (Theorem 4.3.5). Thus, any local transformation
whose effect is entirely within the scope of a cost center can proceed unhindered,
since the transformation does not move cost from one cost center to another.

For example, consider an application of the λ-of-let transformation within the
static scope of some cost center cc.

λy.let x = ex in e ==λ-of-let=⇒ let x = ex in λy.e y 6∈ FV (ex)

Labeling the left-hand-side and right-hand-side expressions with cc we observe that
all the subexpressions (the λ, the let, ex, and e) are labeled with cc before and
after the transformation, i.e., the transformation does not modify the labeling.

lhs: (λy.(let x = ϕcc[ex] in ϕcc[e])cc)cc

rhs: (let x = ϕcc[ex] in (λy.ϕcc[e])cc)cc

Since we know that the costs of evaluating these subexpressions are attributed
to the labeling cost center (Theorem 4.3.5), which has not changed, we conclude
that the transformation does not move costs form one cost center to another. The
transformation does, however, affect the costs attributed, since the let is no longer
evaluated on every application of the λ-abstraction.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

354 · Patrick M. Sansom et al.

app-of-λ (β) (λy.e) x =⇒ e[x/y]

app-of-let (let x = ex in e) y =⇒ let x = ex in e y

app-of-case (case e of {alti -> ei}) y =⇒ case e of {alti -> ei y}
λ-of-let λy.let x = ex in e y 6∈ FV (ex)

=⇒ let x = ex in λy.e

let-to-case6 let x = ex in e e strict in x, x 6∈ FV (ex)
=⇒ case ex of x -> e

case-of-known case Ck xak of {Cj yaj -> ej} =⇒ ek[xi/yki]

case-of-case7 case (case e of {alt1 -> e1}) of {alt2 -> e2}
=⇒ case e of {alt1 -> case e1 of {alt2 -> e2}}

Fig. 6. Some example local transformations.

When transforming expressions in a subsumed scope (labeled with the "SUB" cost
center) we do not know the actual cost center to which these costs will be attributed
at runtime. However we do know that the entire function body will be subsumed
(and relabeled) with a particular subsuming cost center, whenever the function is
applied (see Section 4.3). Since all the "SUB" labels will be relabeled with the
subsuming cost center, ensuring that the compile-time attribution of cost to the
"SUB" cost center is preserved (by preserving the "SUB" labeling) will preserve the
attribution of cost to subsuming cost center at runtime.

5.2 Inlining Top-Level Functions

A very important global transformation is the inlining of function definitions to
avoid the overheads of the function call and to enable further optimization. For
example we have

f = λy.e ==inline f=⇒ f = λy.e
g = . . . f . . . g = . . . (λy.e) . . .

If we are to apply this transformation when profiling we must show that this
transformation preserves the attribution of costs. Consider the evaluation of the
occurrence of f in the body of g. This will occur in the context of some cost center,
say cc, and some heap which contains a subsumed top-level binding for the function
f , say Γ[f "SUB"7→ λy.e].

cc,Γ[f "SUB"7→ λy.e] : f ⇓{cc 7→V}∆ : λy.e, cc

Since the top-level function is subsumed, the result is precisely the result obtained
when the inlining is evaluated in the context of the same cost center and heap.

cc,Γ[f "SUB"7→ λy.e] : λy.e ⇓{}∆ : λy.e, cc

6The let-to-case transformation uses a default case binding which is not part of the language

given in Figure 3. It is quite straightforward to extend the language, semantics, and results with
this construct.
7A more general case-of-case transformation is used when there are multiple alternatives in each
case (see Santos [1995]).

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 355

The only effect of performing the inlining transformation is to eliminate the cost
V. The rest of the cost attribution is unaffected by the transformation.

5.3 Transformations at scc Boundaries

The fact that the cost center boundaries are identified by an explicit language
construct provides a natural barrier to any “bad” transformations. For example,
in the expression

λy.scc cc let x = ex in e

the λ-of-let transformation is not applicable because the intervening scc inhibits
the pattern match. This is a good thing, since it forces us to be explicit about
what transformations occur at scc boundaries. The default behavior is that no
transformations occur across these boundaries.

As well as inhibiting these “bad” transformations the scc construct also provides
us with a language that can be used to express additional scc transformations that
preserve the attribution of costs and enable subsequent transformations to proceed.
We present some of the more important scc transformations below.

5.3.1 scc-of-let . We can safely float a let binding outside an scc annotation,
provided that we annotate the subexpression which is moved into the scope of a
different cost center with its original cost center.

scc cc let x = ex in e ==scc-of-let=⇒ let x = sccsub cc ex in scc cc e

The sccsub annotation is identical to an scc annotation, except that it does not
increment the cost center’s entry count, i.e., no {ccscc 7→E} is attributed.

ccscc,Γ : e ⇓θ∆ : z, ccz
cc,Γ : sccsub ccscc e ⇓θ∆ : z, ccz

SCC (sub)

The entry count is only incremented when the original scc is evaluated.
Though this transformation may not seem particularly significant on its own,

it may enable other important transformations, such as floating the let past an
enclosing λ-abstraction, to proceed unhindered.

λy.scc cc let x = ex in e
==scc-of-let=⇒
λy.let x = sccsub cc ex in scc cc e
==λ-of-let=⇒ y 6∈ FV (ex)
let x = sccsub cc ex in λy.scc cc e

The formal cost semantics provide us with a framework in which the effect of
these alternative transformations — with respect to the attribution of costs —
can be examined. For example, consider the proof trees for the left-hand-side and
right-hand-side expressions of the scc-of-let transformation in the context of some

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

356 · Patrick M. Sansom et al.

enclosing cost center ecc and some heap Γ.

lhs:

cc,Γ[x′ cc7→ êx] : ê ⇓θe∆ : z, ccz
cc,Γ : let x = ex in e ⇓{cc 7→H}+θe∆ : z, ccz

ecc,Γ : scc cc let x = ex in e ⇓{cc 7→E}+{cc 7→H}+θe∆ : z, ccz

rhs:

cc,Γ[x′ ecc7→ sccsub cc êx] : ê ⇓θ′e∆
′ : z, ccz

ecc,Γ[x′ ecc7→ sccsub cc êx] : scc cc ê ⇓{cc 7→E}+θ′e∆
′ : z, ccz

ecc,Γ : let x = sccsub cc ex in scc cc e ⇓{ecc 7→H}+{cc 7→E}+θ′e∆
′ : z, ccz

There are two distinct implications of this transformation:

—The cost of allocating the closure is moved from cc to the enclosing cost center
ecc.

—The heap closure for x is annotated with ecc instead of cc. However this does not
affect subsequent evaluation, since the sccsub annotation will update the current
cost center with cc if x is ever entered.

If we were completely rigorous about not moving costs this transformation would
not be acceptable, since the cost of the allocation has been moved. However, to
be “faithful” to the fully optimized execution, we allow this transformation so
that further transformations, such as the λ-of-let transformation above, are not
prevented.

To minimize the impact of the transformation we introduce an auxiliary Let rule
which is used when the heap binding is annotated with an sccsub. It annotates the
heap binding directly with the sccsub cost center when it is allocated, eliminating
the sccsub annotation in the heap binding.

ecc,Γ[x′ cc7→ êx] : ê ⇓θe∆ : z, ccz
ecc,Γ : let x = sccsub cc ex in e ⇓{ecc 7→H}+θe∆ : z, ccz

Let(sccsub)

Using this rule the only effect of the scc-of-let transformation is to attribute the
time to allocate the closure for x to the enclosing cost center, since its space is now
attributed to cc.

5.3.2 app-of-scc. This transformation moves an application inside an scc an-
notation.

(scc cc e) x ==app-of-scc=⇒ scc cc e x

Though this transformation moves the attribution of the small, fixed cost of the
application, A, inside the scc, the cost of evaluating the body of the function being
applied is still attributed to the cost center enclosing its declaration. We allow this
transformation, in spite of the (small) change to the cost attribution, as the follow
on effects of moving arguments inward can be quite significant. In particular, it
may enable β-reduction or eliminate a partial application.

5.3.3 let-of-scc. This transformation compliments the scc-of-let transformation.
It enables let bindings to be floated inside an scc annotation, provided the enclos-
ing cost center (denoted ecc) is known at compile time.

let x = ex in scc cc e ==let-of-scc=⇒ scc cc let x = sccsub ecc ex in e

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 357

Unfortunately, if the enclosing cost center is not known at compile time this trans-
formation cannot be performed.

The let-of-scc transformation facilities the inlining of local definitions inside an
scc annotation. For example we have

let f = λy.e in scc cc f x
==let-of-scc=⇒
scc cc let f = sccsub ecc λy.e in f x
==inline f =⇒
scc cc (sccsub ecc λy.e) x
==app-of-scc=⇒
scc cc sccsub ecc (λy.e) x
==β=⇒
scc cc sccsub ecc e[x/y]

Note that, even though the scc cc annotation now appears trivial (all the costs
are attributed to ecc), it cannot be eliminated, since it is still responsible for incre-
menting cc’s entry count.

5.3.4 Eliminating sccsub Annotations. Multiple applications of the floating
transformations above can introduce redundant sccsub annotations. For exam-
ple, floating a let binding out of two scc annotations will result in nested sccsub
annotations.

scc cc1 scc cc2 let x = ex in e
==scc-of-let=⇒
scc cc1 let x = sccsub cc2 ex in scc cc2 e
==scc-of-let=⇒
let x = sccsub cc1 sccsub cc2 ex in scc cc1 scc cc2 e

The redundant annotation, sccsub cc1, is subsequently eliminated by applying the
sccsub-of-sccsub transformation.

sccsub cc1 sccsub cc2 e ==sccsub-of-sccsub=⇒ sccsub cc2 e

It is also possible to eliminate an sccsub annotation which is moved back into the
scope of its cost center using the sccsub-of-ecc transformation.

sccsub cc e ==sccsub-of-ecc=⇒ e (cc ≡ ecc)

6. OVERHEADS

An important aspect of any profiler is the overhead it imposes — large overheads
reduce the feasibility of profiling large applications, especially if they are interactive.

The overheads of our profiler can be broken down into a number of distinct
components:

(1) The execution overhead of manipulating the current cost center, attaching cost
centers to closures, saving cost centers on the stack, etc. These costs are inde-
pendent of the scc annotations in the program.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

358 · Patrick M. Sansom et al.

(2) The overheads introduced by the particular scc annotations in the program.
This includes the cost of executing the scc annotations, as well as an indirect
effect arising from optimizations which were inhibited by the scc annotations
(see Section 5).

(3) The servicing of timer interrupts.
(4) The additional garbage collection costs arising form the extra cost center word

stored in each closure and a heap-profiling test whenever a closure is collected.
(5) The additional overheads associated with heap profiling. This involves taking

a complete census of the heap at regular intervals.

We measured these overheads of the modified profiler of Section 7.2 on a sample
of “real” programs from our nofib test suite [Partain 1993]. By “real” we mean
that each is an application program written by someone other than ourselves to
solve a particular problem. None was designed as a benchmark, and they range in
size from a few hundred to a few thousand lines of Haskell.

Table III presents the basic execution overheads of our profiler. The first column
gives the absolute number of SPARC instructions executed by each program, com-
piled with ghc-0.26 -O, i.e., without profiling but with optimization. In examining
the basic execution overhead we are interested in determining the overheads of the
code actually generated by the compiler — we exclude all instructions executed by
the runtime system. The SPARC instruction counts were collected with SpixTools.

“-prof no sccs” reports the execution overhead when profiling with no scc
annotations in the program. This corresponds to (1) above. The overhead ranges
from 36% to 51% , with geometric mean 44%.

“-prof -auto-all” reports the execution overhead when profiling with every
top-level definition annotated with an scc. This corresponds to (1+2) with a worst
case for (2). It ranges from 39% to 75%, with mean 54%. “Total scc count” gives
the total number of scc annotations evaluated during the run of the program.

We also measured what component of this scc overhead was due to the effect of
the scc annotations on the optimization of the program (“Reduced Optimization”).
This was done by comparing unprofiled execution with the execution of a program
that was compiled and optimized with the scc annotations but then had unprofiled
code generated. It is rather encouraging that the optimization effect is quite small
— ranging from 0% to 6%.

Table IV presents the total space and time overheads (1-4) for profiling with
-auto-all as seen by the user — i.e., including all runtime system costs.

“Size” gives the binary size of the executable image. The executable for profiled
execution is typically about 60% larger. This is made up of the additional profiling
code (both generated and runtime system), static data structures for each cost
center, and static “description” strings used by the heap profiler.

“Resid” (residency) gives the average amount of live data during execution. The
residency numbers were gathered by sampling the amount of live data at frequent
intervals, using the garbage collector. The residency overhead of the profiler is
about 33% which corresponds to adding a cost center word to an average closure
size of three words. (This extra word is discounted when reporting heap profiling
and collecting allocation costs.)

“Time” reports the total execution time, including the cost of garbage collection
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 359

Table III. Basic Execution Overheads of Cost Center Profiling
Unprofiled -prof -prof

nofib Program Non RTS no sccs -auto-all Total scc Reduced
Instrs (K) Overhead Overhead count (K) Optimization

real/HMMS 1, 879, 669 42% 48% 9, 185 −0%
real/anna 226, 853 46% 59% 1, 584 1%
real/bspt 19, 172 49% 62% 36 3%
real/compress 817, 767 46% 55% 6, 918 0%
real/fulsom 852, 191 43% 52% 4, 608 0%
real/gamteb 205, 772 36% 39% 80 2%
real/gg 25, 583 41% 52% 34 6%
real/hidden 1, 843, 920 51% 75% 12, 143 6%
real/hpg 125, 486 41% 49% 90 4%
real/infer 134, 523 46% 48% 118 1%
real/parser 79, 974 44% 68% 611 4%
real/pic 18, 289 39% 44% 2 3%
real/reptile 20, 540 48% 49% 8 2%

Geometric Mean 44% 54% 2%

Table IV. Total Space and Time Overheads of -auto-all Profiling

Unprofiled -prof -auto-all -Onot

nofib Program Size Resid Time Time Profiling -pC -hC -pC

(KB) (KB) (User) Size Resid Time Time Time

real/HMMS 762 1, 157 391.2s 61% 36% 46% +167% 332%
real/anna 1, 176 326 35.2s 90% 38% 76% +66% 134%
real/bspt 664 313 3.4s 49% 19% 69% +19% 138%
real/compress 264 157 136.6s 36% 30% 44% +20% 88%
real/fulsom 624 1, 155 177.3s 70% 27% 73% +116% 149%
real/gamteb 448 299 68.7s 54% 34% 27% +14% 107%
real/gg 592 344 5.0s 66% 29% 56% +41% 99%
real/hidden 544 206 276.7s 56% 32% 85% +23% 505%
real/hpg 584 494 36.2s 63% 37% 58% +44% 132%
real/infer 360 925 20.7s 62% 32% 59% +122% 104%
real/parser 545 497 13.2s 64% 34% 92% +53% 188%
real/pic 408 246 3.8s 49% 25% 47% +20% 202%
real/reptile 432 452 3.4s 74% 34% 55% +37% 109%

Geometric Mean 569 505 90.1s 61% 31% 61% +57% 176%

Table V. Comparison of Execution Profiling Overheads

Profiler Language Overhead

gcc -p (prof) C 10%
gcc -pg (gprof) C 20%

SML/NJ SML 32%

ghc -prof -auto-all Haskell 61%

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

360 · Patrick M. Sansom et al.

and other runtime system routines,8 on a Sun 4/60 with 28MB of memory (averaged
over four runs). The mean overhead of 61% includes a 1-2% overhead incurred
servicing timer interrupts.

Though the 61% total overhead is quite large, we believe that it is acceptable.
There is a substantial benefit in performance, as well as faithfulness, from profiling
optimized code. If we were instead to profile unoptimized code the mean overhead
(when compared to normal optimized execution) rises to 176% (see the “-Onot”
column in Table IV). Table V compares these overheads with the overheads of other
execution profilers — it is not surprising that our overheads are significantly higher,
since profiling in the presence of lazy evaluation requires additional bookkeeping.

Finally, the “-hC” column in Table IV gives the additional time overhead of
heap profiling (5) when one heap census is taken every second. The heap-profiling
overhead is directly related to the average residency, since the entire live heap must
be traversed during each census. For a program with a typical residency of 500KB
the additional heap-profiling overhead is about +55%. The heap-profiling overhead
is easily controlled by specifying the interval between heap censuses.

7. CONSTANT APPLICATIVE FORMS

It would be nice to report that the profiler always does the “Right Thing” — that
is, “what the programmer expected” — but our experience is otherwise: we found
one important case when it does not. This experience has led us to complicate the
profiler to make it appear simpler and more intuitive to the programmer.

Consider the top-level definition: x :: Int
x = nfib 20 This sort of top-level definition, which has no arguments, is

called a constant applicative form or CAF . When its value is first demanded, its
right-hand side is evaluated, and the CAF is updated with the resulting value.
Subsequent demands for its value incur no cost. Where, though, should the cost
of the first evaluation be attributed? Since evaluation of x will be initiated by
the Var(thunk) rule, nfib 20 is evaluated in the context of the cost center (cce)
attached to its heap binding. Since x is a top-level binding this must be specified
in the initial heap, Γinit (see Section 3.3).

We arrange for the cost of evaluating x to be attributed to a special "CAF" cost
center by attaching it to the CAF binding in Γinit.9

Γinit = { x cc7→ e : x = e ∈ prog and cc = initcc(e) }
initcc(e) = "SUB" if e ≡ λy.e′

= "CAF" otherwise

8Note that, the non-gc runtime system costs do not incur any profiling overhead. If these fixed
costs make up a significant proportion of execution the total time overhead reported may be less
than the basic execution overhead reported in Table III (cf. gamteb). Though the profiler does
attribute the costs of executing these routines to the cost center responsible for calling them, the
relative costs are slightly undervalued because they do not incur any overhead.
9It does not make sense to attach the "SUB" cost center to CAF bindings, since we do not intend for

the cost of evaluating a CAF to be subsumed. If we did arrange for the one-off cost of evaluating
a CAF to be subsumed by the first cost center to demand its value (modifying the Var(thunk)
rule) the cost attribution would not be independent of the evaluation order, and Theorem 2 would
not hold.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 361

In practice we often attach a specific cost center to each CAF, for example, "CAF:x",
so that the programmer can identify the costs associated with each CAF.

7.1 Unexpected "CAF" Cost Attribution

Unfortunately this treatment of CAFs gives some unexpected results. Consider the
following two definitions: and1,and2 :: [Bool] -> Bool

and1 xs = foldr (&&) True xs
and2 = foldr (&&) True Any “red-blooded” functional programmer

would expect these two definitions to be entirely equivalent: after all, the only
difference is an η-reduction. However, they are given different cost centers in the
initial environment, Γinit, since and1 is a top-level function while and2 is a CAF:

Γinit = { and1 "SUB"7→ λxs. foldr (&&) True xs,

and2
"CAF"7→ foldr (&&) True, . . . }

This results in the costs of applying and1 being subsumed by its call sites, while
the costs of applying and2 are attributed to the cost center "CAF". A major change
in cost attribution has resulted from an innocuous change in the program.

The following declaration highlights the problem: y :: Int -> Int
y = if <expensive> then (\a->e1) else (\a->e2) There are two sorts of

cost associated with y: the one-off costs of deciding which of the two λ-abstractions
is to be y’s value, and the repeated costs of applying that λ-abstraction. The cost
semantics of Figure 4 attribute both these costs to the "CAF" cost center, whereas
the programmer would probably expect the costs of applying y to be subsumed
by its call site. However, the one-off cost of deciding which λ-abstraction is to be
applied should still be attributed to the "CAF" cost center.

Attributing the cost of applying a λ-abstraction declared within the scope of a
CAF to the "CAF" cost center turns out to be a real problem in practice. There are
a number of common situations where this causes unexpected results:

—Our implementation of overloading in Haskell uses dictionaries, which are tuples
of method functions. All the costs of executing these methods are attributed
to the "CAF" cost center enclosing the dictionary definition. (The details are in
Appendix E.)

—An important transformation is the floating of constant expressions outside a
λ-abstraction. This may turn a subsumed function into a CAF. For example we
could have

f = λy.let z = exp in g z y
==λ-of-let=⇒ y 6∈ FV (exp)
f = let z = exp in λy.g z y

Now the costs of applying f are attributed to the "CAF" cost center.
—Combinator-style programming results in a lot of CAFs which evaluate to λ-

abstractions. An example taken from Hutton [1992] is

parse :: [Char] -> Script
parse = fst.hd.prog.strip.fst.hd.lexer.prelex

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

362 · Patrick M. Sansom et al.

Though parse has a function type, the costs of applying the parse combinator are
attributed to the "CAF" cost center (unless subsequent transformation η-expands
the definition of parse).

In general, the sensitivity of the profiling results to the presence or absence of CAFs
is very undesirable.

7.2 A Modified Cost Semantics

How, then, can we modify the formal cost semantics to deal with the unexpected
attribution of costs to CAFs? Our solution is to extend the notion of subsumed
cost to λ-abstractions with the "CAF" cost center. The one-off costs of evaluating a
CAF are attributed to the "CAF" cost center, but the repeated costs of evaluating
the body of a λ-abstraction which is attributed to a CAF are subsumed. Note that
any λ-abstractions declared in the body of a function which is subsumed by a CAF
will be attributed to the CAF and hence subsequently subsumed. This includes
partial applications of top-level functions.

The modified cost semantics are given in Figure 7. In the Var(whnf) rule the
subsuming predicate S is extended to return the current cost center for any λ-
abstraction with a "SUB" or "CAF" cost center. Previously we only returned the
current cost center if the closure had a "SUB" cost center (compare Figure 4).10

The Var(thunk) rule must also be modified to deal with an as yet unevaluated
CAF closure. Since the one-off costs of evaluating a CAF should still be attributed
to the "CAF" cost center we always evaluate the bound expression e in the context
of the cost center cce. However, if the result of that evaluation z is a λ-abstraction
with the cost center "CAF" we return the enclosing cost center cc instead. The
closure is still updated with the result cost center ccz so that subsequent references
to the closure will be appropriately subsumed by the Var(whnf) rule. In this way
the costs of repeatedly evaluating the body of a λ-abstraction, declared within the
scope of a CAF, are subsumed by the application sites.

The corresponding modifications to the state transition rules are also given in
Figure 7. Apart from the use of the extended predicate, S (ccccz z), the main difference
is that when evaluation of a thunk is begun, the demanding cost center cc is saved
on the stack along with the update marker #x (rule var2). When evaluation of the
thunk is complete, the demanding cost center is restored if the result has the cost
center "CAF" (rule var3). This mechanism for saving and restoring the current cost
center is very similar to that used in the case rules in Figure 5, which save the
current cost center before evaluating the scrutinee and restore it afterward.

7.2.1 Implications. A subtle implication of these modifications is that a runtime
test is now required in the var1 and var3 rules to determine S (ccccz z).

In our implementation the var1 rule is implemented by entering — that is, jump-
ing to the code pointer of — the closure for x, relying on the code inside the closure
to load the current cost center ccc as appropriate. There are two distinct cases:

Entering a λ-Abstraction. In the original semantics (Figure 5) the cost center to
be loaded by a function closure could be statically determined: top-level (subsumed)

10In the original semantics z was not needed as an argument to the predicate S, as the "SUB" cost
center was only ever attached to top-level λ-abstractions.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

P
ro

fi
lin

g
for

H
ig

h
er-O

rd
er

F
u

n
ctio

n
al

L
an

g
u

ag
es
·

3
6

3

cc,Γ[x ccz7→ z] : x ⇓{cc 7→V}Γ[x ccz7→ z] : z, S (ccccz z) Var(whnf)

cce,Γ : e ⇓θ∆ : z, ccz
cc,Γ[x cce7→ e] : x ⇓{cc 7→V}+θ+{ccz 7→U}∆[x ccz7→ z] : z, S (ccccz z)

e 6≡ z Var(thunk)

where S
(cc
"SUB" λy.e

)
= cc

S
(cc
"CAF" λy.e

)
= cc

S (ccccz z) = ccz

ccc Heap Control Stack θ =⇒ ccc Heap Control Stack θ Rule

cc Γ[x ccz7→ z] x S θ =⇒ S (ccccz z) Γ[x ccz7→ z] z S θ+{cc 7→ V} var1

cc Γ[x cce7→ e] x S θ =⇒ cce Γ e
(
#x
cc

)
:S θ+{cc 7→ V} var2

ccz Γ z
(
#x
cc

)
:S θ =⇒ S (ccccz z) Γ[x ccz7→ z] z S θ+{ccz 7→ U} var3

In the var1 and var3 rules S (ccccz z) is as defined above.
In the var2 rule e 6≡ z.

Fig. 7. Modified cost semantics and state transition rules.

A
C

M
T

ra
n
sa

c
tio

n
s

o
n

P
ro

g
ra

m
m

in
g

L
a
n
g
u
a
g
e
s

a
n
d

S
y
ste

m
s,

V
o
l.

1
9
,

N
o
.

2
,

M
a
rch

1
9
9
7
.

364 · Patrick M. Sansom et al.

functions leave ccc unchanged, while all local (nontop-level) functions load ccc with
the cost center stored in the closure. With the modified var1 rule, however, local
functions now need to test the cost center attached to the closure, loading it into
ccc only if it is not a "CAF" cost center. As an optimization, if an scc encloses
a local function definition then the cost center attached to its closure is statically
known, so the dynamic test is not needed.

Entering a Constructor. The code on entering a constructor unconditionally
loads ccc with ccz from the closure — see the definition of S (ccccz z) in Figure 7.

There are also two distinct cases for the var3 rule:

Updating with a λ-Abstraction. The code must test the current cost center ccc,
overwriting it with the cost center saved with the update marker, only if ccc is a
"CAF" cost center. Since a single piece of code performs all λ-abstraction updates
a dynamic test is always performed.

Updating with a Constructor. No test is required, since ccc is never modified.

Note that the runtime test only determines the choice of cost center at particular
points in the computation — it has no effect on the value of the computation or
the termination properties.

7.3 Discussion

Is the cure worse than the disease? We believe not: before we made this change we
received many messages from confused users asking why a large fraction of their
program’s execution costs were attributed to "CAF". Having made these modifica-
tions all the unexpected results produced by the profiler were found to be caused by
unexpected properties of the program being profiled and not of the profiler itself.

8. VARIATIONS ON THE THEME

In this section we discuss three possible variants of our basic design.

8.1 Evaluation Scoping

Consider the expression

let f = scc "fun" (\x y -> x*y+1)
in scc "app" f 23 16

To which cost center should the cost of computing (23*16+1) be attributed? There
are two alternatives:

Static Scoping. Attribute the cost to "fun", the cost center which statically en-
closes (or subsumes) the λxy-abstraction. (This is the choice we made in Sec-
tion 3.1.)

Evaluation Scoping. Attribute the cost to "app", the cost center active when the
function f is applied.

In effect, static scoping attributes the cost of executing a function body to the cost
center which encloses the declaration site, while evaluation scoping attributes the
cost of executing the function body to the cost center of the function’s application
site. It turns out that the difference between static and evaluation scoping has a
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 365

precise and elegant manifestation in the semantics of Figure 4: to use evaluation
scoping it suffices to change ccλ to cc in the second assumption of the App rule.

The practical implications of this distinction are not immediately obvious. Con-
sider the expression:

let f = scc "fun" exp
in (scc "app1" f a) + (scc "app2" f b)

Static scoping attributes the total cost associated with the declaration of f to the
cost center "fun". This includes both the cost of evaluating exp to a λ-abstraction
and the cost of applying f. (The cost centers "app1" and "app2" are only attributed
with the small cost of invoking the application.) In contrast, evaluation scoping
provides a finer breakdown of costs, attributing the cost of evaluating exp to "fun"
and the costs of applying f to the respective application sites "app1" and "app2".

We initially implemented both profiling schemes and compared them in prac-
tice. Our experience is that static scoping usually measures “what the programmer
expected,” while evaluation scoping often does not. The main reason is that eval-
uation scoping is very sensitive to whether an scc construct is placed around the
complete application of a function or not; for example, the costs attributed to "f"
in (scc "f" f) x are very different to those attributed to "f" in (scc "f" f x).
Although this allows evaluation scoping to express distinctions which are inacces-
sible in static scoping, in practice such distinctions are more of a hindrance than
a help. It also turns out that maintaining these extra distinctions imposes rather
onerous additional restrictions on program transformation. As a result we aban-
doned evaluation scoping altogether.

8.2 Higher-Order Functions and Lexical Profiling

The cost semantics of Figure 4 attribute the costs of applying a subsumed function
to the cost center enclosing its application site. However, for a subsumed function
which is passed as a higher-order function argument the cost center enclosing the
eventual application site may bear no relation to the cost center which enclosed the
actual reference to the function in the source. For example, in

f x = expensive 2 x
h i = scc "h" (i 3)
g = scc "g" h f

f is referred to in the scope of "g" but is applied in the scope of "h" after being
substituted for i. The cost of evaluating the body of f accrues to "h". A different
behavior occurs if a local function or a partial application is passed to h. For
example, in

f’ w x = expensive w x
h i = scc "h" (i 3)
g’ = scc "g’" h (f’ 2)

a local closure is allocated for the partial application f’ 2 which records the en-
closing cost center "g’". When this closure is entered in the body of h the cost
center "g’" is loaded, and then f’ is entered. The cost of evaluating the body of f’
accrues to "g’". The problem with the first example is that the argument f does

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

366 · Patrick M. Sansom et al.

not carry any information which identifies the cost center of the scope in which it
was referenced.

This problem is addressed by Clack et al. [1995]. They introduce the notion of
lexical profiling, which specifies that the costs of a subsumed function be subsumed
by the scope which made the original reference to the function. To keep track of
the scope of the original reference to an actual parameter their implementation
attaches profiling information to every field of every graph node in the graph, as
well as the graph node itself.

It would be quite possible to extend our cost semantics to keep track of the cost
center enclosing the original reference to an actual parameter when it is substituted
for its formal parameter.11 However, we have not developed this approach, since the
corresponding modifications to closure layout and argument-passing conventions in
a compiled, registerised implementation are substantial.

An alternative approach is suggested by the observation that most of the ad-
ditional cost center information is redundant — the actual parameter is normally
bound to a closure which has its original cost center attached. The only situation
where this is not the case is when a top-level subsumed function is passed as an ar-
gument, since no closure is allocated. This can be remedied by allocating a dummy
closure which records the original cost center, i.e.,

Whenever a top-level function is passed as an argument, introduce
a local let binding for that argument:

e f =⇒ let f ′ = f in e f ′ (f is a top-level function)

This boxing transformation is identical to the process of let binding nonatomic
arguments when translating into the core language (Section 3.2).

The transformation ensures that the costs of evaluating top-level functions are
attributed to the cost center enclosing the scope which made the original reference
to the function, rather than the cost center enclosing the scope in which the function
is eventually applied. In the example above, we would replace the application (h f)
with the expression (let f’ = f in h f’). The top-level function f is now passed
in a locally allocated closure f’ which is annotated with "g" — the cost center of
the scope in which it was referenced. When f’ is entered in h the cost center "g"
is loaded, and then f is entered, as before. However, now the costs of evaluating
the body of f accrue to "g".

Note that these dummy let bindings appear to be simple renamings, which the
compiler normally inlines freely. Care must be taken to ensure that they are treated
as real let bindings which are only floated into the scope of another cost center
or inlined in the scope of another cost center if they can be annotated with their
original cost center (see Section 5.3). Finally, observe that this transformation is

11If the cost semantics (Figure 4) were extended to maintain the cost center of the original reference
to an actual parameter Theorem 4.3.5 could be proved for a notion of lexical scope, defined by
extending (1) the static scope labeling (Definition 4.3.1) to label all variables with their enclosing

cost center and (2) a relabeling of subsumed functions (Definition 4.3.4) which labeled them with
the cost center of their original reference. The correctness of the original semantics + boxing
transformation could then be established by proving it equivalent to the extended semantics.
This is left to future work.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 367

not always necessary: if it can be determined at compile time that f is always
applied in the same scope as its original reference then the transformation can be
omitted.

There is a design choice to be made here. Adopting a notion of lexical scoping
provides more consistent profiling results, but at the cost of additional overhead —
both execution and implementation effort. In our experience, subsuming costs to
their application site has not caused any problems in practice. Consequently, our
current implementation does not perform this transformation.

8.3 Inheritance Profiling

Many profilers offer some way to aggregate the costs of executing a function with
those of its caller. There are two distinct approaches:

(1) Subsumption: the costs of executing an unprofiled function are attributed to
its caller [Appel et al. 1988; Clack et al. 1995].

(2) Inheritance: the costs of executing a profiled function are attributed to the
function and to the stack of functions responsible for the call [Graham et al.
1983; Morgan and Jarvis 1995].

Our profiler supports subsumption, but not inheritance — it produces a flat pro-
file, with costs only attributed to the immediately enclosing cost center. However,
it is possible to extend the profiler with a mechanism for inheriting these costs to
the stack of enclosing cost centers.

One possibility would be to use gprof-style statistical inheritance [Graham et al.
1983]. By attributing costs to a cost center pair, consisting of the two immediately
enclosing cost centers, a postprocessor can inherit the costs up the enclosing-cost-
center graph. Unfortunately, the accuracy of this scheme relies on the assumption
that the average cost of evaluating the scc expression is independent of the enclosing
cost center. If this is not the case an incorrect proportion of the costs are attributed
to the different enclosing cost centers. This is particularly problematic in a nonstrict
language where the amount of evaluation is dependent on the arguments passed and
the demand placed on the result by the enclosing context.

An alternative approach has been taken by Morgan and Jarvis [1995] who have
developed an extension to our implementation which accurately attributes costs
to the set of enclosing cost centers during execution.12 As well as maintaining the
current cost center set, each closure must record the cost center set which was
responsible for creating it. Much work has gone into minimizing the overheads of
manipulating the cost center sets. The details can be found in Morgan and Jarvis
[1995].

In terms of the formal framework presented here, it is quite straightforward to ex-
tend the semantics to maintain a current cost center set and attribute costs to cost
center sets. The main implication for the compilation process as a whole is that the
set of enclosing cost centers must now be maintained by any compiler transforma-
tions. This can be captured by labeling every expression with the set of enclosing
cost centers and ensuring that this labeling is maintained by the compiler trans-
formations. Under this regime the let-of-scc and sccsub-of-sccsub transformations

12A set of enclosing cost centers is used to solve problems caused by cyclic call graphs.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

368 · Patrick M. Sansom et al.

introduced in Section 5.3 are no longer valid.

8.4 Profiling Strict Languages

It is more straightforward to profile a strict language than a nonstrict one, since
there are no unevaluated closures to worry about. The semantics in Figure 4 are
easily “strictified” by the following: restricting the Let rule to only bind a set of
mutually recursive function values; using a default case binding (see Section 5.1)
to evaluate and bind the value of a strictly evaluated expression; and omitting the
Var(thunk) rule.

The result is a profiling scheme very similar to the SML/NJ profiler developed
by Appel et al. [1988] (see Section 9.1).

9. RELATED WORK

Relatively few source-level execution profilers have been developed for high-level
functional languages. Notable exceptions are

—the SML/NJ execution profiler (Section 9.1),
—the UCL Lexical profiler (Section 9.2), and
—the Runciman, Wakeling, Röjemo space profilers (Section 9.3).

Of these, only the UCL profiler profiles the execution time of a nonstrict language,
but it only has an interpreted implementation.

9.1 The SML/NJ Profiler

Appel et al. [1988] develop a simple execution profiler for the New Jersey imple-
mentation of SML — a strict functional language. They report the call counts and
execution time for a set of “profiled functions” which may include separately pro-
filed local functions. They introduce the idea of a “current function,” which is set
whenever a profiled function is called and reset when execution returns from a call.
Regular timer interrupts are attributed to the current function. Since unprofiled
functions do not set the current function their costs are subsumed by the calling
function. These ideas correspond directly with our notions of static scope, “current
cost center,” and subsumed top-level functions.

In their implementation only the profiled functions are compiled specially — all
unprofiled functions use exactly the same code as normal execution. Unfortunately,
this means that the unprofiled functions do not reset the current function when
execution returns from a function call. If any of the functions called from an
unprofiled function are profiled, the rest of the execution of the unprofiled function
will be incorrectly attributed to the profiled function called. In contrast, we require
that all code must be compiled for profiling, even if it is “unprofiled.” In this way
we ensure that the cost center is always restored when evaluation (invoked by a
case expression) returns.

Their implementation uses side effects to manipulate the current function at the
language level. The effect that these manipulations have on subsequent optimiza-
tion is somewhat unclear, since it is dependent on the optimizer’s treatment of the
assignment operations which manipulate the current function. Our work could be
viewed as a development of the SML profiler, extending it to nonstrict languages
and providing a formal model to undergird it.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 369

9.2 The UCL Lexical Profiler

Clack et al. [1995] have developed a time and space profiler for a nonstrict, in-
terpreted graph reduction system. They report the call counts and the time and
space usage for a set of “profiled functions.” The costs of unprofiled functions are
subsumed. Each of the profiled functions is assigned a unique “color.” Their no-
tion of “color” is similar to our “cost center” — both are attributed with the costs
identified during execution.

Though there are encouraging similarities between the two profilers, there are
also some significant differences.

—As discussed in Section 8.2 the UCL profiler adheres to the notion of lexical scope,
attributing the costs of applying a higher-order argument to the color enclosing
the original reference to the function. In our profiling scheme the cost of top-level
higher-order arguments are subsumed by the cost center enclosing their eventual
application site. However, we have proposed an extension to our scheme which
implements lexical profiling.

—If a particular function is referenced (directly or indirectly) by two or more pro-
filed functions, then it implicitly becomes a separately profiled function. They
rely on the the attribution to color-pairs (see below) to distinguish the costs
from different callers. In contrast, our profiler dynamically subsumes the cost of
all unprofiled functions even if they are shared. We believe this to be a major
strength of our profiling scheme, since it enables the costs of the logical “parts”
of a program to be accurately subsumed, regardless of the sharing properties of
the program.

—The UCL profiler attributes costs to color-pairs. This enables them to distinguish
the costs of map called from f and map called from g. In fact, it provides enough
information to perform gprof-style statistical inheritance postprocessing, though
they have not actually implemented this. Currently we do not perform any
inheritance, relying on unhindered subsumption instead (but see Section 8.3).

—In the UCL profiler an unshared CAF is subsumed by the scope which refer-
ences it. Both the one-off costs and any repeated costs are attributed to the
subsuming scope. However, a shared CAF is profiled separately. The one-off
costs are attributed to the ref1-caf color-pair where ref1 is the color of the
first reference to demand the value of the CAF and where caf is the color of the
CAF. Subsequent references to the CAF (or a λ-abstraction embedded within its
result) cause the graph to be recolored with the appropriate ref-caf color-pair.
In contrast, we always profile CAFs separately.13 The one-off costs are attributed
to the CAF cost center, and any repeated costs are subsumed (see Section 7).

Finally, their prototype implementation profiles interpreted graph reduction of a
core functional language. They do not attempt to address the issues of program
transformation or separate compilation. Since the prototype has only been ap-
plied to modest examples, it remains to be seen how their scheme scales to larger
applications.

13If we know at compile time that a CAF is unshared there is no reason why it cannot be labeled
with the "SUB" cost center and arrange for all its costs to be subsumed. A modified Var(thunk)
rule can easily arrange for this.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

370 · Patrick M. Sansom et al.

9.3 Space Profilers

The hbc/lml heap profiler [Runciman and Wakeling 1993] was developed con-
currently with our heap profiler and has very similar goals — indeed, we use its
postprocessor to produce PostScript graphs. Aside from the absence of time pro-
filing, the main difference from our work is that the hbc/lml profiler does not
provide a mechanism for subsuming information about uninteresting functions up
the call graph. For example, a profile may indicate that heap objects allocated by
a certain function, say map, occupy a large amount of heap space. However there is
no mechanism to determine which application(s) of map was (were) responsible for
producing these cells [Kozato and Otto 1993].

More recently the nhc heap profiler [Röjemo and Runciman 1996; Runciman
and Röjemo 1996] extends the hbc/lml heap-profiling ideas. It provides several
additional heap profiles which attempt to identify the cause, rather than merely
the presence, of an unexpected space leak.

10. CONCLUSIONS AND FURTHER WORK

A version of our profiler has been distributed with the Glasgow Haskell compiler
since June, 1993, enabling other users to profile their Haskell applications. The
largest applications profiled to date are the Glasgow Haskell Compiler (GHC) itself
[Sansom 1994] and LOLITA14 — a natural-language system developed by the Arti-
ficial Intelligence Research Group at the University of Durham [Morgan et al. 1994].
Each of these applications consist of over 30,000 lines of Haskell code, divided into
more than 100 different source modules.

The experience gained actually using the profiler to profile real applications has
provided invaluable feedback. It enabled us to compare the usability of alternative
cost attribution semantics, and it drew our attention to the problem with the
attribution of CAFs. It also prompted Morgan and Jarvis [1995] to develop an
extension to our profiler which arranges for costs to be inherited (see Section 8.3).

The cost center profile has proved to be a very useful tool. As well as quickly
identifying the execution hot spots in a program, it enables the performance of al-
ternative implementations of a particular algorithmic component within a program
to be easily compared. When space is identified as a bottleneck the heap pro-
files provide a very illuminating window on the space behavior. However, it often
proves very difficult to identify the cause of an unexpected space leak — further
work certainly needs to be done to aid this task [Runciman and Röjemo 1996].

A key contribution of our work has been the development of a formal model
for cost attribution. This provides a precise framework in which to discuss design
decisions and prove certain properties of the profiler without becoming enmeshed in
the details of a particular implementation. Before we developed the formal model,
we found alternative design choices almost impossible to understand and explain
clearly, and the modified profiling scheme of Section 7.2 never occurred to us.

The formal cost semantics is deliberately slanted toward the programmer rather
than the implementation. We also developed a small-step state transition seman-
tics, which directly expresses the manipulation of cost centers performed by the

14LOLITA: Large-scale, object-based, linguistic interactor, translator and analyzer.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 371

implementation, and proved it equivalent to the original cost semantics. This proof
greatly increases our confidence in the correctness of our implementation.

Finally, there are several ways in which the work here could be developed:

—Lack of information about the enclosing cost center can hinder some of the scc
transformations developed in Section 5.3. One possible solution to this is to
dynamically bind the enclosing cost center to a first-class value which could then
be used in subsequent scc annotations.

—As mentioned in Section 5, profiling occasionally disables optimizations that have
a major effect on residency. When the user intends to profile the heap it is
essential that such optimizations are not disabled. Though this requires further
attention, we believe that developing the notion of the enclosing cost center
(above) would go some way to ensuring this.

—In future we may deem it worthwhile to extend our profiler to implement lexical
scoping using the higher-order boxing transformation described in Section 8.2.

—Apart from the subsumption of unprofiled costs, we have not implemented any
form of inheritance, though it is straightforward in principle to do so (Section 8.3).

—We are also working on an extension to the profiler that supports the profiling
of parallel programs.

APPENDIX

A. GLASGOW HASKELL

The Glasgow Haskell Compiler is freely available from a number of FTP sites. For
more information please consult the GHC home page:

http://www.dcs.glasgow.ac.uk/fp/software/ghc

B. COST ATTRIBUTION AND EVALUATION ORDER

The original statement of Theorem 2 omitted details about renaming. The full
theorem is stated and proved below for the modified semantics (Figure 4 with mod-
ifications in Figure 7). The proof is easily modified to show that the theorem also
holds for the original semantics and the alternative evaluation scoping semantics
(Section 8.1). First we need a couple of definitions.

Definition B.1. ∆′ : e′ renames ∆ : e if there exists an injective mapping R ::
Variable→ Variable such that

∀x ∈ dom(∆) ∪ FV (e), ∆′(R(x)) ≡ R(∆(x)) and e′ ≡ R(e)

where the occurrence of R on the right-hand side is the extension of the mapping
R to a term substitution, and ≡ denotes syntactic identity.

This just says that ∆′ : e′ is a copy of ∆ : e (possibly with additional heap
bindings), in which some heap-bound variables have been systematically replaced
by new variables, in the expression e as well as in all expressions bound in ∆. ∆′ : e′

and ∆ : e therefore have the same meaning, considered as computational results.
This could be stated formally by proving that they map to the same meaning in a
denotational semantics.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

http://www.dcs.glasgow.ac.uk/fp/software/ghc

372 · Patrick M. Sansom et al.

Definition B.2. The size of a derivation |cc,Γ : e ⇓θ∆ : z, ccz| is the number of
rule applications in the proof tree for ⇓θ. For convenience, we use the notation |⇓θ|
where this unambiguously identifies a particular derivation.

Theorem 2.

If cc1,Γ : e1 ⇓θ1∆ : z1, ccz1 and cc2,Γ : e2 ⇓θ2Θ : z2, ccz2

Then there exists Θ′, z′1, ∆′, z′2 and Ω such that
cc1,Θ′ : e1 ⇓θ′1Ω : z′1, ccz1 and cc2,∆′ : e2 ⇓θ′2Ω : z′2, ccz2

and θ2+θ′1 = θ1+θ′2
where ∆′ : z′1 renames ∆ : z1 and Θ′ : z′2 renames Θ : z2

Proof. First we observe that there exist derivations cc1,Γ : e1 ⇓θ1∆′ : z′1, ccz1

and cc2,Γ : e2 ⇓θ2Θ′ : z′2, ccz2 for which (dom(∆′)\dom(Γ))∩(dom(Θ′)\dom(Γ)) =
∅ and for which ∆′ : z′1 renames ∆ : z1 and Θ′ : z′2 renames Θ : z2.

This says that the newly allocated variables are distinct in the two derivations,
but they give the same results.

The new derivations are constructed as copies of the original ones. First a re-
named derivation cc1,Γ : e1 ⇓≡θ1

∆′ : z′1, ccz1 is constructed by choosing, in applica-
tions of the Let rule, fresh variables which occur in neither of the original dervia-
tions. Then a renamed derivation cc2,Γ : e2 ⇓≡θ2

Θ′ : z′2, ccz2 is constructed by choos-
ing, in applications of the Let rule, fresh variables which occur in neither of the
original derivations nor in the newly constructed one for cc1,Γ : e1 ⇓≡θ1

∆′ : z′1, ccz1 .
This is possible because the supply of fresh variables is unlimited.

By construction, ∆′ : z′1 renames ∆ : z1, and Θ′ : z′2 renames Θ : z2. Namely, the
constructed derivations differ only in the choice of fresh variables in applications of
the Let rule, and hence the results differ only in this respect also.

The proof now proceeds by induction on the total size of the renamed dervations.
(For convenience we drop the ≡s and ′s introduced by the renaming.)

Inductive Hypothesis:
If cc1,Γ : e1 ⇓θ1∆ : z1, ccz1 and cc2,Γ : e2 ⇓θ2Θ : z2, ccz2

and (dom(∆) \ dom(Γ)) ∩ (dom(Θ) \ dom(Γ)) = ∅
Then cc1,Θ : e1 ⇓θ′1Ω : z1, ccz1 and cc2,∆ : e2 ⇓θ′2Ω : z2, ccz2

and θ2+θ′1 = θ1+θ′2 and |⇓θ′1| ≤ |⇓θ1| and |⇓θ′2| ≤ |⇓θ2|.

The final two clauses establish that the sizes of the delayed derivations are no larger
than the original derivations.

Assume the following: cc1,Γ : e1 ⇓θ1∆ : z1, ccz1 and cc2,Γ : e2 ⇓θ2Θ : z2, ccz2

and (dom(∆) \ dom(Γ))∩ (dom(Θ) \ dom(Γ)) = ∅. Consider the pair of rules used
to derive ⇓θ1 and ⇓θ2 .

Case: (Lam, any). The rule states that cc1,Γ : λy.e ⇓{}Γ : λy.e, cc1. Now, ∆ ≡
Γ, θ2 ≡ θ′2, Θ ≡ Ω, cc1,Θ : λy.e ⇓{}Θ : λy.e, cc1 (Lam), and θ2 +{} = {}+θ′2 and
|⇓θ′1| = 1 = |⇓θ1| and |⇓θ′2| = |⇓θ2|.

Case: (Con, any). The rule states that cc1,Γ : C xa ⇓{}Γ : C xa, cc1. Now,
∆ ≡ Γ, θ2 ≡ θ′2, Θ ≡ Ω, cc1,Θ : C xa ⇓{}Θ : C xa, cc1 (Con), and θ2+{} = {}+θ′2
and |⇓θ′1| = 1 = |⇓θ1| and |⇓θ′2| = |⇓θ2|.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 373

Case: (App, any).

cc1,Γ : e ⇓θeΓ1 : λy.e′, ccλ ccλ,Γ1 : e′[x/y] ⇓θλ∆ : z1, ccz1

cc1,Γ : e x ⇓{cc1 7→A}+θe+θλ∆ : z1, ccz1

From the left premise (⇓θe), the right assumption (⇓θ2), and the inductive hypothe-
sis we have cc1,Θ : e ⇓θ′eΩ1 : λy.e′, ccλ and cc2,Γ1 : e2 ⇓θ′2Ω1 : z2, ccz2 and θ2+θ′e =
θe+θ′2 and |⇓θ′e| ≤ |⇓θe| and |⇓θ′2| ≤ |⇓θ2|. Since |⇓θ′2| ≤ |⇓θ2|, we can use the induc-
tive hypothesis with the right premise (⇓θλ) and ⇓θ′2 , giving ccλ,Ω1 : e′[x/y] ⇓θ′

λ

Ω2 : z1, ccz1 and cc2,∆ : e2 ⇓θ′′2 Ω2 : z2, ccz2 and θ′2 +θ′λ = θλ+θ′′2 and |⇓θ′
λ
| ≤ |⇓θλ|

and |⇓θ′′2 | ≤ |⇓θ′2|. Applying the App rule we have cc1,Θ : e x ⇓{cc1 7→A}+θ′e+θ′λ
Ω2 : z1, ccz1 and θ2+{cc1 7→A}+θ′e+θ′λ = {cc1 7→A}+θe+θ′2+θ′λ = {cc1 7→A}+θe+θλ+θ′′2
and |⇓θ′1| = 1 + |⇓θ′e|+ |⇓θ′λ| ≤ 1 + |⇓θe|+ |⇓θλ| = |⇓θ1|.

Case: (Let, any).

cc1,Γ[yi
cc17→ êi] : ê ⇓θe∆ : z1, ccz1

cc1,Γ : let {xi = ei} in e ⇓{cc1 7→n∗H}+θe∆ : z1, ccz1

yi fresh

Since the fresh yi in the renamed derivation are not bound in ⇓θ2 , we can construct
an equivalent derivation, ⇓≡θ2

, where the bindings for the yi have been added to
every heap in the derivation of ⇓θ2. In all other respects ⇓≡θ2

is identical to ⇓θ2.

cc2,Γ[yi
cc17→ êi] : e2 ⇓≡θ2

Θ[yi
cc17→ êi] : z2, ccz2

From the premise (⇓θe), the constructed derivation (⇓≡θ2
), and the inductive hy-

pothesis we have cc1,Θ[yi
cc17→ êi] : ê ⇓θ′eΩ : z1, ccz1 and cc2,∆ : e2 ⇓θ′2Ω : z2, ccz2 and

θ2+θ′e = θe+θ′2 and |⇓θ′e| ≤ |⇓θe| and |⇓≡θ′2| ≤ |⇓
≡
θ2
| = |⇓θ2|. Applying the Let rule we

have cc1,Θ : let {xi = ei} in e ⇓{cc1 7→n∗H}+θ′eΩ : z1, ccz1 and θ2+{cc1 7→n∗H}+θ′e =
{cc1 7→n∗H}+θe+θ′2 and |⇓θ′1| = 1 + |⇓θ′e| ≤ 1 + |⇓θe| = |⇓θ1|.

Case: (Case, any).

cc1,Γ : e ⇓θeΓ1 : Ck xak , ccC cc1,Γ1 : ek[xi/yki] ⇓θek∆ : z1, ccz1

cc1,Γ : case e of alts ⇓{cc1 7→C}+θe+θek∆ : z1, ccz1

From the left premise (⇓θe), the right assumption (⇓θ2), and the inductive hy-
pothesis we have cc1,Θ : e ⇓θ′eΩ1 : Ck xak , ccC and cc2,Γ1 : e2 ⇓θ′2Ω1 : z2, ccz2 and
θ2 + θ′e = θe + θ′2 and |⇓θ′e| ≤ |⇓θe| and |⇓θ′2| ≤ |⇓θ2|. Since |⇓θ′2| ≤ |⇓θ2|, we
can use the inductive hypothesis with the right premise (⇓θek) and ⇓θ′2 , giving
cc1,Ω1 : ek[xi/yki] ⇓θ′ekΩ2 : z1, ccz1 and cc2,∆ : e2 ⇓θ′′2 Ω2 : z2, ccz2 and θ′2 + θ′ek =
θek +θ′′2 and |⇓θ′ek | ≤ |⇓θek | and |⇓θ′′2 | ≤ |⇓θ′2|. Applying the Case rule we have
cc1,Θ : case e of alts ⇓{cc1 7→C}+θ′e+θ′ek

Ω2 : z1, ccz1 and θ2 +{cc1 7→ C}+θ′e+θ′ek =
{cc1 7→C}+θe+θ′2 +θ′ek = {cc1 7→ C}+θe+θek +θ′′2 and |⇓θ′1| = 1 + |⇓θ′e| + |⇓θ′ek | ≤
1 + |⇓θe|+ |⇓θek | = |⇓θ1|.

Case: (SCC, any). cc,Γ : e ⇓θe∆ : z1, ccz1

cc1,Γ : scc cc e ⇓{cc 7→E}+θe∆ : z1, ccz1

From the premise (⇓θe), the right assumption (⇓θ2), and the inductive hypoth-
esis we have cc,Θ : e ⇓θ′eΩ : z1, ccz1 and cc2,∆ : e2 ⇓θ′2Ω : z2, ccz2 and θ2 + θ′e =

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

374 · Patrick M. Sansom et al.

θe+ θ′2 and |⇓θ′e| ≤ |⇓θe| and |⇓θ′2| ≤ |⇓θ2|. Applying the SCC rule we have
cc1,Θ : scc cc e ⇓{cc 7→E}+θ′eΩ : z1, ccz1 and θ2+{cc 7→E}+θ′e = {cc 7→E}+θe+θ′2 and
|⇓θ′1| = 1 + |⇓θ′e| ≤ 1 + |⇓θe| = |⇓θ1|.

Case: (Var(whnf), any). cc1,Γ′[x
ccz7→ z] : x ⇓{cc1 7→V}Γ′[x

ccz7→ z] : z, S (cc1ccz z).
Now, ∆ ≡ Γ ≡ Γ′[x ccz7→ z], θ2 ≡ θ′2, and Θ ≡ Ω ≡ Θ′[x ccz7→ z], since ⇓θ2

must preserve the value binding for x. So we have cc1,Θ′[x
ccz7→ z] : x ⇓{cc1 7→V}

Θ′[x ccz7→ z] : z, S (cc1ccz z) by Var(whnf) and θ2 + {cc1 7→ V} = {cc1 7→ V}+ θ′2 and
|⇓θ′1| = 1 = |⇓θ1| and |⇓θ′2| = |⇓θ2|.

Case: (any, Lam), (any, App), (any, Let), (any, Con), (any, Case) (any, SCC),
and (any, Var(whnf)). We omit these cases, since they are essentially identical to
the cases already given for ⇓θ1 .

Case: (Var(thunk), Var(thunk)). Either e1 ≡ x ≡ e2 or e1 ≡ x 6≡ y ≡ e2.

Suppose e1 ≡ x ≡ e2, i.e.,

ccx,Γ′ : ex ⇓θex1
∆′ : z1, ccz1

cc1,Γ′[x
ccx7→ ex] : x ⇓{cc1 7→ V}+ θex1

+{ccz1 7→ U}
∆′[x

ccz17→ z1] : z1, S (cc1ccz1 z1)
ex 6≡ z1

ccx,Γ′ : ex ⇓θex2
Θ′ : z2, ccz2

cc2,Γ′[x
ccx7→ ex] : x ⇓{cc2 7→ V}+ θex2

+{ccz2 7→ U}
Θ′[x

ccz27→ z2] : z2, S (cc2ccz2 z2)
ex 6≡ z2

So θex1 ≡ θex2 , ∆′ ≡ Θ′ ≡ Ω′, z1 ≡ z2 ≡ z, and ccz1 ≡ ccz2 ≡
ccz. Now, cc1,Θ′[x

ccz7→ z] : x ⇓{cc1 7→V}Ω′[x
ccz7→ z] : z1, S (cc1ccz1 z1) by Var(whnf) and

cc2,∆′[x
ccz7→ z] : x ⇓{cc2 7→V}Ω′[x

ccz7→ z] : z2, S (cc2ccz2 z2) by Var(whnf) and {cc2 7→V}+
θex2 +{ccz2 7→ U}+{cc1 7→ V} = {cc1 7→ V}+ θex1 +{ccz1 7→ U}+{cc2 7→ V} and
|⇓θ′1| = 1 ≤ 1 + |⇓θex1

| = |⇓θ1| and |⇓θ′2| = 1 ≤ 1 + |⇓θex2
| = |⇓θ2|.

Suppose e1 ≡ x 6≡ y ≡ e2, i.e.,

ccx,Γ′[y
ccy7→ ey] : ex ⇓θex∆′ : z1, ccz1

cc1,Γ′[y
ccy7→ ey, x

ccx7→ ex] : x ⇓{cc1 7→ V}+ θex
+{ccz1 7→ U}

∆′[x
ccz17→ z1] : z1, S (cc1ccz1 z1)

ex 6≡ z1

ccy,Γ′[x
ccx7→ ex] : ey ⇓θeyΘ′ : z2, ccz2

cc2,Γ′[y
ccy7→ ey, x

ccx7→ ex] : y ⇓{cc2 7→ V}+ θey
+{ccz2 7→ U}

Θ′[y
ccz27→ z2] : z2, S (cc2ccz2 z2)

ey 6≡ z2

If the evaluation of x requires the value of y, and the evaluation of y requires the
evaluation of x, we have a cyclic data dependency, and the assumption cannot hold.

Without loss of generality, assume the evaluation of y does not require the value
of x, i.e., the final heap of ⇓θ2 has an unevaluated binding for x (Θ′ ≡ Θ′′[x ccx7→ ex]).

Since the binding for x is not required in the derivation of ⇓θ2 we can construct
an equivalent derivation, ⇓≡θ2

, where the binding for x has been dropped from every
heap in the derivation of ⇓θ2 . In all other respects ⇓≡θ2

is identical to ⇓θ2 .

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 375

cc2,Γ′[y
ccy7→ ey] : y ⇓≡θ2

Θ′′[y
ccz27→ z2] : z2, S (cc2ccz2 z2)

From the premise (⇓θex), the constructed derivation (⇓≡θ2
), and the induc-

tive hypothesis we have ccx,Θ′′[y
ccz27→ z2] : ex ⇓θ′exΩ′ : z1, ccz1 and cc2,∆′ : y ⇓θ′2

Ω′ : z2, S (cc2ccz2 z2) and θ2 + θ′ex = θex + θ′2 and |⇓θ′ex | ≤ |⇓θex | and |⇓θ′2| ≤ |⇓
≡
θ2
|.

Applying the Var(thunk) rule we have

cc1,Θ′′[y
ccz27→ z2, x

ccx7→ ex] : x ⇓{cc1 7→ V}+ θ′ex
+{ccz1 7→ U}

Ω′[x
ccz17→ z1] : z1, S (cc1ccz1 z1).

Since x is not bound in ∆′ and since the derivation of ⇓θ′2 does not choose x as a
fresh variable (the choice of fresh variables is preserved from ⇓θ2), we can construct
an equivalent derivation, ⇓≡θ′2 , where the binding for x has been added to every heap
in the derivarion of ⇓θ′2 . In all other respects ⇓≡θ′2 is identical to ⇓θ′2 .

cc2,∆′[x
ccz17→ z1] : y ⇓≡θ′2Ω′[x

ccz17→ z1] : z2, S (cc2ccz2 z2).

Finally, we have θ2+{cc1 7→V}+θ′ex+{ccz1 7→U} = {cc1 7→V}+θex+{ccz1 7→U}+θ′2
and |⇓θ′1| = 1 + |⇓θ′ex | ≤ 1 + |⇓θex | = |⇓θ1| and |⇓θ′2| = |⇓

≡
θ′2
| ≤ |⇓θ2| = |⇓≡θ2

|.

C. CORRECTNESS OF THE OPERATIONAL SEMANTICS

Theorem 4.2.1.

(cc,Γinit, e, [], {})⇒∗ (cc′,∆, z, [], θ) if and only if cc,Γinit : e ⇓θ∆ : z, cc′

The proof below establishes the theorem for the modified semantics and state
transition rules (Figures 4 and 5 with modifications in Figure 7). Its structure
is similar to that of Sestoft’s correctness proof for the unprofiled state transition
system [Sestoft 1997]. First we prove the following lemmas.

Lemma C.1.

If cc,Γ : e ⇓θ∆ : e′, cc′

Then (cc,Γ, e, S, θ0)⇒∗ (cc′,∆, e′, S, θ1) and θ1 = θ0+θ.

Proof. This is proved by induction on the derivation of cc,Γ : e ⇓θ∆ : e′, cc′.

Case: Lam. cc,Γ : λy.e ⇓{}Γ : λy.e, cc. Clearly

(cc,Γ, λy.e, S, θ0) ⇒∗ (cc,Γ, λy.e, S, θ0+{}) empty sequence

Case: Con. cc,Γ : C xa ⇓{}Γ : C xa, cc. Clearly

(cc,Γ, C xa, S, θ0) ⇒∗ (cc,Γ, C xa, S, θ0+{}) empty sequence

Case: App. cc,Γ : e x ⇓{cc 7→A}+θ1+θ2Θ : z, ccz. Now

(cc,Γ, (e x), S, θ0)
⇒ (cc,Γ, e, x :S, θ0+{cc 7→A}) rule app1

⇒∗ (ccλ,∆, λy.e′, x :S, θ0+{cc 7→A}+θ1) left premise and hyp.
⇒ (ccλ,∆, e′[x/y], S, θ0+{cc 7→A}+θ1) rule app2

⇒∗ (ccz ,Θ, z, S, θ0+{cc 7→A}+θ1+θ2) right premise and hyp.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

376 · Patrick M. Sansom et al.

Case: Var(whnf). cc,Γ[x ccz7→ z] : x ⇓{cc 7→V}Γ[x ccz7→ z] : z, S (ccccz z). Clearly

(cc,Γ[x ccz7→ z], x, S, θ0)
⇒ (S (ccccz z),Γ[x ccz7→ z], z, S, θ0+{cc 7→V}) rule var1

Case: Var(thunk). cc,Γ[x cce7→ e] : x ⇓{cc 7→V}+θ+{ccz 7→U}∆[x ccz7→ z] : z, S (ccccz z).

(cc,Γ[x cce7→ e], x, S, θ0)
⇒ (cce,Γ, e,

(
#x
cc

)
:S, θ0+{cc 7→V}) rule var2

⇒∗ (ccz ,∆, z,
(
#x
cc

)
:S, θ0+{cc 7→V}+θ) premise and hyp.

⇒ (S (ccccz z),∆[x ccz7→ x], z, S, θ0+{cc 7→V}+θ+{ccz 7→U}) rule var3

Case: Let . cc,Γ : let {xi = ei} in e ⇓{cc 7→n∗H}+θ∆ : z, ccz. Since the let rule
can choose the same fresh yi as were chosen by the Let rule we have

(cc,Γ, let {xi = ei} in e, S, θ0)
⇒ (cc,Γ[yi

cc7→ êi], ê, S, θ0+{cc 7→n∗H}) rule let (same yi as Let)
⇒∗ (ccz ,∆, z, S, θ0+{cc 7→n∗H}+θ) premise and hyp.

Case: Case. cc,Γ : case e of {Cj yjaj -> ej} ⇓{cc 7→C}+θ1+θ2Θ : z, ccz. Now

(cc,Γ, case e of alts, S, θ0)
⇒ (cc,Γ, e, (alts,cc) :S, θ0+{cc 7→C}) rule case1

⇒∗ (ccC ,∆, Ck xak , (alts,cc) :S, θ0+{cc 7→C}+θ1) left premise and hyp.
⇒ (cc,∆, ek[xi/yki], S, θ0+{cc 7→C}+θ1) rule case2

⇒∗ (ccz ,Θ, z, S, θ0+{cc 7→C}+θ1+θ2) right premise and hyp.

Case: SCC. cc,Γ : scc ccscc e ⇓{ccscc 7→E}+θ∆ : z, ccz. Now

(cc,Γ, scc ccscc e, S, θ0)
⇒ (ccscc,Γ, e, S, θ0+{ccscc 7→E}) rule scc
⇒∗ (ccz ,∆, z, S, θ0+{ccscc 7→E}+θ) premise and hyp.

Definition C.2. A balanced computation is a computation (cc,Γ, e, S, θ) ⇒∗
(cc′,Γ′, e′, S, θ′) in which the initial and final stacks are the same and in which all
intermediate stacks are extensions of the initial stack.

Since the stack represents the context of a subderivation, a balanced computation
captures the idea that the proof of each subderivation does not depend on the
context in which that subderivation occurs, i.e., it does not consume any of its
context.

Definition C.3. The trace of a computation is the sequence of transition rules
used. A balanced trace is the trace of a balanced computation.

What are the possible forms of a balanced trace? Clearly the empty trace (having
one state and no transitions) is balanced. Now consider nonempty traces, and
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 377

assume an initial stack S. A nonempty balanced trace must begin with an app1,
var1, var2, let, case1, or scc transition (since app2, var3, and case2 would produce
an intermediate state which is not an extension of S). We consider each initial
transition in turn.

If the trace begins with app1, which produces an intermediate stack of the form
x :S, then eventually an app2 transition must occur which restores the stack to S
(no other transition can do this). Consider the first such transition; the subtrace
between the initial app1 transition and the occurrence must be balanced (with
stacks which are extensions of x : S), and the subtrace after that occurrence is
balanced (with stacks which are extensions of S). The trace must have the form
app1 bal app2 bal where bal stands for an arbitrary balanced trace.

A trace that begins with var1 can only contain this single transition, since it
produces an intermediate stack S and control z, which must be a λ-abstraction or
a constructor. The only transitions which could follow are app2, case2, or var3, all
of which remove an element from the stack and contradict the balancedness of the
trace.

A trace that begins with var2 produces an intermediate stack with the form(
#x
cc

)
: S which must be restored by a var3 transition. As for the var1 trace, the

control after the var3 transition must be a λ-abstraction or a constructor. Hence
the occurrence of the var3 transition must be the last element of the trace, which
must have the form var2 bal var3.

If the trace begins with let, then the subtrace after let must be balanced, so it
has the form let bal.

A trace that begins with case1 produces an intermediate stack with the form
(alts,cc) :S which must be restored by a case2 transition. Such a trace must have
the form case1 bal case2 bal.

If the trace begins with scc, then the subtrace after scc must be balanced, so it
has the form scc bal.

In summary, all balanced traces can be derived from the following grammar:

bal ::= ε | app1 bal app2 bal | var1 | var2 bal var3

| let bal | case1 bal case2 bal | scc bal

Lemma C.4.

If (cc0,Γ0, e0, S, θ0)⇒∗ (cc1,Γ1, z, S, θ1) is a balanced computation
Then cc0,Γ0 : e0 ⇓θΓ1 : z, cc1 and θ1 = θ0+θ.

Proof. This is proved by induction on the structure of balanced traces, following
the grammar.

Case: ε. If z ≡ λy.e then it follows by rule Lam because we have cc0 = cc1,
Γ0 = Γ1, and e0 ≡ z ≡ λy.e. Otherwise z ≡ C xa, and it follows by rule Con. In
both cases θ = {}, so θ1 = θ0+θ since θ0 = θ1.

Case: app1 bal app2 bal. We must have e0 ≡ e x. The state after
app1 must be (cc0,Γ0, e, x :S, θ0+{cc0 7→A}), and the state before app2 must
be (ccλ,∆, λy.e′, x :S, θ′). Since the trace between these states is balanced
we have cc0,Γ0 : e ⇓θbal1 ∆ : λy.e′, ccλ where θ′ = θ0 + {cc0 7→ A} + θbal1 by

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

378 · Patrick M. Sansom et al.

the inductive hypothesis. The state after app2 is (ccλ,∆, e′[x/y], S, θ′), and
the trace of (ccλ,∆, e′[x/y], S, θ′) ⇒∗ (cc1,Γ1, z, S, θ1) is balanced; so we have
ccλ,∆ : e′[x/y] ⇓θbal2 Γ1 : z, cc1 where θ1 = θ′+θbal2 by the inductive hypothesis.
Using the App rule we conclude that cc0,Γ0 : e x ⇓{cc0 7→A}+θbal1+θbal2

Γ1 : z, cc1 and
observe that θ1 = θ′+θbal2 = θ0+{cc0 7→A}+θbal1 +θbal2 as required.

Case: var1. We must have e0 ≡ x and Γ0 = Γ[x ccz7→ z]. The state after var1
must be (S (cc0ccz z),Γ[x ccz7→ z], z, S, θ0+{cc0 7→V}). But the Var(whnf) rule states
that cc0,Γ[x ccz7→ z] : x ⇓{cc 7→V}Γ[x ccz7→ z] : z, S (cc0ccz z) with cc1 = S (cc0ccz z) and θ1 =
θ0+{cc0 7→V} as required.

Case: var2 bal var3. We must have e0 ≡ x, Γ0 = Γ[x cce7→ e], and
e 6≡ z. The state after var2 must be (cce,Γ, e,

(
#x
cc0

)
:S, θ0+{cc0 7→V}); the

state before var3 must be (ccz ,∆, z,
(
#x
cc0

)
:S, θ′); and the state after var3 must

be (S (cc0ccz z),∆[x ccz7→ z], z, S, θ′+{ccz 7→U}). Since the trace between var2 and
var3 is balanced we have cce,Γ : e ⇓θbal1 ∆ : z, ccz where θ′ = θ0 + {cc0 7→
V}+ θbal1 by the inductive hypothesis. Using the Var(thunk) rule we conclude
that cc0,Γ[x cce7→ e] : x ⇓{cc0 7→V}+θbal1+{ccz 7→U}∆[x ccz7→ z] : z, S (cc0ccz z) and observe that
θ1 = θ′+{ccz 7→U} = θ0+{cc0 7→V}+θbal1 +{ccz 7→U} as required.

Case: let bal. We must have e0 ≡ let {xi = ei} in e, and for
the renaming ê some fresh yi have been chosen. The state after let is
(cc0,Γ0[yi

cc07→ êi], ê, S, θ0+{cc0 7→n∗H}), and since the trace after let is balanced
we have cc0,Γ0[yi

cc07→ êi] : ê ⇓θbal1 Γ1 : z, cc1 where θ1 = θ0 +{cc0 7→ n∗H}+ θbal1
by the inductive hypothesis. Using the Let rule, choosing the same fresh yi, we
conclude that cc0,Γ0 : let {xi = ei} in e ⇓{cc0 7→n∗H}+θbal1 Γ1 : z, cc1 as required.

Case: case1 bal case2 bal. We must have e0 ≡ case e of alts. The state after
case1 must be (cc0,Γ0, e, (alts,cc0) :S, θ0+{cc0 7→C}), and the state before case2

must be (ccC ,∆, Ck xak , (alts,cc0) :S, θ′). Since the trace between these states is
balanced we have cc0,Γ0 : e ⇓θbal1 ∆ : Ck xak , ccC where θ′ = θ0 +{cc0 7→C}+θbal1
by the inductive hypothesis. The state after case2 is (cc0,∆, ek[xi/yki], S, θ′), and
the trace of (cc0,∆, ek[xi/yki], S, θ′) ⇒∗ (cc1,Γ1, z, S, θ1) is balanced; so we have
cc0,∆ : ek[xi/yki] ⇓θbal2 Γ1 : z, cc1 where θ1 = θ′+θbal2 by the inductive hypothesis.
Using the Case rule we conclude that cc0,Γ0 : case e of alts ⇓{cc0 7→C}+θbal1+θbal2
Γ1 : z, cc1 and observe that θ1 = θ′+θbal2 = θ0+{cc0 7→C}+θbal1+θbal2 as required.

Case: scc bal. We must have e0 ≡ scc ccscc e. The state af-
ter scc is (ccscc,Γ0, e, S, θ0+{ccscc 7→E}), and since the trace after scc is bal-
anced we have ccscc,Γ0 : e ⇓θbal1 Γ1 : z, cc1 where θ1 = θ0 + {ccscc 7→ E} +
θbal1 by the inductive hypothesis. Using the SCC rule, we conclude that
cc0,Γ0 : scc ccscc e ⇓{ccscc 7→E}+θbal1 Γ1 : z, cc1 as required.

Theorem 4.2.1.

(cc,Γinit, e, [], {})⇒∗ (cc′,∆, z, [], θ) if and only if cc,Γinit : e ⇓θ∆ : z, cc′

Proof.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 379

If. This part follows from Lemma C.1.

Only if. Observe that the computation (cc,Γinit, e, [], {}) ⇒∗ (cc′,∆, z, [], θ) is
necessarily balanced; then the result follows from Lemma C.4.

The theorem says that the abstract machine terminates with a value z and cost
attribution θ if and only if the natural semantics successfully derives this value and
cost attribution.

A second possibility is that the machine may terminate with a variable x in the
control, indicating a “black hole,” in which case the natural semantics permits no
derivations at all. Finally, a third possibility is that the machine may embark on
an infinite computation, corresponding to an infinite derivation tree in the natu-
ral semantics. Since both systems are deterministic (modulo the choice of fresh
variables) these possibilities are mutually exclusive.

D. THE STATIC SCOPE OF COST CENTERS

Section 4.3 introduced Theorem 4.3.5 for the original semantics. Here the theorem
is restated and proved for the modified semantics (Figure 5 with modifications in
Figure 7). This requires a couple of extensions:

(1) The right-hand sides of all top-level bindings, including the CAF bindings in-
troduced in Section 7, are labeled with the cost center annotating the heap
binding.

Γlabinit = { x cc7→ ϕcc[e] : x = e ∈ prog and cc = initcc(e) }
(2) The modified var1 and var3 rules (Figure 7) are extended to relabel "SUB"

and "CAF" values with the subsuming cost center. Note that a value may be
relabeled more than once, since it may be subsumed by a "CAF" cost center
and then re-subsumed by another cost center.

(cc,Γ[x ccz7→ z], xl, S, θ) ⇒var1
lab (S (ccccz z),Γ[x ccz7→ z], labsub(ccz , cc, z), S, θ+{cc 7→V})

(ccz,Γ, z,
(
#x
cc

)
:S, θ) ⇒var3

lab (S (ccccz z),Γ[x ccz7→ z], labsub(ccz, cc, z), S, θ+{ccz 7→U})

where labsub("SUB", cc, λy.e l) = ϕcc[U [λy.e l]]
labsub("CAF", cc, λy.e l) = ϕcc[U [λy.e l]]
labsub(ccz , cc, z) = z

Theorem 4.3.5.

(ccinit,Γlabinit, e
lab
init, [], {})⇒∗lab (cc,Γ, e, S, θ) ⇒ cc ≡ lab(e) and cc 6≡ "SUB"

where ≡ denotes syntactic identity.

Proof. This is proved by induction over the length of the trace of the labeled
computation ⇒∗lab.

Inductive Hypothesis. cc 6≡ "SUB" and e ≡ ϕcc[U [e]] and heapok (Γ) and
stackok(S), where heapok (Γ) requires that all the heap bindings in Γ are labeled
with the attached cost center, unless they are subsumed, and stackok(S) requires
(1) that the cost center "SUB" does not appear on the stack and (2) any alts are
correctly labeled.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

380 · Patrick M. Sansom et al.

heapok (Γ) = ∀x, cc, e : x cc7→ e ∈ Γ⇒ e ≡ ϕcc[U [e]]
stackok(S) = ∀cc, x, alts :

(
#x
cc

)
∈ S ⇒ cc 6≡ "SUB", and

(alts,cc) ∈ S ⇒ cc 6≡ "SUB" and ∀ej ∈ alts : ej = ϕcc[U [ej]]

Base Case: ⇒0
lab. cc ≡ ccinit ≡ "MAIN", Γ ≡ Γlabinit, e ≡ elabinit ≡ ϕccinit[einit],

and S ≡ []. Clearly cc 6≡ "SUB", stackok([]) and

ϕcc[U [e]] ≡ ϕccinit[U [ϕccinit[einit]]] ≡ ϕccinit[einit] ≡ e.

From the definition of Γlabinit above we have x cc7→ elab ∈ Γlabinit ⇒ elab = ϕcc[e]. Since
ϕcc[U [elab]] ≡ ϕcc[U [ϕcc[e]]] ≡ ϕcc[e] ≡ elab, heapok (Γlabinit).

Inductive Case: ⇒k+1
lab . Consider the last transition in the trace of the labeled

computation ⇒∗lab.

Case: app1. (cc,Γ, e x l, S, θ)⇒app1
lab (cc,Γ, e, x :S, θ+{cc 7→A}).

By the inductive hypothesis cc 6≡ "SUB", heapok (Γ), stackok(S), and e x l ≡
ϕcc[U [e x l]]. Clearly stackok(x :S) and

e x l ≡ ϕcc[U [e x l]] ≡ ϕcc[U [e] x] ≡ ϕcc[U [e]] x cc

⇒ e ≡ ϕcc[U [e]].

Case: app2. (ccλ,Γ, λy.e l, x :S, θ)⇒app2
lab (ccλ,Γ, e[x/y], S, θ).

By the inductive hypothesis ccλ 6≡ "SUB", heapok (Γ), stackok(x :S), and λy.e l ≡
ϕccλ[U [λy.e l]]. Clearly stackok(S) and

λy.e l ≡ ϕccλ[U [λy.e l]] ≡ ϕccλ [λy.U [e]] ≡ λy.ϕccλ [U [e]] ccλ

⇒ e ≡ ϕccλ[U [e]].
Since the variable x is unlabeled, substituting x for y in e does not modify the
labeling of e, i.e., e[x/y] ≡ ϕccλ [U [e[x/y]]]. Any labeled occurences of y in e will
result in identically labeled occurences of x in e[x/y].

Case: var1. (cc,Γ[x ccz7→ z], xl, S, θ)
⇒var1
lab (S (ccccz z),Γ[x ccz7→ z], labsub(ccz , cc, z), S, θ+{cc 7→V}).

By the inductive hypothesis cc 6≡ "SUB", xl ≡ ϕcc[U [xl]], stackok(S), and
heapok (Γ[x ccz7→ z])⇒ z ≡ ϕccz [U [z]]. If z ≡ λy.e l and ccz ≡"SUB" or "CAF"we have
S (ccccz z) = cc and labsub(ccz, cc, z) = ϕcc[U [z]]. Otherwise, S (ccccz z) = ccz 6≡ "SUB"
and labsub(ccz, cc, z) = z ≡ ϕccz [U [z]].

Case: var2. (cc,Γ[x cce7→ e], xl, S, θ)⇒var2
lab (cce,Γ, e,

(
#x
cc

)
:S, θ+{cc 7→V}).

By the inductive hypothesis cc 6≡ "SUB", heapok (Γ[x cce7→ e]), stackok(S), and xl ≡
ϕcc[U [xl]]. Since e 6≡ λy.e′ we must have cce 6≡ "SUB" and e ≡ ϕcce[U [e]]. Since
cc 6≡ "SUB" we have stackok(

(
#x
cc

)
:S). Finally it is okay to drop the heap binding,

i.e., heapok (Γ).

Case: var3. (ccz ,Γ, z,
(
#x
cc

)
:S, θ)

⇒var3
lab (S (ccccz z),Γ[x ccz7→ z], labsub(ccz , cc, z), S, θ+{ccz 7→U}).

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 381

By the inductive hypothesis ccz 6≡ "SUB", heapok (Γ), stackok(
(
#x
cc

)
: S), and z ≡

ϕccz [U [z]]. Thus, the updated heap binding is okay, i.e., heapok (Γ[x ccz7→ z]). If
z ≡ λy.e l and ccz ≡ "CAF" we have S (ccccz z) = cc and labsub(ccz , cc, z) = ϕcc[U [z]]
and stackok(

(
#x
cc

)
: S) ⇒ cc 6≡ "SUB". Otherwise, S (ccccz z) = ccz 6≡ "SUB" and

labsub(ccz , cc, z) = z ≡ ϕccz [U [z]]. Finally it is okay to pop
(
#x
cc

)
off the stack,

i.e., stackok(S).

Case: let. (cc,Γ, let {xi = ei} in e l, S, θ)
⇒let
lab (cc,Γ[yi

cc7→ êi], ê, S, θ+{cc 7→n∗H}).

By the inductive hypothesis cc 6≡ "SUB", heapok (Γ), stackok(S), and
let {xi = ei} in e l ≡ ϕcc[U [let {xi = ei} in e l]]. Now,

let {xi = ei} in e l ≡ ϕcc[U [let {xi = ei} in e l]]
≡ ϕcc[let {xi = U [ei]} in U [e]]
≡ let {xi = ϕcc[U [ei]]} in ϕcc[U [e]] cc

⇒ e ≡ ϕcc[U [e]] and ∀ei : ei ≡ ϕcc[U [ei]].
Since the fresh yi are unlabeled, substituting the yi for the xi will not modify the
labeling, i.e., ê ≡ ϕcc[U [ê]] and ∀ei : êi ≡ ϕcc[U [êi]]. Thus, the new heap bindings
are okay, i.e., heapok (Γ[yi

cc7→ êi]).

Case: case1. (cc,Γ, case e of alts l, S, θ)
⇒case1
lab (cc,Γ, e, (alts,cc) :S, θ+{cc 7→C}).

By the inductive hypothesis cc 6≡ "SUB", heapok (Γ), stackok(S), and
case e of alts l ≡ ϕcc[U [case e of alts l]]. Now,

case e of {Cj xjaj -> ej} l ≡ ϕcc[U [case e of {Cj xjaj -> ej} l]]
≡ ϕcc[case U [e] of {Cj xjaj -> U [ej]}]
≡ case ϕcc[U [e]] of {Cj xjaj -> ϕcc[U [ej]]} cc

⇒ e ≡ ϕcc[U [e]] and ∀ej : ej ≡ ϕcc[U [ej]].

Since cc 6≡ "SUB" and ∀ej ∈ alts : ej ≡ ϕcc[U [ej]] we have stackok((alts,cc) :S).

Case: case2. (ccC ,Γ, Ck xak
l, (alts,cc) :S, θ)⇒case2

lab (cc,Γ, ek[xi/yki], S, θ).

By the inductive hypothesis ccC 6≡ "SUB", heapok (Γ), stackok((alts,cc) : S), and
Ck xak

l ≡ ϕcc[U [Ck xak
l]]. Now, stackok((alts,cc) : S) ⇒ cc 6≡ "SUB" and

∀ej ∈ alts : ej ≡ ϕcc[U [ej]] and stackok(S). Since the xi are unlabeled,
substituting the xi for the yki in ek will not modify the labeling of ek, i.e.,
ek[xi/yki] ≡ ϕcc[U [ek[xi/yki]]].

Case: scc. (cc,Γ, scc ccscc e l, S, θ)⇒scc
lab (ccscc,Γ, e, S, θ+{ccscc 7→E}).

By the inductive hypothesis cc 6≡ "SUB", heapok (Γ), stackok(S), and scc ccscc e
l ≡

ϕcc[U [scc ccscc e l]]. Since an explicit scc cannot annotate with the "SUB" cost
center we have ccscc 6≡ "SUB". Now,

scc ccscc e l ≡ ϕcc[U [scc ccscc e l]] ≡ ϕcc[scc ccscc U [e]]
≡ scc ccscc ϕccscc [U [e]] cc

⇒ e ≡ ϕccscc [U [e]].
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

382 · Patrick M. Sansom et al.

Finally, we observe that e ≡ ϕcc[U [e]] ⇒ lab(e) ≡ cc as required by the theo-
rem.

E. OVERLOADING, DICTIONARIES, AND PROFILING

Haskell has a systematic way of handling overloading through the use of type classes
[Wadler and Blott 1989]. A type class is a set of types sharing some operations,
called methods. A class declaration specifies what the common operations are.
A type is declared to be in the class with an instance declaration. The instance
declaration describes what the methods in the class do for that particular type, for
example,

class Eq a where
(==), (/=) :: a -> a -> Bool
(/=) x y = if x == y then False else True -- default method

instance Eq Char where
(==) x y = eqChar x y
(/=) x y = neChar x y

instance (Eq a) => Eq [a] where
[] == [] = True
(x:xs) == (y:ys) = x == y && xs == ys
_ == _ = False

elem :: Eq a => a -> [a] -> Bool
elem v l = scc "elem" case l of [] -> False

x:xs -> v == x || elem v xs

seenStr :: [Char] -> [[Char]] -> Bool
seenStr str seen = scc "seenStr" elem str seen

The standard mechanism for implementing overloading has been to use method
dictionaries [Hall et al. 1994; Wadler and Blott 1989], though various optimizations
and alternative schemes have been proposed [Augustsson 1993; Jones 1992]. Each
overloaded function is given an extra dictionary argument that contains the meth-
ods for the particular type at which the function is being applied. The dictionary is
given as an argument to the generic method function, which extracts the particular
method from the dictionary, which is then applied to the method arguments as
before. The translation for the example above is15

(==) (m, _) = m
(\=) (_, n) = n
Eq.(==) dEq x y = error "no default method for =="
Eq.(/=) dEq x y = if (==) dEq x y then False else True

Char.(==) x y = eqChar x y
Char.(/=) x y = neChar x y
dict.Eq.Char = (Char.(==), Char.(/=)) -- a CAF

List.(==) dEq [] [] = True

15For convenience we ignore the restrictions Haskell places on the characters in identifier names.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 383

List.(==) dEq (x:xs) (y:ys) = (==) dEq x y && List.(==) dEq xs ys
List.(==) dEq _ _ = False
List.(/=) dEq xs ys = Eq.(/=) (dfun.Eq.List dEq) xs ys

dfun.Eq.List dEq = (List.(==) dEq, List.(/=) dEq)
dict.Eq.List.Char = dfun.Eq.List dict.Eq.Char -- a CAF

elem dEq v l = scc "elem" case l of
[] -> False
x:xs -> (==) dEq v x || elem dEq v xs

seenStr str seen = elem dict.Eq.List.Char str seen

Given the original source code above, the programmer would expect the costs of
comparing the strings to be subsumed by the cost center "elem". However, under
the original semantics these costs are actually attributed to the "CAF" cost center
attached to the definitions of dict.Eq.List.Char and dict.Eq.Char (Section 7.1).
This was the main motivation for introducing the modified semantics in Section 7.2,
since users queried the unexpectedly large proportion of execution costs attributed
to "CAF". Under the modified scheme, the costs of constructing the dictionaries
are attributed to the "CAF" cost center, but the cost of applying the methods are
subsumed by the enclosing cost center, as required.

So that the cost of constructing dictionaries is reported separately we actually
attach the cost center "DICT" to top-level dictionary declarations. This cost center
is treated in exactly the same way as the "CAF" cost center by the S (ccccz z) predicate.

Unfortunately, not all dictionaries are declared at the top-level, since a particular
dictionary may depend on a runtime dictionary argument. For example, searching
for a singleton list in a list of lists might be defined as

elem_ll :: Eq a => a -> [[a]] -> Bool
elem_ll v ll = scc "elem_ll" elem [v] ll

This is translated to

elem_ll dEq v ll = scc "elem_ll" elem (dfunEqList dEq) [v] ll

which builds a dictionary for comparing lists of the element type and passes it
to elem. In this situation the costs of comparing the strings are attributed to
the cost center "elem_ll" because the methods are constructed by dfunEqList
in the scope of "elem_ll". To ensure that these dynamic dictionary methods are
correctly subsumed by their actual call sites we place a special sccdict annotation
in the dictionary construction functions.

dfunEqList dEq = sccdict "DICT" (EqList(==) dEq, EqList(/=) dEq)

The sccdict annotation is identical to an scc annotation, except that it does not
increment the inner count of the enclosing cost center. This means that the intro-
duction of the sccdict annotation does not affect the inner count of the enclosing
cost center. The sccdict annotation is different from the sccsub annotation, intro-
duced in Section 5.3, since it still increments the scc count of the new cost center
— we are, after all, interested in how many dictionaries are constructed.

The end result of these modifications is that the costs of executing a particular
method is always subsumed by the cost center enclosing the application site of the

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

384 · Patrick M. Sansom et al.

method selector, unless, of course, the particular method has an explicit scc anno-
tation. This coincides with the programmer’s expectations, since these applications
are introduced where the overloaded method identifier occurs in the source.

ACKNOWLEDGEMENTS

Thanks to the Glasgow Haskell team for providing the framework for making this
work possible. Thanks also to Peter Sestoft, David Turner, Hans Loidl, Will
Partain, and the anonymous referees for providing useful comments and sugges-
tions on this article. Finally, we would like to acknowledge the support of the
EPSRC and the Commonwealth Scholarship Commission.

REFERENCES

Appel, A. W., Duba, B. F., and MacQueen, D. B. 1988. Profiling in the presence of optimiza-
tion and garbage collection. Tech. Rep. CS-TR-197-88, Dept. of Computer Science, Princeton
Univ., Princeton, N.J.

Augustsson, L. 1993. Implementing Haskell overloading. In the Conference on Functional Pro-
gramming Languages and Computer Architecture. ACM, New York, 65–73.

Augustsson, L. and Johnsson, T. 1989. The Chalmers Lazy-ML compiler. Comput. J. 32, 2,
127–141.

Bentley, J. L. 1982. Writing Efficient Programs. Prentice-Hall, Englewood Cliffs, N.J.

Clack, C., Clayman, S., and Parrott, D. 1995. Lexical profiling: Theory and practice. J.
Funct. Program. 5, 2, 225–277.

Fairbairn, J. and Wray, S. 1987. TIM — A simple lazy abstract machine to execute super-
combinators. In the Proceedings of the IFIP Conference on Functional Programming Lan-
guages and Computer Architecture, G. Kahn, Ed.,Lecture Notes in Computer Science, vol.
274. Springer-Verlag, Berlin, 34–45.

Graham, S. L., Kessler, P. B., and McKusick, M. K. 1983. An execution profiler for modular
programs. Softw. Pract. Exper. 13, 8, 671–685.

Hall, C. V., Hammond, K., Peyton Jones, S. L., and Wadler, P. L. 1994. Type classes in
Haskell. In the European Symposium on Programming (ESOP’94), D. Sannella, Ed.,Lecture
Notes in Computer Science, vol. 788. Springer-Verlag, Berlin, 241–256.

Hudak, P., Peyton Jones, S. L., Wadler, P. L., Arvind, Boutel, B., Fairbairn, J., Fasel, J.,

Guzman, M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, R., Nikhil, R. S., Par-

tain, W., and Peterson, J. 1992. Report on the functional programming language Haskell,
Version 1.2. ACM SIGPLAN Not. 27, 5.

Hutton, G. 1992. Higher-order functions for parsing. J. Funct. Program. 2, 3, 323–343.

Ingalls, D. 1972. The execution profile as a measurement tool. In Design and Optimization of
Compilers, R. Rustin, Ed. Prentice-Hall, Englewood Cliffs, N.J., 107–128.

Jones, M. P. 1992. Efficient implementation of type class overloading. Dept. of Computer Sci-
ence, Oxford Univ., Oxford, U.K.

Knuth, D. E. 1971. An Empirical Study of FORTRAN Programs. Softw. Pract. Exper. 1, 105–
133.

Kozato, Y. and Otto, G. P. 1993. Benchmarking real-life image processing programs in lazy
functional languages. In the Conference on Functional Programming Languages and Computer
Architecture. ACM, New York, 18–27.

Launchbury, J. 1993. A natural semantics for lazy evaluation. In the 20th ACM Symposium
on the Principles of Programming Languages. ACM, New York, 144–154.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

Profiling for Higher-Order Functional Languages · 385

Morgan, R. G. and Jarvis, S. A. 1995. Profiling large-scale lazy functional programs. In the
Proceedings of the High Performance Functional Computing Workshop, A. P. Wim Bohm and
J. T. Feo, Eds. Lawrence Livermore National Laboratory, Livermore, Calif., 222–234.

Morgan, R. G., Garigliano, R., Jarvis, S. A., and Parker, B. S. 1994. Maintenance and
development of large scale lazy functional programs. In the Dagstuhl Workshop on Functional
Programming in the Real World. Dagstuhl, Saarbrücken, Germany.

Partain, W. D. 1993. The nofib benchmark suite of Haskell programs. In Functional Pro-
gramming, Glasgow 1992, J. Launchbury and P. M. Sansom, Eds.,Workshops in Computing.
Springer-Verlag, Berlin, 195–202.

Peyton Jones, S. L. 1992. Implementing lazy functional languages on stock hardware: The
Spineless Tagless G-machine. J. Funct. Program. 2, 2, 127–202.

Peyton Jones, S. L., Hall, C. V., Hammond, K., Partain, W. D., and Wadler, P. L. 1993.
The Glasgow Haskell compiler: A technical overview. In the Joint Framework for Information
Technology (JFIT) Technical Conference Digest. SERC, Swindon, U.K., 249–257.

Röjemo, N. 1995. Garbage collection and memory efficiency in lazy functional languages. Ph.D.
thesis, Dept. of Computing Science, Chalmers Univ., Chalmers, Sweden.

Röjemo, N. and Runciman, C. 1996. Lag, drag, void, and use: Heap profiling and space-efficient
compilation revisited. In the International Conference on Functional Programming. ACM, New
York, 34–41.

Runciman, C. and Röjemo, N. 1996. New dimensions in heap profiling. J. Funct. Program. 6,
4, 587–620.

Runciman, C. and Wakeling, D. 1993. Heap profiling of lazy functional programs. J. Funct.
Program. 3, 2, 217–245.

Sansom, P. M. 1994. Time profiling a lazy functional compiler. In Functional Programming,
Glasgow 1993, K. Hammond and J. O’Donnell, Eds.,Workshops in Computing. Springer-Verlag,
Berlin, 252–264.

Santos, A. 1995. Compilation by transformation in non-strict functional languages. Ph.D. the-
sis, Res. Rep. FP-1995-17, Dept. of Computing Science, Univ. of Glasgow, Scotland.

Sestoft, P. 1997. Deriving a lazy abstract machine. J. Funct. Program. 7, 3. To be published.

Wadler, P. L. and Blott, S. 1989. How to make ad-hoc polymorphism less ad hoc. In the
16th ACM Symposium on the Principles of Programming Languages. ACM, New York.

Received February 1996; revised July 1996; accepted October 1996

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.

	Motivation and overview
	An overview of the profiler
	Cost Centers
	Introducing the scc Annotations
	Using the Profiler

	A semantics for cost attribution
	Informal Cost Attribution
	Language
	The Judgment Form
	The Rules
	Cost Attribution and Evaluation Order

	Implementation
	Implementation Overview
	An Operational Semantics
	The Static Scope of Cost Centers
	Implementing the Operational Semantics

	Transformation
	Local Transformations
	Inlining Top-Level Functions
	Transformations at scc Boundaries

	Overheads
	Constant applicative forms
	Unexpected "CAF" Cost Attribution
	A Modified Cost Semantics
	Discussion

	Variations on the theme
	Evaluation Scoping
	Higher-Order Functions and Lexical Profiling
	Inheritance Profiling
	Profiling Strict Languages

	Related work
	The SML/NJ Profiler
	The UCL Lexical Profiler
	Space Profilers

	Conclusions and further work
	Glasgow Haskell
	Cost Attribution and Evaluation Order
	Correctness of the Operational Semantics
	The Static Scope of Cost Centers
	Overloading, Dictionaries, and Profiling

