
Stretching the Storage Manager: Weak Pointers

and Stable Names in Haskell

Simon Peyton Jones1, Simon Marlow2, and Conal Elliott3

1 Microsoft Research, Cambridge, simonpj@microsoft.com
2 Microsoft Research, Cambridge, simonmar@microsoft.com

3 Microsoft Research, Redmond, conal@microsoft.com

Abstract. Every now and then, a user of the Glasgow Haskell Com-
piler asks for a feature that requires specialised support from the storage
manager. Memo functions, pointer equality, external pointers, finalizers,
and weak pointers, are all examples.
We take memo functions as our exemplar because they turn out to be
the trickiest to support. We present no fewer than four distinct mech-
anisms that are needed to support memo tables, and that (in various
combinations) satisfy a variety of other needs.
The resulting set of primitives is undoubtedly powerful and useful.
Whether they are too powerful is not yet clear. While the focus of our
discussion is on Haskell, there is nothing Haskell-specific about most of
the primitives, which could readily be used in other settings.

1 Introduction

“Given an arbitrary function f, construct a memoised version of f; that is,
construct a new function with the property that it returns exactly the same results
as f, but if it is applied a second time to a particular argument it returns the
result it computed the first time, rather than recomputing it.”

Surely this task should be simple in a functional language! After all, there
are no side effects to muddy the waters. However, it is well known that this
simple problem raises a whole raft of tricky questions. A memo table inherently
involves a sort of “benign side effect”, since the memo table is changed as a
result of an application of the function; how should we accommodate this side
effect in a purely-functional language? What does it mean for an argument to be
“the same” as a previously encountered one? Does a memo function have to be
strict? Efficient memo tables require at least ordering, and preferably hashing;
how should this be implemented for arbitrary argument types? Does the memo
function retain all past (argument,result) pairs, or can it be purged? Can the
entire memo table ever be recovered by the garbage collector? And so on.

One “solution” is to build in memo functions as a primitive of the language
implementation, with special magic in the garbage collector and elsewhere to
deal with these questions. But this is unsatisfactory, because a “one size fits
all” solution is unlikely to satisfy all customers. It would be better to provide a
simpler set of primitives that together allowed a programmer to write a variety

P. Koopman and C. Clack (Eds.): IFL’99, LNCS 1868, pp. 37–58, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

38 Simon Peyton Jones, Simon Marlow, and Conal Elliott

of memo-table implementations. The purpose of this paper is to propose just
such a set of primitives. Our design proposes four related mechanisms:

1. The unsafePerformIO primitive allows the programmer to execute benign
side effects (Section 3).

2. Typed stable names allow a stable (i.e. invariant under garbage collection)
“key” to be derived from an arbitrary value (Section 4).

3. Typed weak pointers allow the programmer to avoid an otherwise-lethal
space leak (Section 5).

4. Finalization allows the programmer to express a variety of policies for purg-
ing the memo table of unused values (Section 6).

Each of these four primitives also has independent uses of its own. The latter
three have in common that they require integrated support from the garbage
collector.

Compared to earlier work, our new contributions are these:

– We offer the first complete, integrated design that supports user-
programmable memo tables in Haskell, a non-strict, purely-functional lan-
guage.

– So far as we know, our stable-name proposal is new. The same underly-
ing run-time system mechanism also supports both inter-heap references in
GPH, our distributed implementation of Haskell [11], and Haskell references
held by external agents such as GUI widgets or COM objects.

– Weak pointers, in contrast, have been in use since at least the early 80’s.
Our design has some neat wrinkles, and solves the little-known key-in-value
problem. Though developed independently, our solution is very close to that
of [4], but we believe that our characterisation of the (tricky) semantics of
weak pointers is easier for a programmer to understand.

Everything we describe is implemented in the Glasgow Haskell Compiler
(GHC). No single aspect of the design is startling, yet it has taken us a sur-
prisingly long time to achieve, due to a number of interacting subtleties. One
contribution of the paper is to summarise the folklore in this tricky area, though
we believe that we have also developed it significantly.

2 Memo Functions

We use memo functions as our running example because they highlight most
of the awkward issues. The basic idea is very simple: if a function is applied
a second time to a given argument, return the result computed the first time
instead of recomputing it.

Memoisation is particularly attractive for a purely-functional language, be-
cause there are guaranteed to be no side effects that might change the result
even if the argument is the same as before [7]. Hughes [5] studied the implica-
tions of memoisation in a lazy language. More recently, Cook and Launchbury [1]

Stretching the Storage Manager: Weak Pointers and Stable Names in Haskell 39

describe disposable memo functions, a variant of Hughes’ lazy memo functions,
and give an operational semantics that clarifies their behaviour. Hash-consing
is a specialised kind of memo table application that remembers previously-built
heap objects in case an identical object is required again. All these papers give
applications that explain the usefulness of memo functions.

2.1 A Design for Memo Functions

Following [1], the most elegant way to construct a memo function is by providing
a higher-order function memo:

memo :: (a -> b) -> (a -> b)

That is, memo takes a function with arbitrary range and domain, and returns
a memoised version of the function. The memoised function is a new value, in
contrast to other approaches where memoisation is achieved by some kind of
pragma or side effect.

The standard toy example is the Fibonacci function, whose complexity turns
from exponential to linear if the function is memoised in this way:

fib :: Int -> Int ufib :: Int -> Int
fib = memo ufib ufib 0 = 1

ufib 1 = 1
ufib n = fib (n-1) + fib (n-2)

(Notice that the recursive call is made to fib, the memoised version of ufib).
In this example we defined a single memoised fibonacci function, but memo

does not require that. Indeed, there may be many memoised versions of the same
function in use at any time. Each such call to memo creates its own memo table,
which should be garbage collected when the memoised function is discarded. For
example, here is a version of map that might be used when the argument list is
expected to have many occurrences of the same value:

memo_map f xs = map (memo f) xs

Here, a single memoised version of f is applied to each element of the list
xs. A function of several arguments can easily be memoised on a particular
argument. For example, here is how to memoise a three-argument function, f,
on its second argument1:

memo_2_3 :: (a -> b -> c -> d) -> (a -> b -> c -> d)
memo_2_3 f = \ a b c -> mf b a c

where mf = memo (\b a c -> f a b c)

Similarly, a function can easily be memoised on several arguments. The first
use of memo maps the first argument to a function that is itself memoised:

memo2 :: (a -> b -> c) -> (a -> b -> c)
memo2 f = memo (\ a -> memo (f a))

1 “\”is Haskell’s notation for lambda.

40 Simon Peyton Jones, Simon Marlow, and Conal Elliott

2.2 Variations on the Theme

The first question that springs to mind is: how does memo decide whether a new
argument is “the same” as one it has seen before? One could imagine at least
three different variants of memo:

– Perform no evaluation on the argument; simply use pointer equality. Recall
that Haskell is a lazy language and we would prefer it if memo did not change
the strictness of the function it is memoising, and using pointer equality
certainly has this property. On the other hand, pointer equality will not
detect that the arguments (1+2) and (4-1) are the same, because they are
thunks held at different addresses.

– Evaluate the argument to weak-head normal form, and then use pointer
equality. This approach will produce more “hits”, because two thunks that
evaluate to the same value will match. It would also make the memoised
version of the function strict. Even then we might worry that two thunks
that both evaluate to 3, say, might nevertheless evaluate to values held at
distinct addresses.

– Perform a proper equality check on the argument. In this case, the type of
memo must change, since it is no longer fully polymorphic2:

memoEq :: Eq a => (a -> b) -> a -> b

The main point is that there is more than one possible semantics for memo, a
powerful argument for allowing the programmer to define it rather than building
it in.

3 Benign Side Effects

Although a purely-functional language has no visible side effects, the implemen-
tation overwrites heap objects all the time! When the value of a thunk (e.g. an
unevaluated function argument) is demanded, the thunk is overwritten with the
newly-computed value, so that any subsequent demands need not recompute it.
Memo functions require a similar sort of “benign side effect”, but if we are to
program memo in Haskell then we must expose this ability to the programmer.

Side effects are expressed in Haskell using the IO monad [10]. In particular,
the IO monad provides mutable cells with the following primitives:

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

A value of type IORef t is a reference to a mutable cell holding a value of type
t. The primitives to allocate, read, and write the cell are all in the IO monad.

The idea is to use an IORef to hold the memo table. But memo is polymorphic:
it says nothing about IO. We need a way to express side effects, and yet claim
that the overall effect is pure. So we provide one new primitive:
2 The notation Eq a means that the type a is a member of the Eq type class, i.e. it

supports equality.

Stretching the Storage Manager: Weak Pointers and Stable Names in Haskell 41

unsafePerformIO :: IO a -> a

This function takes an I/O performing computation that delivers a value of
type a, and turns it into a value of type a. The I/O will be performed when
(and if) the value is demanded. There is no guarantee when that will be, or
how it will interleave with other I/O computations; that is why the function
is unsafe. However “unsafe” is not the same as “wrong”. It simply means that
the programmer, not the compiler, must undertake the proof obligation that the
program’s semantics is unaffected by the moment at which all these side effects
take place.

We are finally ready to give one possible implementation of memoEq; we choose
this variant because it allows us to evade the issues of pointer equality for the
present.

memoEq :: Eq a => (a -> b) -> a -> b
memoEq f = unsafePerformIO (do { tref <- newIORef emptyEq

; return (applyEq f tref)
})

applyEq :: Eq a => (a -> b) -> IORef (TblEq a b) -> a -> b
applyEq f tref arg
= unsafePerformIO (

do { tbl <- readIORef tref
; case lookupEq tbl arg of

Just result -> return result
Nothing -> do { let res = f arg

; let tbl’ = insertEq tbl arg res
; writeIORef tref tbl’
; return res

} })

type TblEq a b = [(a,b)]
emptyEq :: TblEq a b
lookupEq :: Eq a => TblEq a b -> a -> Maybe b
insertEq :: Eq a => TblEq a b -> a -> b -> TblEq a b
-- Implementations omitted

The first application of unsafePerformIO allocates a mutable cell that holds
the memo table, of type TblEq a b. It then immediately returns the memoised
function, a partial application of applyEq. When the latter is given an argument,
it again uses unsafePerformIO to get hold of the memo table, query it, and
perhaps write a new value into it. The memo table, here represented as a simple
association list, contains argument-value pairs. In the context of memo tables
we will often refer to the function argument as the key, and the result as the
value.

Of course, an association list is hardly the most efficient structure for a memo
table, a further reason for wanting memo tables to be programmable. We could

42 Simon Peyton Jones, Simon Marlow, and Conal Elliott

instead use some kind of lookup tree, based on ordering (not just equality) of
the argument. That would in turn require that the argument type was ordered,
thus changing memo’s type again:

memoOrd :: Ord a => (a -> b) -> a -> b

memoOrd can be implemented exactly as above, except that the lookup and in-
sert functions become more complicated. We can do hashing in a very similar
way. Notation apart, all of this is exactly how a Lisp programmer might imple-
ment memo functions. All we have done is to make explicit exactly where the
programmer is undertaking proof obligations — a modest but important step.

4 Stable Names

Using equality, as we have done in memoEq, works OK for base types, such as Int
and Float, but it becomes too expensive when the function’s argument is (say)
a list. In this case, we almost certainly want something like pointer equality; in
exchange for the fast test we accept that two lists might be equal without being
pointer-equal.

However, having only (pointer) equality would force us back to association
lists. To do better we need ordering or a hash function. The well-known diffi-
culty is that unless the garbage collector never moves objects (an excessively
constraining choice), an object’s address may change, and so it makes a poor
hash key. Even the relative ordering of objects may change.

What we need is a cheap address-like value, or name that can be derived
from an arbitrary value. This name should be stable, in the sense that it does
not change over the lifetime of the object it names. With this in mind, we provide
an abstract data type StableName, with the following operations:

data StableName a -- Abstract

mkStableName :: a -> IO (StableName a)
hashStableName :: StableName a -> Int

instance Eq (StableName a)
instance Ord (StableName a)

The function mkStableName makes a stable name from any value. Stable names
support equality (class Eq) and ordering (class Ord). In addition, the function
hashStableName converts a stable name to a hash key.

Notice that mkStableName is in the IO monad. Why? Because two stable
names might compare less-than in one run of the program, and greater-than in
another run. Putting mkStableName in the IO monad is a standard trick that al-
lows mkStableName to consult (in principle) some external oracle before deciding
what stable name to return. In practice, we often wrap calls to mkStableName in
an unsafePerformIO, thereby undertaking a proof obligation that the meaning

Stretching the Storage Manager: Weak Pointers and Stable Names in Haskell 43

data SNMap k v -- abstract

newSNMap :: IO (SNMap k v)

lookupSNMap :: SNMap k v -> StableName k -> IO (Maybe v)

insertSNMap :: SNMap k v -> StableName k -> v -> IO ()

removeSNMap :: SNMap k v -> StableName k -> IO ()

snMapElems :: SNMap k v -> IO [(k,v)]

Fig. 1. Stable Name Map Library

of the program does not depend on the particular stable name that the system
chooses.

Stable names have the following property: if two values have the same stable
name, the two values are equal

(†) mkStableName x = mkStableName y ⇒ x = y

This property means that stable names are unlike hash keys, where two keys
might accidentally collide. If two stable names are equal, no further test for
equality is necessary. An immediate consequence of (†) is this: if two values are
not equal, their stable names will differ.

x 6= y ⇒ mkStableName x 6= mkStableName y

mkStableName is not strict; it does not evaluate its argument. This means that
two equal values might not have the same stable name, because they are still
distinct unevaluated thunks. For example, consider the definitions

p = (x,x); f1 = fst p; f2 = snd p

So long as f1 and f2 remain unevaluated, mkStableName f1 will return a dif-
ferent stable name than mkStableName f23.

It is easy to make mkStableName strict, by using Haskell’s strict-application
function “$!”. For example, mkStableName $! f1 and mkStableName $! f2
would return the same stable name. Using strict application loses laziness, but
increases sharing of stable names, a choice that only the programmer can make.

4.1 Using Stable Names for Memo Tables

Throughout the rest of this paper, we will make use of Stable Name Maps, an
abstract data type that maps Stable Names to values (Figure 1). The imple-
mentation may be any kind of mutable finite map, or a real hash table (using
hashStableName).
3 A compiler optimisation might well have evaluated f1 and f2 at compile time, in

which case the two calls would return the same stable name; another example of
why mkStableName is in the IO monad.

44 Simon Peyton Jones, Simon Marlow, and Conal Elliott

Using stable names it is easy to modify our memo-table implementation to
use pointer equality (strict or lazy) instead of value equality. We give only the
code for the apply part of the implementation

applyStable :: (a -> b) -> SNMap a b -> a -> b
applyStable f tbl arg
= unsafePerformIO (do

{ sn <- mkStableName arg
; lkp <- lookupSNMap tbl sn
; case lkp of

Just result -> return result
Nothing -> do { let res = f arg

; insertSNMap tbl sn res
; return res

} })

4.2 Implementing Stable Names

Our implementation is depicted in Figure 2. We maintain two tables. The first
is a hash table that maps the address of an object to an offset into the second
table, the Stable Name Table. If the address of a target changes during garbage
collection, the hash table must be updated to reflect its new address. There are
two possible approaches:

– Always throw away the old hash table and rebuild a new one after each
garbage collection. This would slow down garbage collection considerably
when there are a large number of stable names.

– In a generational collector, we have the option of partially updating the
hash table during a minor collection. Only the entries for targets which have
moved during the current GC need to be updated. This is the method used
by our implementation.

Each slot in the Stable Name Table (SNT) corresponds to a distinct stable
name. The stable name can be described by its offset in the SNT, and it is this
offset that is used for equality and comparison of stable names.

However, we cannot simply use this offset as the value returned by
mkStableName! Why not? Because in order to maintain (†) we must ensure that
we never re-use a stable name to which the program still has access, even if the
object from which the stable name was derived has long since died.

Accordingly, we represent a value of type StableName a by a stable name
object, a heap-allocated cell containing the SNT offset. It is this object that is
returned as the result of mkStableName. The entry in the SNT points to the
corresponding stable name object, and also the object for which the stable name
was created (the target).

Now entries in the SNT can be garbage-collected as follows. The SNT is not
treated as part of the root set. Instead, when garbage collection is complete, we

Stretching the Storage Manager: Weak Pointers and Stable Names in Haskell 45

SN n

Heap

n

RTS

Target

Hash

Stable Name
Object

Table

Hash

Stable Name
Table

Fig. 2. Stable Name Implementation

scan the entries of the SNT that are currently in use. If an entry’s stable name
object is dead (not reachable), then it is safe to re-use the stable name entry,
because the program cannot possibly “re-invent” it. For each stable name entry
that is still live, we also need to update the pointers to the stable name object
and the target, because a copying collector might have moved them.

Available entries in the SNT are chained on a free list through the stable-
object-pointer field.

4.3 hashStableName

The hashStableName function satisfies the following property, for stable names
a and b:

a = b ⇒ hashStableName a = hashStableName b

The converse is not true, however. Why? The call hashStableName a is imple-
mented by simply returning the offset of the stable name a in the SNT. Because
the Int value returned can’t be tracked by the garbage collector in the same
way as the stable name object, it is possible that calls to hashStableName on
different stable names could return the same value. For example:

do { sn_a <- mkStableName a
; let hash_a = hashStableName sn_a
; sn_b <- mkStableName b
; let hash_b = hashStableName sn_b
; return (hash_a == hash_b)
}

Assuming a and b are distinct objects, this piece of code could return True if
the garbage collector runs just after the first call to hashStableName, because

46 Simon Peyton Jones, Simon Marlow, and Conal Elliott

the slot in the SNT allocated to sn_a could be re-used by sn_b since sn_a is
garbage at this point.

4.4 Other Applications

An advantage of the implementation we have described is that we can use the
very same pair of tables for two other purposes. When calling external libraries
written in some other language, it is often necessary to pass a Haskell object.
Since Haskell objects move around from time to time, we actually pass a Stable
Pointer to the object. A stable pointer is a variant of a stable name, with slightly
different properties:

1. It is possible to dereference a stable pointer to get to the target. This means
that the existence of a stable pointer must guarantee the existence of the
target.

2. Stable pointers are reference counted, and must be explicitly freed by the
programmer. This is because a stable pointer can be passed to a foreign
function, leaving no way for the Haskell garbage collector to track it.

We implement stable pointers using the same stable name technology. The
stable name table already contains a pointer to the target of the stable name,
hence (1) is easy. To support (2) we add a reference count to the SNT entry, and
operations to increment and decrement it. The pointer to the target is treated
as a root by the garbage collector if and only if the reference count is greater
than zero.

We use exactly the same technology again for our parallel implementation
of Haskell, Glasgow Parallel Haskell (GPH). GPH distributes a single logical
Haskell heap over a number of disjoint address spaces [11]. Pointers between
these sub-heaps go via stable names, thus allowing each sub-heap to be garbage
collected independently. Weighted reference counting is used for global garbage
collection [8].

The point here is simply that a single, primitive mechanism supports all
three facilities: stable names, passing pointers to foreign libraries, and distributed
heaps.

5 Weak Pointers

If a memoised function is discarded, then its memo table will automatically be
garbage collected. But suppose that a memoised function is long-lived, and is
applied to many arguments, many of which are soon discarded. This situation
gives rise to a well-known space leak:

– Since the memo table contains references to all the arguments to which the
function has ever been applied, those arguments will be reachable (in the
eyes of the garbage collector) even though the function will never be applied
to that argument again.

Stretching the Storage Manager: Weak Pointers and Stable Names in Haskell 47

– Not only that, but the result of applying the function to those arguments is
also held in the memo table, and hence will be retained for ever.

– Finally, the memo table itself becomes clogged with useless entries that serve
only to slow down lookup operations.

The first of these problems seems to go away when we use stable names, since
it is the stable names that are retained in the memo table, not the argument
itself; but the latter two problems remain, and the first reappears as an inability
to recycle stable names.

5.1 Weak Pointers

The standard solution to these woes is to use weak pointers. The garbage collector
recovers all heap objects that are not reachable. A heap object is reachable if
it is in the transitive closure of the points-to relation starting from the set of
root pointers. A weak pointer is a pointer that is not treated as a pointer for the
purposes of computing reachability. That is, even if object A is reachable, and A
contains a weak pointer to another object B, the latter is not thereby considered
reachable4.

Object B may be reachable from the root set by some other path, of course,
but if not, it is considered garbage. In this case, the weak pointer in object A
no longer points to a valid object, and is replaced by a tombstone. The act of
dereferencing a weak pointer will fail if the latter has been tombstoned.

Weak pointers help memo tables in the following way. Ignoring stable names
for now, assume that the memo table refers to both the keys and values. If the
pointer to the key is a weak pointer, then the memo table will not keep the
key alive, thus solving the first problem. Periodically the memo table can be
“purged”, by searching for keys that have been tombstoned, and deleting their
entry from the memo table, thus releasing the value as well.

5.2 A Problem with Weak Pointers

A little-recognised problem with using weak pointers for memo tables is this: if
the value contains a pointer to the key, the entry will never be removed. If the
value refers to the key, then the memo table will keep the value alive, the value
will keep the key alive, and the entry in the memo table can never be purged,
which defeats the whole purpose of the weak pointer. We will refer to this as the
key-in-value problem.

If this problem actually occurs in practice, it causes a potentially-lethal space
leak, and one that is not easy to identify or cure. Unfortunately, the situation
is by no means unusual. Consider a lookup table that maps a person’s name
to a record describing the person. It is quite likely that the record will include,
among other things, the person’s name.
4 The alert reader may have noticed that an entry in the Stable Name Table of Sec-

tion 4.2 effectively contains a weak pointer to its stable name object.

48 Simon Peyton Jones, Simon Marlow, and Conal Elliott

5.3 A New Design

In the light of these issues, we have developed a new design for weak pointers
in Haskell, called key/value weak pointers. Here is (part of) the signature of the
Weak module:

data Weak a -- Abstract

mkSimpleWeak :: k -> v -> IO (Weak v)
deRefWeak :: Weak v -> IO (Maybe v)

The function mkSimpleWeak takes a “key”, a “value” of type v, and builds a
weak pointer object of type Weak v. Weak pointers have the following effect on
garbage collection:

– The value of a weak pointer object is reachable if the key is reachable5.

The specification says nothing about the reachability of the weak pointer
object itself, so whether or not the weak pointer object is reachable does not
affect the reachability of its key or value.

This simple, crisp, specification conceals quite a subtle implementation (Sec-
tion 5.5), but it offers precisely the support we need for memo tables. It does not
matter if the value refers to the key, because the value is not reachable unless
the key is — or unless the value is reachable some other way, in which case the
key is certainly reachable via the value.

mkSimpleWeak is in the IO monad because it has an important operational
behaviour: before the call, the key and value are both reachable, but after the
call the reachability of the value is dependent on the reachability of the key. This
isn’t a side-effect as such — it wouldn’t change the meaning of the program if
we delayed the operation — but to obtain the desired effect it’s important that
we can force the call to mkSimpleWeak to be performed at a certain time, hence
we use the IO monad for sequencing.

The function deRefWeak dereferences a weak pointer, returning either
Nothing (if the value has been garbage collected), or Just v (where v is the
value originally given to mkSimpleWeak). The deRefWeak operation is in the IO
monad for an obvious reason: its return value can depend on the time at which
the garbage collector runs.

Though we developed our design independently, we subsequently discovered
that Hayes’s OOPSLA’97 paper [4] describes a much earlier implementation of
the same core idea, there dubbed ephemerons, originally due to Bosworth. We
contrast our designs in Section 8.

5.4 Memo Table Using Key/Value Weak Pointers

We can now give the code for a memo table that uses weak pointers, based on
our earlier stable-name version.
5 Recall that the garbage collector recovers memory that is not reachable; and also

note that the statement says “if”, not “if and only if”.

Stretching the Storage Manager: Weak Pointers and Stable Names in Haskell 49

applyWeak :: (a -> b) -> SNMap a (Weak b) -> a -> b
applyWeak f tbl arg

= unsafePerformIO (do
{ sn <- mkStableName arg
; lkp <- lookupSNMap tbl sn
; case lkp of

Nothing -> not_found tbl sn
Just weak -> do { val <- deRefWeak weak

; case val of
Just result -> return result
Nothing -> not_found tbl sn

} })
where

not_found tbl sn = do { let res = f arg
; weak <- mkSimpleWeak arg res
; insertSNMap tbl sn weak
; return res
}

The memo table maps a stable name for the argument to a weak pointer to the
value. If the function has not been applied to arg before, the call to lookupSNMap
will return Nothing, and the auxiliary function not_found will be called. The
latter makes a weak pointer for the result, with a lifetime controlled by arg, and
inserts this weak pointer into the memo table as before.

If the lookup is successful, deRefWeak is used to find the actual value. There
is an awkward race condition here, because at the moment deRefWeak is called
there might, conceivably, be no further references to arg. If that is so, and
a garbage collection intervenes, the weak pointer might be tombstoned before
deRefWeak gets to it. In this unusual case we simply call not_found. Strangely
enough, doing so makes arg reachable in the continuation of deRefWeak, and thus
ensures that deRefWeak will always succeed. This sort of weirdness is typical of
the world of weak pointers.

5.5 Implementing Weak Pointers

The definition of reachability is simple, but it takes a little care to implement it
correctly. Our implementation works as follows. We maintain a list of all current
weak pointer objects, called the Weak Pointer List. When a new weak pointer
object is created, it is immediately added to this list. Garbage collection proceeds
as follows:

1. Mark all the heap reachable from the roots. (We will pretend that we are
using a mark-sweep garbage collector, but everything works fine for copying
collectors too.)

2. Examine each weak pointer object on the Weak Pointer List, whether or not
it is itself reachable. If it has a key that is marked (i.e. is reachable), then

50 Simon Peyton Jones, Simon Marlow, and Conal Elliott

mark all the heap reachable from its value field, and move the weak pointer
object to a new list.

3. Repeat from step (2), until a complete scan of the Weak Pointer List finds
no weak pointer object with a marked key.

4. For each remaining object on the Weak Pointer List, either tombstone it (if
it is marked), or simply discard it (otherwise).

5. The list accumulated in step (2) becomes the new Weak Pointer List. Mark
any unreachable weak pointer objects on this list as reachable, so that they
will be retained by the garbage collector.

There are two subtleties in the implementation. The first is the iteration
necessary in step (3). This is required, because making one value reachable may
make the key of some other weak pointer object reachable; and so on. Notice
that the reachability of the value of a weak pointer object is influenced only by
the reachability of the corresponding key, and not at all by the reachability, or
otherwise, of the weak pointer object itself.

The second subtlety is the relationship between reachability and retainability.
The reachability criterion is used to determine which weak pointers to tombstone,
but it is not the same as the set of objects retained by the garbage collector.
The objects retained are precisely the reachable objects, plus any weak pointer
objects which have reachable keys, but which are unreachable themselves at the
end of the algorithm.

Although all live weak pointer objects are implicitly kept by the garbage
collector regardless of whether they are reachable, it would be wrong to mark
them all as reachable as a first step in the above algorithm. This is because doing
so would preclude having a weak pointer object whose key is itself a weak pointer
object, because the key would always be considered reachable. Weak pointers to
weak pointers are a useful concept, as we shall see later (Section 8).

The above implementation can be extended straightforwardly to work with a
generational garbage collector. The guiding principle is: any object which resides
in a generation which we are not collecting is considered to be reachable for the
purposes of this collection. So if the key of a weak pointer lives in the oldest
generation, we will not be able to determine that the weak pointer is dead until
we perform a major collection.

5.6 Other Applications

Another situation where we found weak pointers to be “just the right thing” is
when referencing objects outside the Haskell heap via proxy objects (a proxy
object is an object in the local heap that just contains a pointer to the foreign
object).

Consider a structured foreign object, to which we have a proxy object in the
Haskell heap. The garbage collector will track the proxy object in order that
the foreign object can be freed when it is no longer referenced from Haskell
(probably using a finalizer, see the next section). If we are given a pointer to
a subcomponent of the foreign object, then we need a suitable way to keep the

Stretching the Storage Manager: Weak Pointers and Stable Names in Haskell 51

proxy for the root of the foreign object alive until we drop the reference to the
subcomponent.

A weak pointer solves this problem nicely: the key points to a proxy for
the subcomponent, and the value points to the proxy for the root. The entire
foreign object will thereby be retained until all references to the subcomponent
are dropped.

6 Finalization

We did not present code for purging the memo table of useless key/value pairs.
Indeed, the whole idea is less than satisfactory, because it amounts to polling
the keys to see if they have died. It would be better to receive some sort of
notification when the key died.

Indeed, it is quite common to want to perform some sort of clean-up action
when an object dies; such actions are commonly called finalization. If it were
possible to attach a finalizer to the key, then when the key dies, the finalizer
could delete the entry from the memo table. A particular key might be in many
memo tables, so it is very desirable to be able to attach multiple finalizers to a
particular object.

Finalizers are often used for proxy objects that encapsulate some external
resource, such as a file handle, graphics context, malloc’d block, network con-
nection, or whatever. When the object becomes garbage, the finalizer runs, and
can close the file, release the graphics context, free the malloc’d block, etc. In
some sense, these proxy objects are the dual to stable pointers (Section 4.4):
they encapsulate a pointer from Haskell to some external world, while a stable
pointer encapsulates a pointer from the external world into Haskell.

Finalizers raise numerous subtle issues. For example, does it matter which
order finalizers run in, if several objects die “simultaneously” (whatever that
means)? The finalizer may need to refer to the object it is finalizing, which
presumably means “resurrecting” it from the dead. If the finalizer refers to the
object, might that keep it alive, thereby vitiating the whole effect? If not, how
does the finalizer get access to the object? How promptly do finalizers run? And
so on. [3] gives a useful overview of these issues, and a survey of implementations.

6.1 A Design for Finalizers

In our experience, applications that use weak pointers almost always require
some sort of finalization as well, so we have chosen to couple the two. We add
the following two new functions:

mkWeak :: k -> v -> Maybe (IO ()) -> IO (Weak v)
finalize :: Weak v -> IO ()

mkWeak is like mkSimpleWeak, except that it takes an extra argument, an op-
tional finalization action. The call (mkWeak k v (Just a)) has the following
semantics:

52 Simon Peyton Jones, Simon Marlow, and Conal Elliott

– If k becomes unreachable, the finalization action a is performed some time
afterwards. There is no guarantee of how soon afterwards, nor about the
order in which finalizers are run.

– Finalization of a weak object may be initiated at any time, by applying
finalize to it. The weak pointer object is immediately replaced by a tomb-
stone, and its finalizer (if it has one) is run. The finalize operation returns
only on completion of the finalizer.

– The finalization action a is guaranteed to be performed exactly once during
the run of the program, either when the programmer calls finalize, or some
time after k becomes unreachable, or at the end of the program run.

The mkSimpleWeak operation is implemented in terms of mkWeak, by passing
Nothing as the finalizer.

The finalization action a is simply an I/O action of type IO (). Here, for
example, is how one might arrange to automatically close a file that was no
longer required:

fopen :: String -> IO Handle
fopen filename
= do { hdl <- open filename

; mkWeak hdl () (Just (close hdl))
; return hdl
}

open :: String -> IO Handle
close :: Handle -> IO ()

Here, fopen uses open to open the file, and then calls mkWeak to attach a finalizer
to the handle returned by open. (In this case the second parameter of mkWeak
is irrelevant.) The finalizer (close hdl) is of type IO (); when hdl becomes
unreachable the finalizer is performed, which closes the file.

The following points are worth noticing about finalizers:

– In the fopen example, the finalizer refers to hdl. We are immediately faced
with a variant of the key/value problem for memo tables (Section 5.2). It
would be a disaster if the finalizer kept the key alive, which in turn would
ensure the finalizer never ran! We solve this simply by modifying the reach-
ability rule for weak pointers:
• The value and finalizer of a weak pointer object are reachable if the key

is reachable.
– Any value whatsoever (even a weak pointer object) can have a finalizer

attached in this way – this is called container-based finalization. It contrasts
with destructors in C++, which implement object-based finalization in which
the finalizer is part of the object’s definition.

– A value can have any number of finalizers attached, simply by making sev-
eral calls to mkWeak. (This is essential if (say) a key is entered in several
memo tables.) Each of the finalizers is run exactly once, with no guarantee
of relative order.

Stretching the Storage Manager: Weak Pointers and Stable Names in Haskell 53

– The program may discard the weak pointer object returned by mkWeak if it
isn’t required (as we did in the example above). The finalizer will still run
when the key becomes unreachable, but we won’t be able to call finalize
to run the finalizer early.

6.2 Implementing Finalization

Finalizers are relatively easy to implement. The weak pointer implementation of
Section 5.5 needs modification as follows:

1. Mark all the heap reachable from the roots.
2. Scan the Weak Pointer List. If a weak pointer object has a key that is

marked (i.e. is reachable), then mark all the heap reachable from its value
or its finalizer, and move the weak pointer object to a new list.

3. Repeat from step (2), until a complete scan of the Weak Pointer List finds
no weak pointer object with a marked key.

4. Scan the Weak Pointer List again. If the weak pointer object is reachable,
then tombstone it. If the weak pointer object has a finalizer, then move
it to the Finalization Pending List, and mark all the heap reachable from
the finalizer. If the finalizer refers to the key (and/or value), this step will
“resurrect” it.

5. The list accumulated in step (3) becomes the new Weak Pointer List. Mark
any unreachable weak pointer objects on this list as reachable.

Subsequent to garbage collection, a dedicated finalization thread successively
removes an item from the Finalization Pending List, and executes the finalizer.
The finalization thread runs pseudo-concurrently with the program; if a finalizer
shares state with the main program then suitable synchronisation must be used.
We use the primitives of Concurrent Haskell for this purpose [9].

7 Memo Tables with Finalization

In this section we bring together stable names, weak pointers and finalizers in
an implementation of a memo table that can purge itself of unneeded key/value
pairs, and also release itself when the memoized function is no longer reachable.
The implementation is given in Figure 3, and a diagram depicting the memo
table structure is given in Figure 4.

The memo table representation is identical to the one given in Section 5.4,
except that we now add a finalizer to each weak pointer in the table. When
invoked, the finalizer will remove its own entry from the memo table, allowing
the value (the memoized result of this computation) to be garbage collected.

This inadvertently creates a problem for garbage collecting the entire memo
table: since each finalizer now needs to refer to the memo table, and by the
reachability rule we gave for weak pointers with finalizers, this means that the
memo table is reachable if the key of any weak pointer in the table is reachable.

54 Simon Peyton Jones, Simon Marlow, and Conal Elliott

type MemoTable a b = SNMap a (Weak b)

memo :: (a -> b) -> a -> b

memo f =

let (tbl,weak) = unsafePerformIO (

do { tbl <- newSNMap

; weak <- mkWeak tbl tbl (Just (table_finalizer tbl))

; return (tbl,weak)

})

in memo’ f tbl weak

table_finalizer :: SNMap a (Weak b) -> IO ()

table_finalizer tbl =

do { pairs <- snMapElems tbl; sequence_ [finalize w | (_,w) <- pairs] }

memo’ :: (a -> b) -> MemoTable a b -> Weak (MemoTable a b) -> a -> b

memo’ f tbl weak_tbl arg = unsafePerformIO (

do { sn <- mkStableName arg

; lkp <- lookupSNMap tbl sn

; case lkp of

Nothing -> not_found

Just w -> do { maybe_val <- deRefWeak w

; case maybe_val of

Nothing -> not_found

Just val -> return val

}) }

where val = f arg

not_found =

do { weak <- mkWeak arg val (Just (finalizer sn weak_tbl))

; insertSNMap tbl sn val

; return val

}

finalizer :: StableName a -> Weak (MemoTable a b) -> IO ()

finalizer sn weak_tbl = do { r <- deRefWeak weak_tbl

; case r of

Nothing -> return ()

Just mvar -> removeSNMap tbl sn

}

Fig. 3. Full Memo Table Implementation

This is a disaster! Even if the memoized function dies, the memo table, including
all the cached values, will live on until all the keys become unreachable.

Stretching the Storage Manager: Weak Pointers and Stable Names in Haskell 55

Memo
Table

SN

Weak Table
Finalizer

Weak

n

ValueKey

Finalizer

Fig. 4. Full Memo Table Implementation

The solution, not unsurprisingly, is to use another weak pointer. If all the
finalizers refer to the memo table only through a weak pointer, we retain the
desired reachability behaviour for the memo table itself. If a running finalizer
finds that the memo table has already become unreachable, because deRefWeak
on the weak pointer to the table returns Nothing, then there’s no finalization to
do.

We also add a finalizer to the memo table (table_finalizer), which runs
through all the entries in the table calling finalize on each weak pointer. This
is important because it allows all the values to be garbage collected at the same
time as the table; without this finalizer, the values would live on until their
respective keys became unreachable.

7.1 Observations

We have deliberately cast the discussion in general terms, because we believe
that it illuminates a fundamental mis-match between traditional garbage collec-
tion and “push” applications. Solving the mis-match seems to require the full
generality of key/value weak pointers. An open question is whether key/value
weak pointers are “complete” (whatever that means), or whether some new ap-
plication may require something yet more complicated.

56 Simon Peyton Jones, Simon Marlow, and Conal Elliott

8 Related Work

We are not aware of any other published work on stable names, although it
seems likely that others have implemented similar mechanisms internally. Java’s
global and local references (part of the Java Native Interface, described in [6])
are similar to our stable pointers (Section 4.4) in that their primary function is to
allow Java objects to be passed to foreign functions, by providing an indirection
table and explicit freeing of references.

Weak pointers, on the other hand, are well known. Several language imple-
mentations include simple weak pointers, that is weak pointers that cannot ex-
press the key/value relationship and hence suffer from the problem we described
in Section 5.2. These include Smalltalk, T, Caml, Moscow ML, SML/NJ, and sev-
eral Scheme implementations. Java has no less than three kinds of weak pointer
[6]: Soft References allow objects to be reclaimed when memory is short, Weak
References are simple weak pointers, and Phantom References are a weaker form
of Weak Reference.

Ephemerons, described by Hayes [4], are very similar to our weak pointers.
They differ in subtle but important ways. First, the semantics of ephemerons
is described by presenting a tricky garbage collection algorithm (similar to that
in Section 5.5). We believe that our characterisation in terms of reachability is
much more useful for programmers. This is a presentational difference, but there
is a semantic difference too: the reachability rule for ephemerons is

– The value field of an ephemeron is reachable if both (a) the ephemeron (weak
pointer object) is reachable, and (b) the key is reachable.

This semantics is actually a little more convenient than ours for the memo-
table application, because it means there is no need to finalize the memo table
itself (Section 7). We chose our semantics (i.e. delete clause (a)) for several
reasons. First, it is simpler. Second, with the ephemeron semantics it is not clear
when the finalizer should be run. When the key becomes unreachable? When
the key and the ephemeron become unreachable? In fact, the choice made for
ephemerons is neither of these: the finalizer of an ephemeron is run only if (a)
the ephemeron is reachable and (b) the key is not. If the ephemeron itself is not
reachable, the finalizer is never run. This contrasts with our guarantee that each
finalizer is run precisely once.

Third, one can easily simulate the ephemeron reachability semantics with
ours, but the reverse is not possible. The following function simulates the
ephemeron semantics:

mkEphemeron :: k -> v -> Maybe (IO ()) -> IO (Weak v)
mkEphemeron k v f
= do { eph <- mkWeak k v f

; mkWeak eph () (Just (finalize eph))
; return eph
}

Stretching the Storage Manager: Weak Pointers and Stable Names in Haskell 57

The second call to mkWeak simply attaches a finalizer to the ephemeron, so that
if the ephemeron ever becomes unreachable it is finalized, thus breaking the key-
to-value link. This does not have the same finalization semantics as ephemerons
do, but whether that is a bug or a feature is debatable.

Finalizers have been the subject of heated debate on the gclist mailing list.
The conclusions of this debate, and of Hayes’s excellent survey [3], are that

– A programmer should not rely on finalizers running promptly. Promptness
is just too hard to guarantee. If promptness is required, then explicit final-
ization is indicated.

– No guarantees should be made about the order in which finalizers should
run.

Dybvig proposed guardians for Scheme [2], a sort of batched version of final-
izers. A (weak) pointer can be added to a guardian, and the guardian can be
queried to find out which of the objects it maintains have become inaccessible.
Dybvig also describes how to implement hash tables using guardians. The hash
table he describes is capable of purging old key/value pairs, but only on acti-
vation of the lookup function (i.e. not asynchronously), and it also suffers from
the key-in-value problem.

9 Conclusion

We have now described four mechanisms — unsafePerformIO, stable names,
weak pointers, and finalization — that collectively allow us to implement memo
tables in Haskell. If that were the sole application, we could be accused of overkill.
But each of the mechanisms has independent uses of its own, as we have already
indicated. What is surprising, perhaps, is that memo functions require such an
elaborate armoury.

Many readers, ourselves included, will have a queasy feeling by this stage.
What is left of the beauty of functional programming by the time all these
primitives have been added? How can the unspecified “proof obligations” of
unsafePerformIO be characterised and proved? Has the baby been thrown out
with the bath water? These are justifiable criticisms. The baby is indeed in
danger.

Our primary response is this: if we can simply provide a completely encap-
sulated implementation of memo, implemented as a primitive in (say) C, would
that have been better? Far from it! The same functionality would have to be
implemented, but with greater scope for error. Furthermore, it would take inter-
vention by the language implementors to modify or extend the implementation.
In any case, memo is but one of a whole raft of applications for the primitives we
have introduced. So, we regard the primitives of this paper as the raw material
from which experienced system programmers can construct beautiful abstractions.
We wish that it were possible for the primitives to themselves be beautiful ab-
stractions, but that aspiration seems to be beyond our reach.

58 Simon Peyton Jones, Simon Marlow, and Conal Elliott

So, our proposals have clear shortcomings. But the alternatives are worse.
We could eschew weak pointers, finalizers, etc etc, and thereby exclude an im-
portant and useful class of applications. Or we could keep their existence secret,
advertising only their acceptable face (such as memo). Instead, we have striven to
develop as precise a characterisation of our primitives as we can, warts and all.
We hope thereby to provoke a debate that may ultimately lead to new insights,
and a better overall design.

Acknowledgements

We would like to thank the following people for helpful comments on earlier
versions of this paper: Kevin Backhouse, Byron Cook, Barry Hayes, Fergus Hen-
derson, Richard Jones, Andrew Kennedy, Sven Panne, and Julian Seward.

References

1. B. Cook and J. Launchbury. Disposable memo functions. In Proceedings of the
1997 Haskell Workshop, 1997.

2. R. Dybvig, C. Bruggeman, and D. Elby. Guardians in a generation-based garbage
collector. In SIGPLAN Symposium on Programming Language Design and Imple-
mentation (PLDI’93), Albuquerque, pages 207–216, June 1993.

3. B. Hayes. Finalization in the collector interface. In Y. Bekkers and J. Co-
hen, editors, Proceedings of the International Workshop on Memory Management
(IWMM’92), St Malo, pages 277–298. Springer Verlag LNCS 637, Sept 1992.

4. B. Hayes. Ephemerons: a new finalization mechanism. In Proceedings ACM Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’97), pages 176–183. ACM, Oct 1997.

5. R. Hughes. Lazy memo-functions. In Proc Aspenas workshop on implementation
of functional languages, Feb 1985.

6. Java Software, Sun Microsystems, Inc., http://java.sun.com/docs/. Java Devel-
opment Kit 1.2 Documentation.

7. R. Keller and M. Sleep. Applicative caching. ACM Transactions on Programming
Languages and Systems, 8:88–108, Jan. 1986.

8. D. Lester. An efficient distributed garbage-collection algorithm. In Proc Parallel
Architectures and Languages Europe (PARLE), pages 207–223. Springer Verlag
LNCS 365, June 1989.

9. SL Peyton Jones, AJ Gordon, and SO Finne. Concurrent Haskell. In 23rd
ACM Symposium on Principles of Programming Languages, St Petersburg Beach,
Florida, pages 295–308. ACM, Jan 1996.

10. SL Peyton Jones and PL Wadler. Imperative functional programming. In
20th ACM Symposium on Principles of Programming Languages (POPL’93),
Charleston, pages 71–84. ACM, Jan 1993.

11. P. Trinder, K. Hammond, J. Mattson, A. Partridge, and S. P. Jones. GUM: a
portable parallel implementation of Haskell. In SIGPLAN Symposium on Pro-
gramming Language Design and Implementation (PLDI’96), Philadelphia. ApCM,
May 1996.

http://java.sun.com/docs/

	Introduction
	Memo Functions
	A Design for Memo Functions
	Variations on the Theme

	Benign Side Effects
	Stable Names
	Using Stable Names for Memo Tables
	Implementing Stable Names
	hashStableName
	Other Applications

	Weak Pointers
	Weak Pointers
	A Problem with Weak Pointers
	A New Design
	Memo Table Using Key/Value Weak Pointers
	Implementing Weak Pointers
	Other Applications

	Finalization
	A Design for Finalizers
	Implementing Finalization

	Memo Tables with Finalization
	Observations

	Related Work
	Conclusion

