
203

The Verse Calculus: A Core Calculus for Deterministic
Functional Logic Programming (Extended Version)

LENNART AUGUSTSSON, Epic Games, Sweden

JOACHIM BREITNER, Unaffiliated, Germany

KOEN CLAESSEN, Epic Games, Sweden

RANJIT JHALA, Epic Games, USA

SIMON PEYTON JONES, Epic Games, United Kingdom

OLIN SHIVERS, Epic Games, USA

GUY L. STEELE JR., Oracle Labs, USA
TIM SWEENEY, Epic Games, USA

Functional logic languages have a rich literature, but it is tricky to give them a satisfying semantics. In this

paper we describe the Verse calculus,VC, a new core calculus for deterministic functional logic programming.

Our main contribution is to equipVC with a small-step rewrite semantics, so that we can reason about a

VC program in the same way as one does with lambda calculus; that is, by applying successive rewrites to it.

We also show that the rewrite system is confluent for well-behaved terms.

This is an extended version (with appendices) of the paper in the Proceedings of the International Conference on

Functional Programming (2023).

CCS Concepts: • Theory of computation → Equational logic and rewriting; Proof theory; Rewrite

systems; Grammars and context-free languages; • Software and its engineering→ Syntax; Semantics;

Functional languages; Constraint and logic languages; Multiparadigm languages.

Additional Key Words and Phrases: choice operator, confluence, declarative programming, evaluation strategy,

even/odd problem, functional programming, lambda calculus, lenient evaluation, logic programming, logical

variables, normal forms, rewrite rules, skew confluence, substitution, unification, Verse calculus, Verse language

ACM Reference Format:

Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon Peyton Jones, Olin Shivers, Guy L.

Steele Jr., and Tim Sweeney. 2023. The Verse Calculus: A Core Calculus for Deterministic Functional Logic

Programming (Extended Version). Proc. ACM Program. Lang. 7, ICFP, Article 203 (August 2023), 80 pages.

https://doi.org/10.1145/3607845

1 INTRODUCTION
Functional logic programming languages add expressiveness to functional programming by intro-

ducing logical variables, equality constraints among those variables, and choice to allow multiple

Authors’ addresses: Lennart Augustsson, Epic Games, Sweden, lennart.augustsson@epicgames.com; Joachim Breitner,

Unaffiliated, Germany, mail@joachim-breitner.de; Koen Claessen, Epic Games, Sweden, koen.claessen@epicgames.com;

Ranjit Jhala, Epic Games, USA, ranjit.jhala@epicgames.com; Simon Peyton Jones, Epic Games, United Kingdom, simonpj@

epicgames.com; Olin Shivers, Epic Games, USA, olin.shivers@epicgames.com; Guy L. Steele Jr., Oracle Labs, USA, guy.

steele@oracle.com; Tim Sweeney, Epic Games, USA, tim.sweeney@epicgames.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/8-ART203

https://doi.org/10.1145/3607845

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

https://doi.org/10.1145/3607845
https://doi.org/10.1145/3607845

203:2 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

alternatives to be explored. Here is a tiny example:

∃x y z. x = ⟨y, 3⟩; x = ⟨2, z⟩; y

This expression introduces three logical (or existential) variables x, y, z, constrains them with two

equalities (x = ⟨y, 3⟩ and x = ⟨2, z⟩), and finally returns y. The only solution to the two equalities is

y =2, z=3, and x = ⟨2, 3⟩; so the result of the whole expression is 2.

Functional logic programming has a long history and a rich literature [Antoy and Hanus 2010].

But it is somewhat tricky for programmers to reason about functional logic programs: they must

think about logical variables, needed narrowing, unification, and the like. This contrasts with

functional programming, where one can say “just apply rewrite rules, such as β-reduction, let-

inlining, and case-of-known-constructor.” We therefore seek a precise expression of functional

logic programming as a term-rewriting system, to give us both a formal semantics (via small-step

reductions), and a powerful set of equivalences that programmers can use to reason about their

programs, and that compilers can use to optimize them.

We make two main contributions. Our first contribution is a new core calculus for functional

logic programming, the Verse calculus or VC for short (Section 2). Like any functional logic

language,VC supports logical variables, equalities, and choice, but it is distinctive in several ways:

• Natively higher order. VC directly supports higher-order functions, just like the lambda

calculus. Indeed, every lambda calculus program is aVC program. In contrast, most of the

functional logic literature is rooted in a first-order world, and addresses higher-order features

via an encoding called defunctionalization [Reynolds 1972; Hanus 2013, 3.3].

• Deterministic, with native encapsulation. VC is deterministic, in the sense that when an

expression yields more than one value (as is often the case in functional logic programs),

those values are returned in a well-specified order. This makes it easy to solve thenotoriously

tricky issue [Braßel et al. 2004a,b] of how to encapsulate the result of a search as a data

structure, using the all operator (see Section 2.6). It opens up a new approach to dealing with

so-called “flexible” vs. “rigid” variables (see Section 2.5). It supports an elegant economy of

concepts: for example, there is just one equality (other languages may have a suspending

equality and a narrowing equality), and conditional expressions are driven by failure rather

than booleans (see Section 2.5). On the other hand, it pretty much rules out laziness (see

Section 3.6) and parallel first-come first-returned search strategies. Most other functional-

logic languages (Curry [Hanus et al. 2016] is the brand leader in this design space) are

non-deterministic by design;VC explores a different (and less well-examined) part of the

design space.

Our second contribution is to equipVC with a small-step term-rewriting semantics (see Section 3).

We said that the lambda calculus is a subset of VC, so it is natural to give its semantics using

rewrite rules, just as for the lambda calculus. That seems challenging, however, because logical

variables and unification involve sharing and non-local communication. How can that be expressed

in a rewrite system?

Happily, we can build on prior work: exactly the same difficulty arises with call-by-need in

the lambda calculus. For a long time, the only semantics of call-by-need that was faithful to its

sharing semantics (in which thunks are evaluated at most once) was an operational semantics

that sequentially threads a global heap through execution [Launchbury 1993]. But then Ariola

et al., in a seminal paper, showed how to reify the heap into the term itself, and thereby build

a rewrite system that is completely faithful to lazy evaluation [Ariola et al. 1995]. Inspired by

their idea, we present a new rewrite system for functional logic programs that reifies logical

variables, unification, and choice into the term itself, and replaces non-deterministic search with

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:3

a (deterministic) tree of successful results. InVC the choices are “laid out in space” (in the syntax

of the term) rather than, as is more typical, “laid out in time” (via non-deterministic rewrites and

backtracking).

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:4 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Integers 𝑘

Variables 𝑥,𝑦, 𝑧, 𝑓 , 𝑔

Programs 𝑝 ::= one{e} where fvs(𝑒) = ∅
Expressions 𝑒 ::= v | 𝑒𝑞; e | ∃x . e | fail | e

1
e
2
| v

1
v
2
| one{e} | all{e}

𝑒𝑞 ::= e | v = e Note: “𝑒𝑞” is pronounced “expression or equation”

Values v ::= 𝑥 | hnf

Head values hnf ::= 𝑘 | 𝑜𝑝 | ⟨v
1
, ···, v

n
⟩ | _x . e

Primops 𝑜𝑝 ::= gt | add
Concrete syntax: “ ” and “;” are right-associative.

“=” binds more tightly than “;”.

“_” and “∃” each scope as far to the right as possible.

For example, (_y. ∃x . x =1; x + y) means (_y. (∃x . ((x =1); (x + y)))).
Parentheses may be used freely to aid readability and override default precedence.

fvs(e) means the free variables of e; inVC, _ and ∃ are the only binders.

Desugaring of extended expressions

e
1
+ e

2
means add⟨e

1
, e

2
⟩

e
1
> e

2
means gt⟨e

1
, e

2
⟩

∃x
1
x
2
··· x

n
. e means ∃x

1
. ∃x

2
. ···∃x

n
. e

x := e
1
; e

2
means ∃x . x = e

1
; e

2

e
1

e
2

means
†

f := e
1
; x := e

2
; f x f , x fresh

⟨e
1
, ···, e

n
⟩ means

†
x
1
:= e

1
; ···; x

n
:= e

n
; ⟨x

1
, ···, x

n
⟩ x

i
fresh

e
1
= e

2
means

‡
x := e

1
; x = e

2
; x x fresh

_⟨x
1
, ···, x

n
⟩. e means _p. ∃x

1
··· x

n
. p= ⟨x

1
, ···, x

n
⟩; e p fresh, n ⩾ 0

if (∃x
1
···x

n
. e

1
) then e

2
else e

3
means (one{(∃x

1
···x

n
. e

1
; _⟨⟩. e

2
) (_⟨⟩. e

3
)})⟨⟩

†
Apply this rule only if at least one of the e

i
is not a value v.

‡
Apply this rule only if either (i) e

1
is not a value v, or (ii) e

1
= e

2
is not to the left of a “;”.

Fig. 1. VC: Syntax

As an example of rewriting in action, the expression above can be rewritten as follows
1
:

∃x y z. x = ⟨y, 3⟩; x = ⟨2, z⟩; y −→{subst} ∃x y z. ⟨2, z⟩ = ⟨y, 3⟩; x = ⟨2, z⟩; y

−→{eqn-elim} ∃y z. ⟨2, z⟩ = ⟨y, 3⟩; y −→{u-tup} ∃y z. 2=y; z=3; y

−→{eqn-elim} ∃y. 2=y; y −→{hnf-swap} ∃y. y =2; y

−→{subst} ∃y. y =2; 2 −→{eqn-elim} 2

Rules may be applied anywhere they match, including under binders, again just like the lambda

calculus. This freedom only makes sense, however, if each term ultimately reduces to a unique

value, regardless of its reduction path, so we show thatVC is confluent, in Section 4.

As always with a calculus, the idea is thatVC distills the essence of (deterministic) functional

logic programming. Each construct does just one thing, andVC cannot be made smaller without

losing key features. We are working on Verse, a new general-purpose programming language, built

directly onVC; indeed, our motivation for developingVC is practical rather than theoretical. No

single aspect ofVC is unique, but we believe that their combination is particularly harmonious

and orthogonal. We discuss design alternatives in Section 5 and related work in Section 6.

1
The rule names after each arrow come from Fig. 3, to be discussed in Section 3; they are given here just for reference.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:5

2 THE VERSE CALCULUS, INFORMALLY
We begin by presenting the Verse calculus,VC, informally. We describe its rewrite rules precisely

in Section 3. The (abstract) syntax ofVC is given in Fig. 1. It has a very conventional sub-language

that is just the lambda calculus with some built-in operations and tuples as data constructors:

• Values. A value v is either a variable x or a head-normal form hnf. InVC, a variable counts
as a value because in a functional logic language an expression may evaluate to an as-yet-

unknown logical variable. A head-normal form is a conventional value: a built-in constant k,

an operator op, a tuple, or a lambda. Our tiny calculus offers only integer constants k and

two illustrative integer operators op, namely gt and add.

• Expressions e include values v, and applications v
1

v
2
; we will introduce the other constructs

as we go. For clarity, we often write v
1
(v

2
) rather than v

1
v
2
when v

2
is not a tuple.

• A term 𝑒𝑞 is either an ordinary expression e, or an equation v = e; this syntax ensures that

equations can only occur to the left of a “; ” (Section 2.1).

• A program, p, contains a closed expression from which we extract one result using one (see

Section 2.5)—unless the expression fails, in which case the program fails (Section 2.2).

The formal syntax for e allows only applications of values to values, (v
1

v
2
), but the desugaring

rules in Fig. 1 show how to desugar more applications (e
1

e
2
). This restriction is not fundamental;

it simply reduces the number of rewrite rules we need
2
.

Modulo this desugaring, every lambda calculus term is aVC term and has the same semantics.

Just like the lambda calculus,VC is untyped; adding a type system is an excellent goal but is the

subject of another paper.

Expressions also include two other key collections of constructs: logical variables with the use of

equations to perform unification (Section 2.1), and choice (Section 2.2). The details of choice and

unification, and especially their interaction, are subtle, so this section does a lot of arm-waving. But

fear not: Section 3 spells out the precise details. We only have space to describe one incarnation of

VC; Section 5 explores some possible alternative design choices.

2.1 Logical Variables and Equations
The Verse calculus includes first-class logical variables and equations that constrain their values. You

can bring a fresh logical variable into scope with ∃, constrain a value to be equal to an expression

with an equation v = e, and compose expressions in sequence with 𝑒𝑞; e (see Fig. 1). As an example,

what might be written let x = e
1
in e

2
in a conventional functional language can be written

∃x . x = e
1
; e

2
inVC. The syntax carefully constrains both the form of equations and where they

can appear: an equation (v = e) always equates a value v to an expression e; and an equation can

appear only to the left of a “; ” (see 𝑒𝑞 in Fig. 1). The desugaring rules in Fig. 1 rewrite a general

equation e
1
= e

2
(where e

1
is not a value) into equations of this simpler form.

A program executes by solving its equations, using the process of unification. For example,

∃x y z. x = ⟨y, 3⟩; x = ⟨2, z⟩; y

is solved by unifying x with ⟨y, 3⟩ and with ⟨2, z⟩; that in turn unifies ⟨y, 3⟩ with ⟨2, z⟩, which unifies
y with 2 and z with 3. Finally, 2 is returned as the result. Note carefully that, as in any declarative

language, logical variables are not mutable; a logical variable stands for a single, immutable value.

We use “∃” to bring a fresh logical variable into scope, because we really mean “there exists an x

such that . . . ”.

High-level functional languages usually provide some kind of pattern matching; in such a

language, we might define first by first⟨a, b⟩ =a. Such pattern matching is typically desugared to

2
This is a common pattern, often called “administrative normal form”, or ANF [Sabry and Felleisen 1992]

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:6 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

more primitive case expressions, but inVC we do not need case expressions: unification does the

job. For example we can define first like this:

first :=_p. ∃ab. p= ⟨a, b⟩; a

For convenience, we allow ourselves to write a term like first⟨2, 5⟩, where we define the library
function first separately with “:=”. Formally, you can imagine each example e being wrapped with a

binding for first, thus ∃first . first = ...; e, and similarly for other library functions.

This way of desugaring pattern matching means that the input to first is not required to be fully

determined when the function is called. For example:

∃x y. x = ⟨y, 5⟩; 2=first (x); y

Here first (x) evaluates to y, which we then unify with 2. Another way to say this is that, as usual

in logic programming, we may constrain the output of a function (here 2=first (x)), and thereby

affect its input (here ⟨y, 5⟩).
Although “;” is called “sequencing,” the order of that sequence is immaterial for equations that do

not contain choices (see Section 2.2 for the latter caveat). For example, consider (∃x y. x = 3 + y; y =

7; x). The sub-expression 3 + y is stuck until y gets a value. InVC, we can unify x only with a

value—we will see why in Section 2.2—and hence the equation x = 3+ y is also stuck. No matter! We

simply leave it and try some other equation. In this case, we can make progress with y = 7, and that

in turn unlocks x = 3 + y because now we know that y is 7, so we can evaluate 3 + 7 to 10 and unify

x with that. The idea of leaving stuck expressions aside and executing other parts of the program is

called residuation [Hanus 2013]
3
, and is at the heart of our mantra “just solve the equations.”

2.2 Choice
In conventional functional programming, an expression evaluates to a single value. In contrast,

a VC expression evaluates to zero, one, or many values; or it can get stuck, which is different

from producing zero values. The expression fail yields no values; a value v yields one value; and

the choice e
1

e
2
yields all the values yielded by e

1
followed by all the values yielded by e

2
. Order

is maintained and duplicates are not eliminated; we shall see why in Section 2.8. In short, an

expression yields a sequence of values, not a bag, and certainly not a set.

The equations we saw in Section 2.1 can fail, if the arguments are not equal, yielding no results.

Thus 3= 3 succeeds, while 3= 4 fails, returning no results. In general, we use “fail” and “returns no

results” synonymously.

What if the choice was not at the top level of an expression? For example, what does ⟨3, (7 5)⟩
mean? In VC, it does not mean a pair with some kind of multi-value in its second component.

Indeed, as you can see from Fig. 1, this expression is syntactically ill-formed. We must use the

desugaring rules of Fig. 1, which give a name to that choice, thus: ∃x . x = (7 5); ⟨3, x⟩. Now the

expression is syntactically legal, but what does it mean? In VC, a variable is never bound to a

multi-value. Instead, x is successively bound to 7, and then to 5, like this:

∃x . x = (7 5); ⟨3, x⟩ −→ (∃x . x =7; ⟨3, x⟩) (∃x . x =5; ⟨3, x⟩)
We duplicate the context surrounding the choice, and “float the choice outwards”. The same thing

happens when there are multiple choices. For example:

∃x y. x = (7 22); y = (31 5); ⟨x, y⟩ yields the sequence ⟨7, 31⟩, ⟨7, 5⟩, ⟨22, 31⟩, ⟨22, 5⟩
Notice that the order of the two equations now is significant:

∃x y. y = (31 5); x = (7 22); ⟨x, y⟩ yields the sequence ⟨7, 31⟩, ⟨22, 31⟩, ⟨7, 5⟩, ⟨22, 5⟩
3
Hanus did not invent the terms “residuation” and“narrowing,” but his survey is an excellent introduction and bibliography.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:7

Readers familiar with list comprehensions in Haskell and other languages will recognize this

nested-loop pattern, but here it emerges naturally from choice as a deeply built-in primitive, rather

than being a special construct for lists.

Just as we never bind a variable to a multi-value, we never bind it to fail either; rather we iterate

over zero values, and that iteration of course returns zero values. So:

∃x . x = fail; 33 −→ fail

2.3 Mixing Choice and Equations
In the last section, we discussed what happens if there is a choice in the right-hand side (RHS) of

an equation. What if we have equations under choice? For example:

∃x . (x =3; x + 1) (x =4; x + 4)
Intuitively, “either unify x with 3 and yield x + 1, or unify x with 4 and yield x + 4”. But there is
a problem: so far we have said only “a program executes by solving its equations” (Section 2.1).

Here, we can see two equations, (x =3) and (x =4), which are mutually contradictory, so clearly

we need to refine our notion of “solving.” The answer is pretty clear: in a branch of a choice, solve

the equations in that branch to get the values for some logical variables, and propagate those values

to occurrences in that branch (only). Occurrences of that variable outside the choice are unaffected.

We call this local propagation. This local-propagation rule would allow us to reason thus:

∃x . (x =3; x + 1) (x =4; x + 4) −→ ∃x . (x =3; 4) (x =4; 8)
Are we stuck now? No, we can float the choice out as before

4
,

∃x . (x =3; 4) (x =4; 8) −→ (∃x . x =3; 4) (∃x . x =4; 8)
and now it is apparent that the sole occurrence of x in each ∃ is the equation (x = 3), or (x = 4)
respectively; so we can drop the ∃ and the equation, yielding (4 8).

2.4 Pattern Matching and Narrowing
We remarked in Section 2.1 that we can desugar the pattern matching of a high-level language into

equations. But what about multi-equation pattern matching, such as this definition in Haskell:

append [] 𝑦𝑠 =𝑦𝑠

append (x : 𝑥𝑠) 𝑦𝑠 =x : append 𝑥𝑠 𝑦𝑠

If pattern matching on the first equation fails, we want to fall through to the second. Fortunately,

choice allows us to express this idea directly, where we use the empty tuple ⟨⟩ to represent the

empty list and pairs to represent cons cells (see Fig. 1 to desugar the pattern-matching lambda):

append :=_⟨𝑥𝑠,𝑦𝑠⟩. ((𝑥𝑠 = ⟨⟩; 𝑦𝑠) (∃x xr . 𝑥𝑠 = ⟨x, xr⟩; ⟨x, append⟨xr, 𝑦𝑠⟩⟩))
If 𝑥𝑠 is ⟨⟩, the left-hand choice succeeds, returning𝑦𝑠 ; and the right-hand choice fails (by attempting

to unify ⟨⟩ with ⟨x, xr⟩). If 𝑥𝑠 is of the form ⟨x, xr⟩, the right-hand choice succeeds, and we make a

recursive call to append. Finally, if 𝑥𝑠 is built with head-normal forms other than the empty tuple

and pairs, both choices fail, and append returns no results at all.

This approach to pattern matching is akin to narrowing [Hanus 2013]. Suppose single= ⟨1, ⟨⟩⟩,
a singleton list whose only element is 1. Consider the call ∃𝑧𝑠. append⟨𝑧𝑠, single⟩ = single; 𝑧𝑠 . The

call to append expands into a choice:

(𝑧𝑠 = ⟨⟩; single) (∃x xr . 𝑧𝑠 = ⟨x, xr⟩; ⟨x, append⟨xr, single⟩⟩)
4
Indeed, we could have done so first, had we wished.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:8 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

which amounts to exploring the possibility that 𝑧𝑠 is headed by ⟨⟩ or a pair—the essence of narrowing.
It should not take long to reassure yourself that the program evaluates to ⟨⟩, effectively running

append backwards in the classic logic-programming manner.

This example also illustrates thatVC allows an equation (for append) that is recursive. As in any

functional language with recursive bindings, you can go into an infinite loop if you keep fruitlessly

inlining the function in its own right-hand side. It is the business of an evaluation strategy to do

only rewrites that make progress toward a solution (Section 3.7).

2.5 Conditionals and one
Every source language will provide a conditional, such as if (x = 0) then e

2
else e

3
. But what is

the equality operator in (x =0)? One possibility, adopted by Curry [Antoy and Hanus 2021, §3.4],

is this: there is one “=” for equations (as in Section 2.1), and another, say “==”, for testing equality

(returning a boolean with constructors True and False). VC takes a different, more minimalist

position, following the lead of Icon (see Section 6.7). In VC, there is just one equality operator,

written “=” just as in Section 2.1. The expression if (x =0) then e
2
else e

3
tries to unify x with 0.

If that succeeds (yields one or more values), the if returns e
2
; otherwise it returns e

3
. There are no

data constructors True and False; instead failure (returning zero values) plays the role of falsity.

But something is terribly wrong here. Consider ∃x y. y = (if (x = 0) then 3 else 4); x = 7; y.

Presumably this is meant to set x to 7, test whether it is equal to 0 (it is not), and unify y with 4.

But what is to stop us instead unifying x with 0 (via (x =0)), unifying y with 3, and then failing

when we try to unify x with 7? Not only is that not what we intended, but it also looks very

non-deterministic: the result is affected by the order in which we did unifications.

To address this, we give if a special property: in the expression if e
1
then e

2
else e

3
, equations

inside e
1
(the condition of the if) can only unify variables bound inside e

1
; variables bound outside

e
1
are called “rigid.” So in our example, the x in (x = 0) is rigid and cannot be unified. Instead, the if

is stuck, and we move on to unify x =7. That unblocks the if and all is well.

In fact,VC desugars the three-part if into something simpler, the unary construct one{e}. Its
specification is this: if e fails, one{e} fails; otherwise one{e} returns the first of the values yielded
by e. Now, if e

1
then e

2
else e

3
can (nearly) be re-expressed like this:

one{(e
1
; e

2
) e

3
}

This isn’t right yet, but the idea is this: if e
1
fails, the first branch of the choice fails, so we get

e
3
; if e

1
succeeds, we get e

2
, and the outer one will select it from the choice. But what if e

2
or e

3

themselves fail or return multiple results? Here is a better translation, the one given in Fig. 1
5
, which

wraps the then and else branches within thunks
6
:

(one{(e
1
; (_⟨⟩. e

2
)) (_⟨⟩. e

3
)})⟨⟩

The argument of one reduces to either (_⟨⟩. e
2
) (_⟨⟩. e

3
) or (_⟨⟩. e

3
) depending on whether e

1

succeeds or fails, respectively; one then picks the first value, that is, _⟨⟩. e
2
if e

1
succeeded or _⟨⟩. e

3

if e
1
failed, and applies it to ⟨⟩. As a bonus, provided we do no evaluation under a lambda, then e

2

and e
3
will remain unevaluated until the choice is made, just as we expect from a conditional.

We use the same local-propagation rule for one that we do for choice (Section 2.3). This, together

with the desugaring for if into one, gives the “special property” of if described above.

5
The translation in the figure also allows variables bound in the condition to scope over the then branch.

6
Using thunks for the branches of a conditional is another very old idea; for example, see [Steele Jr. 1978, p. 54].

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:9

2.6 Tuples and all
The main data structure inVC is the tuple. A tuple is a finite sequence of values, ⟨v

1
, ···, v

n
⟩, where

𝑛 ⩾ 0. A tuple can be used like a function: indexing is simply function application with the argument

being integers from 0 and up. Indexing out of range is fail, as is indexing with a non-integer value.

For example, t := ⟨10, 27, 32⟩; t (1) reduces to 27 and t := ⟨10, 27, 32⟩; t (3) reduces to fail.

What if we apply a tuple to a choice, e.g., ⟨10, 27, 32⟩(1 0 1)? First we must desugar the appli-

cation to the form (v
1

v
2
), which is allVC permits (see Fig. 1), giving x := (1 0 1); ⟨10, 27, 32⟩(x),

which readily reduces to (27 10 27).
Tuples can be constructed by collecting all the results from a multi-valued expression, using the

all construct: if e reduces to (v
1
··· v

n
), where 𝑛 ⩾ 2, then all{e} reduces to the tuple ⟨v

1
, ···, v

n
⟩;

all{v} produces the singleton tuple ⟨v⟩; and all{fail} produces the empty tuple ⟨⟩. Note that is

associative, which means that we can think of a sequence or tree of binary choices as really being a

single 𝑛-way choice.

You might think that tuple indexing would be stuck until we know the index, but inVC, the
application of a tuple to a value rewrites to a choice of all the possible values of the index. For

example, t := ⟨10, 27, 32⟩; ∃i. t (i) looks stuck because we have no value for i, but this expression

actually rewrites (via rule app-tup in Section 3.1) to:

∃i. (i=0; 10) (i=1; 27) (i=2; 32)
which (as we will see in Section 3) simplifies to just (10 27 32). So all allows a choice to be reified
into a tuple, and (∃i. t (i)) allows a tuple to be turned back into a choice. The idea of rewriting a

call of a function with a finite domain into a finite choice is called “narrowing” in the literature.

Do we even need one as a primitive construct, given that we have all? Can we not use (all{e})(0)
instead of one{e}? Indeed, they behave the same if e fully reduces to finitely many choices of

values. But all really requires every arm of the choice tree to resolve to a value before proceeding,

while one only needs the first choice to be a value. So, supposing that loop is a non-terminating

function, one{1 loop⟨⟩} can reduce to 1, while (all{1 loop⟨⟩})(0) loops.

2.7 Programming in Verse
VC is a fairly small language, but it is quite expressive. For example, we can define the typical list

functions one would expect from functional programming by using the duality between tuples and

choices, as seen in Fig. 2. A tuple can be turned into choices by indexing with a logical variable i.

Conversely, choices can be turned into a tuple using all. The choice operator “ ” serves as both

cons and append for choices; the corresponding operations for tuples are defined in Fig. 2. Partial

functions, e.g., head, will fail when the argument is outside of the domain.

Mapping a multi-valued function over a tuple is somewhat subtle. With flatMap the choices are

flattened in the resulting tuple, e.g., flatMap⟨(_x . x x + 10), ⟨2, 3⟩⟩ reduces to ⟨2, 12, 3, 13⟩, whereas
map keeps the choices. For example:

map⟨(_x . x x + 10), ⟨2, 3⟩⟩ −→ ⟨(_x . x x + 10) (2), (_x . x x + 10) (3)⟩ −→
⟨2 12, 3 13⟩ −→ ⟨2, 3⟩ ⟨2, 13⟩ ⟨12, 3⟩ ⟨12, 13⟩

Pattern matching for function definitions is simply done by unification of ordinary expressions;

see the desugaring of pattern-matching lambda in Fig. 1. This in turn means that we can use

ordinary abstraction mechanisms for patterns. For example, here is a function, fcn, that could be

called as follows: fcn⟨88, 1, 99, 2⟩.
fcn(t) :=∃x y. t = ⟨x, 1, y, 2⟩; x + y

If we want to give a name to the pattern, it is simple to do so:

pat⟨v,w⟩ := ⟨v, 1,w, 2⟩; fcn(t) :=∃x y. t =pat⟨x, y⟩; x + y

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:10 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

head (𝑥𝑠) := 𝑥𝑠 (0)
tail(𝑥𝑠) := all{∃i. i > 0; 𝑥𝑠 (i)}

cons⟨x, 𝑥𝑠⟩ := all{x ∃i. 𝑥𝑠 (i)}
append⟨𝑥𝑠,𝑦𝑠⟩ := all{(∃i. 𝑥𝑠 (i)) (∃i. 𝑦𝑠 (i))}
flatMap⟨f , 𝑥𝑠⟩ := all{∃i. f (𝑥𝑠 (i))}

map⟨f , 𝑥𝑠⟩ := if x :=head (𝑥𝑠) then cons⟨f (x),map⟨f , tail(𝑥𝑠)⟩⟩ else ⟨⟩
filter ⟨p, 𝑥𝑠⟩ := all{∃i. x :=𝑥𝑠 (i); one{p(x)}; x}
find⟨p, 𝑥𝑠⟩ := one{∃i. x :=𝑥𝑠 (i); one{p(x)}; x}

some⟨p, 𝑥𝑠⟩ := one{∃i. p(𝑥𝑠 (i))}
zip⟨𝑥𝑠,𝑦𝑠⟩ := all{∃i. ⟨𝑥𝑠 (i), 𝑦𝑠 (i)⟩}

Desugaring of function definitions

f (x) := e means f :=_x . e

f ⟨x, y⟩ := e means f :=_⟨x, y⟩. e

Fig. 2. Functions on tuples, analogous to list or array functions in some other languages

Patterns are truly first-class, going well beyond what can be done with, say, pattern synonyms in

Haskell. For example, pat could be computed, like this:

pat⟨a, v,w⟩ := if a=0 then ⟨v, 1,w, 2⟩ else ⟨1, 1,w, v⟩
so that the pattern depends on the value of a.

2.8 For Loops
The expression for(e

1
) do e

2
will evaluate e

2
for each of the choices in e

1
, rather like a list compre-

hension in languages like Haskell or Python. The scoping is peculiar
7
in that variables bound in e

1

also scope over e
2
. So, for example, for(x := (2 3 5)) do (x + 1) will reduce to the tuple ⟨3, 4, 6⟩.

Like list comprehension, for supports filtering; inVC, this falls out naturally by just using a

possibly failing expression in e
1
. So, for(x := (2 3 5); x > 2) do (x + 1) reduces to ⟨4, 6⟩. Nested

iteration in a for works as expected and requires nothing special. So, for(∃x y. x = (10 20); y =

(1 2 3)) do (x + y) reduces to ⟨11, 12, 13, 21, 22, 23⟩.
Just as if is defined in terms of the primitive one (Section 2.5), we can define for in terms of the

primitive all. Again, we have to be careful when e
2
itself fails or produces multiple results; simply

writing all{e
1
; e

2
} would give the wrong semantics. So we put e

2
within a lambda expression, and

apply each element of the tuple to ⟨⟩ afterwards, using a map function (as defined in Fig. 2):

for(∃x
1
···x

n
. e

1
) do e

2
means v :=all{∃x

1
···x

n
. e

1
; _⟨⟩. e

2
}; map⟨_z. z⟨⟩, v⟩

for a fresh variable v. Note how this achieves that peculiar scoping rule: the initial variables in

∃x
1
···x

n
. e

1
are in scope in e

2
. Moreover, any effects (like being multi-valued) in e

2
will not affect

the choices defined by e
1
since the effects are contained within that lambda. So, for example,

for(x := (10 20)) do (x x + 1) will reduce to ⟨10, 20⟩ ⟨10, 21⟩ ⟨11, 20⟩ ⟨11, 21⟩. At this point,
it is crucial that the desugaring of for uses map, not flatMap.

Given that tuple indexing expands into choices, we can iterate over tuple indices and elements

using for. For example, for(∃i x . x = t (i)) do (x + i) produces a tuple with the elements of t, each

increased by its index within t. Notice the absence of the fencepost-error-prone iteration of i over

(0 . . size (t) − 1), common in most languages.

7
But similar to C++, Java, Fortress, and Swift, and explained in VC by the subsequent desugaring into all.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:11

3 REWRITE RULES
How can we give a precise semantics to a programming language? Here are some possibilities:

• A denotational semantics is the classical approach, but it is tricky to give a (perspicuous)

denotational semantics to a functional logic language because of the logical variables. We

have such a denotational semantics under development, which we offer for completeness in

Appendix E, but that is the subject of another paper.

• A big-step operational semantics typically involves explaining how a (heap, expression) start-

ing point evaluates to a (heap, value) pair; Launchbury’s natural semantics for lazy eval-

uation [Launchbury 1993] is the classic paper. The heap, threaded through the semantics,

accounts for updating thunks as they are evaluated. Despite its “operational semantics” title,

the big-step approach does not convey accurate operational intuition, because it goes all the

way to a value in one step.

• A small-step operational semantics addresses this criticism: it describes how an abstract

machine state (typically a (heap, expression, stack) triple) evolves, one small step at a time

(e.g., [Peyton Jones 1992]). The difficulty is that the description is now so low-level that it is

again hard to explain to programmers.

• A rewrite semantics steers a middle path between the mathematical abstraction of denotational

semantics and the over-concrete details of an operational semantics, whether big or small

step. For example, Ariola et al.’s “A call-by-need lambda calculus” [Ariola et al. 1995] shows

how to give the semantics of a call-by-need language as a set of rewrite rules. The great

advantage of this approach is that it is easily explicable to programmers. In fact, teachers

almost always explain the execution of Haskell or ML programs as a succession of rewrites

of the program, such as: inline this call, simplify this case expression, etc.

Up to this point, there has been no satisfying rewrite semantics for functional logic languages

(see Section 6 for previous work). Our main technical contribution is to fill this gap with a rewrite

semantics forVC, one that has the following properties:
• The semantics is expressed as a set of rewrite rules (Fig. 3). These rules apply to the core

language of Fig. 1, after all desugaring.

• Any rule can be applied, in either direction, anywhere in the program term (including under

lambdas).

• The rules are (mostly) oriented, with the intent that using them left-to-right makes progress.

• Despite this orientation, the rules do not say which rule should be applied where; that is the

task of a separate evaluation strategy (Section 3.7).

• The rules can be applied by programmers to reason about what their program does, and by

compilers to transform (and hopefully optimize) the program.

• There is no “magical rewriting” (Section 6.3): all the free variables on the right-hand side of a

rule are bound on the left.

3.1 Functions and Function Application Rules
Looking at Fig. 3, the rule for a primitive operator like addition, app-add, should be familiar: it simply

rewrites an application of add to integer constants. For example add⟨3, 4⟩ −→ 7. Rules app-gt and

app-gt-fail are more interesting: gt⟨k
1
, k

2
⟩ fails if 𝑘

1
⩽ 𝑘

2
(rather than returning False as is more

conventional), and returns k
1
otherwise (rather than returning True). An amusing consequence is

that (10 > x > 0) succeeds iff x is between 10 and 0 (comparison is right-associative).

An application of a primitive operator can rewrite only when its arguments are ground values;

an application like gt⟨x, 3⟩ or add⟨7, x⟩ is stuck awaiting a value for x, which may arrive later, by

substitution (Section 3.2). An ill-typed application, such as gt⟨3, _x . x⟩, is simply stuck forever.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:12 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Application:

app-add add⟨k
1
, k

2
⟩ −→ k

3
where 𝑘

3
= 𝑘

1
+ 𝑘

2

app-gt gt⟨k
1
, k

2
⟩ −→ k

1
if 𝑘

1
> 𝑘

2

app-gt-fail gt⟨k
1
, k

2
⟩ −→ fail if 𝑘

1
⩽ 𝑘

2

app-beta
𝛼 (_x . e) (v) −→ ∃x . x =v; e if 𝑥 ∉ fvs(v)

app-tup ⟨v
0
, ···, v

n
⟩(v) −→ ∃x . x =v; (x =0; v

0
) ··· (x =n; v

n
) fresh x ∉ fvs(v, v

0
, ···, v

n
)

app-tup-0 ⟨⟩(v) −→ fail

Unification:

u-lit k
1
=k

2
; e −→ e if 𝑘

1
= 𝑘

2

u-tup ⟨v
1
, ···, v

n
⟩ = ⟨v ′

1
, ···, v ′

n
⟩; e −→ v

1
=v
′
1
; ···; v

n
=v
′
n
; e

u-fail hnf
1
=hnf

2
; e −→ fail if u-lit, u-tup do not match

and neither hnf
1
nor hnf

2
is a lambda

u-occurs x =V [x]; e −→ fail if V ≠ □
subst 𝑋 [x =v; e] −→ (𝑋 {v/x}) [x =v; e{v/x}] if v ≠ V [x]
hnf-swap hnf =v; e −→ v =hnf ; e

var-swap y =x; e −→ x =y; e if x ≺ y

seq-swap 𝑒𝑞; x =v; e −→ x =v; 𝑒𝑞; e unless (𝑒𝑞 is y =v
′
and y ⪯ x)

Elimination:

val-elim v; e −→ e

exi-elim ∃x . e −→ e if x ∉ fvs(e)
eqn-elim ∃x . 𝑋 [x =v; e] −→ 𝑋 [e] if x ∉ fvs(𝑋 [e]) and v ≠ V [x]
fail-elim 𝑋 [fail] −→ fail

Normalization:

exi-float
𝛼 𝑋 [∃x . e] −→ ∃x . 𝑋 [e] if 𝑥 ∉ fvs(𝑋)

seq-assoc (𝑒𝑞; e
1
); e

2
−→ 𝑒𝑞; (e

1
; e

2
)

eqn-float v = (𝑒𝑞; e
1
); e

2
−→ 𝑒𝑞; (v = e

1
; e

2
)

exi-swap ∃x . ∃y. e −→ ∃y. ∃x . e

Choice:

one-fail one{fail} −→ fail

one-value one{v} −→ v

one-choice one{v e} −→ v

all-fail all{fail} −→ ⟨⟩
all-value all{v} −→ ⟨v⟩
all-choice all{v

1
··· v

n
} −→ ⟨v

1
, ···, v

n
⟩

choose-r fail e −→ e

choose-l e fail −→ e

choose-assoc (e
1

e
2
) e

3
−→ e

1
(e

2
e
3
)

choose SX [𝐶𝑋 [e
1

e
2
]] −→ SX [𝐶𝑋 [e

1
] 𝐶𝑋 [e

2
]]

Note: In the rules marked with a superscript 𝛼 , use 𝛼-conversion to satisfy the side condition.

Fig. 3. The Verse Calculus: Rewrite rules

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:13

Execution contexts 𝑋 ::= □ | v =𝑋 ; e | 𝑋 ; e | 𝑒𝑞; 𝑋
Value contexts 𝑉 ::= □ | ⟨v

1
, ···,V , ···, v

n
⟩

Scope contexts 𝑆𝑋 ::= one{SC} | all{SC}
𝑆𝐶 ::= □ | SC e | e SC

Choice contexts 𝐶𝑋 ::= □ | v =𝐶𝑋 ; e | 𝐶𝑋 ; e | ceq; 𝐶𝑋 | ∃x .𝐶𝑋

Choice-free exprs 𝑐𝑒 ::= v | ceq; ce | one{e} | all{e} | ∃x . ce | op(v)
𝑐𝑒𝑞 ::= ce | v = ce

Note: The □ in 𝑋 can only be an expression, not an equation.

Fig. 4. The syntax of contexts

Note that equality, written v = e, is not a primitive operator; it is a language construct, and

enjoys a rich set of built-in rewrite rules (see Section 3.2).

β-reduction is performed quite conventionally by app-beta; the only unusual feature is that on

the RHS of the rule, we use an ∃ to bind x, together with (x =v) to equate x to the argument. The

rule may appear to use call-by-value, because the argument is a value v, but remember that values

include variables, and a variable may be bound to an as-yet-unevaluated expression. For example:

∃y. y =3 + 4; (_x . x + 1) (y) −→ ∃y. y =3 + 4; ∃x . x =y; x + 1

Finally, the side condition 𝑥 ∉ fvs(v) in app-beta ensures that the ∃x does not capture any variables

free in v. If x appears free in v, α-conversion may be used on _x . e to rename x to 𝑦 ∉ fvs(v).
In VC, tuples behave like (finite) functions in which application is indexing. Rule app-tup

describes how tuple application works on non-empty tuples, while app-tup-0 deals with empty

tuples. Notice that app-tup does not require the argument to be evaluated to an integer 𝑘 ; instead

the rule works by narrowing. So the expression ∃x . ⟨2, 3, 2, 7, 9⟩(x) = 2; x does not suspend awaiting

a value for x; instead it explores all the alternatives (a form of narrowing), returning (0 2). This is
a free design decision: a suspending semantics would be equally easy to express.

3.2 Unification Rules
Next we study unification, again in Fig. 3. Rules u-lit and u-tup are the standard rules for unification,

going back nearly 60 years [Robinson 1965]. Rule u-fail makes unification fail (return zero results)

on two different head-normal forms (see Fig. 1 for the syntax of hnf), except that it gets stuck if

you attempt to unify a lambda with any other value, including itself. Why? Because equality of

functions is undecidable, so inVC we simply refuse to run a program that tries to do so, just as

we refuse to run gt⟨3, _x . x⟩ (see Section 3.1). This choice has consequences for confluence: see

Section 4.1.1.

The standard “occurs check” is rule u-occurs, which makes use of a context V , whose syntax is

given in Fig. 4. In general, a context [Felleisen and Friedman 1986; Felleisen et al. 1987] is a syntax

tree containing a single hole, written □. The notation V [v] is the term obtained by filling the hole

in V with v. For example, u-occurs reduces x = ⟨1, x, 3⟩; e to fail using the context V = ⟨1,□, 3⟩.
The key innovation in VC is the way bindings (that is, just ordinary equalities) of logical

variables are propagated. The key rule is:

subst 𝑋 [x =v; e] −→ (𝑋 {v/x}) [x =v; e{v/x}] if v ≠ V [x]

The rule says that if we have an equation (x =v), we can replace the occurrences of x by v within

the following expression and also within a surrounding context. This rule uses context 𝑋 (Fig. 4),

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:14 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

and uses the notation e{v/x} to mean “capture-avoiding substitution of v for x in e” (and similarly

𝑋 {v/x} to mean “capture-avoiding substitution of v for x in 𝑋 ”). There are several things to notice:

• subst fires only when the right-hand side of the equation is a value v, so that the substitution

does not risk duplicating either work or choices. This restriction is precisely the same as

the let-v rule of Ariola et al. [1995] and, by not duplicating choices, it neatly implements

so-called call-time choice [Hanus 2013]. We do not need a heap, or thunks, or updates; the

equalities of the program elegantly suffice to express the necessary sharing.

• subst replaces all occurrences of x in 𝑋 and e, but it leaves the original (x =v) undisturbed,
because 𝑋 might not be big enough to encompass all occurrences of x. For example, we can

rewrite (y = x + 1; (x = 3; x + 3)) to (y = x + 1; (x = 3; 3 + 3)), using 𝑋 =□, where the □ is

x =3; x + 3. But that leaves an occurrence of x in (y =x + 1). When there are no remaining

occurrences of x, we may eliminate the binding by using rule eqn-elim (see Section 3.4).

• The side condition v ≠ V [x] in subst avoids an overlap with u-occurs.

3.3 Swapping and Binding Order
Two rules allow the two sides of an equation to be swapped. Rule hnf-swap helps subst to fire by

putting the variable on the left. Rule var-swap, which swaps two variables, is needed for a more

subtle reason. Consider the following example expression, where a and b are bound within some

containing context, perhaps by lambdas. It can be rewritten in two different ways, where each

column is a reduction sequence starting from the same initial term:

∃x . x = ⟨a⟩; x = ⟨b⟩; x

−→{subst} ∃x . x = ⟨a⟩; ⟨a⟩ = ⟨b⟩; ⟨a⟩ −→{subst} ∃x . ⟨b⟩ = ⟨a⟩; x = ⟨b⟩; ⟨b⟩
−→{u-tup} ∃x . x = ⟨a⟩; a=b; ⟨a⟩ −→{u-tup} ∃x . b=a; x = ⟨b⟩; ⟨b⟩
−→{eqn-elim} a=b; ⟨a⟩ −→{eqn-elim} b=a; ⟨b⟩
−→{subst} a=b; ⟨b⟩ −→{subst} b=a; ⟨a⟩

The two sequences differ when it comes to which equation for x is chosen for subst in the first

step of each column. As you can see, they conclude with two terms that are “obviously” the same

semantically, but which are syntactically different. Rule var-swap allows them to be brought together

(for example, a= b; ⟨b⟩ −→{var-swap} b = a; ⟨b⟩ −→{subst} b = a; ⟨a⟩), so that the unification

rules can be syntactically confluent.

Rule seq-swap, which swaps adjacent equations within a sequence under certain conditions, is

needed for a similar reason. Consider this example:

c=a; c=b; c

−→{subst} c=a; a=b; a −→{subst} b=a; c=b; b

−→{var-swap} c=a; b=a; a −→{subst} b=a; c=a; a

Again, the concluding terms of the two columns are “obviously” the same (they differ only in the

order of the equations b=a and c=a); seq-swap allows one term to be rewritten to match the other,

making explicit our intuition that the order of equations of the form x = v should not matter.

Observe the mysterious side condition x ≺ y in rule var-swap, and a similar one in seq-swap. In

the overall proof of confluence, it turns out to be very helpful if the unification rules are terminating

(see Section 4.2). To achieve this, var-swap fires on y =x only if x’s binding occurs in the scope of y’s

binding, written x ≺ y, so that the innermost-bound variable ends up on the left. Similarly, the side

condition on seq-swap prevents it firing infinitely.

Other rules, notably exi-swap, may change this binding order and thereby re-enable var-swap or

seq-swap, but the unification rules considered in isolation are terminating and confluent, and that is

what we need for the proof (but see Section 5.1).

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:15

3.4 Elimination and Normalization Rules
Four elimination rules allow dead code to be dropped (Fig. 3): val-elim discards a value to the

left of a semicolon; exi-elim discards a dead existential; eqn-elim discards an existential ∃x that

binds a variable whose only occurrence is a single equation x = v; and fail-elim discards the

execution context surrounding a fail. Note that none of these rules, except fail-elim, discards an

unevaluated expression, because that expression might fail and we don’t want to “lose” that failure

(see Section 3.6). The exception is fail-elim, whose purpose is to propagate a known failure, so

losing some other failure that might have been in the discarded execution context does not matter.

Four normalization rules help to put the expression in a form that allows other rules to fire (Fig. 3):

exi-float allows an existential to float outwards; seq-assoc makes semicolon right-associated; eqn-

float moves work out of the right-hand side of an equation v = e. For example, we cannot use subst

to substitute for x in (x = (e; 3); x + 2), because the RHS of the x-equation is not a value; but we

can instead apply eqn-float to get e; x =3; x + 2, and now we can apply subst.

Rule exi-swap allows you to move an existential inward so that a dead equation can be eliminated

by eqn-elim. Rule exi-swap is unusual because it can be infinitely applied; avoiding that eventuality

is easily achieved by tweaking the evaluation strategy (Section 3.7).

Note that all these swapping and normalization rules preserve the left-to-right sequencing of

expressions, whichmatters because choices are made left-to-right, as we saw in Section 2.3. Moreover,

the rules do not float equalities or existentials out of choices: that restriction is the key to localizing

unification (Section 2.3) and to the flexible/rigid distinction of Section 2.5. For example, consider

the expression (y = ((x = 3; x + 5) (x = 4; x + 2)); ⟨x + 1, y⟩). We must not float the binding (x = 3)
up to a point where it might interact with the expression (x + 1), because the latter is outside the
choice, and a different branch of the choice binds x to 4.

3.5 Rules for Choice
The rules for choice are given in Fig. 3:

• Rules one-fail, one-value, and one-choice describe the semantics of one, as in Section 2.5.

• Similarly, all-fail, all-value, and all-choice describe the semantics of all (Section 2.6).

• Rules choose-r and choose-l eliminate fail, which behaves as an identity for choice.

• Rule choose-assoc associates choice to the right, so that one-choice or all-choice can fire.

(The dots on the left of all-choice should be read as a string of right-associated choices.)

The most interesting rule is choose, which, just as described in Section 2.2, “floats the choice

outwards,” duplicating the surrounding context. But what “surrounding context” precisely? We

use two new contexts, SX and 𝐶𝑋 , both defined in Fig. 4. A choice context 𝐶𝑋 is like an execution

context 𝑋 , but with no possible choices to the left of the hole:

𝐶𝑋 ::= □ | v =𝐶𝑋 | 𝐶𝑋 ; e | ce; 𝐶𝑋 | ∃x .𝐶𝑋

Here, ce is a guaranteed-choice-free expression (syntax in Fig. 4). This syntactic condition is

necessarily conservative; for example, a call f (x) is considered not guaranteed-choice-free because

it depends on what function f does. We must guarantee not to have choices to the left so that we

preserve the order of choices—see Section 2.3.

The context SX (Fig. 4) in choose ensures that 𝐶𝑋 is as large as possible. This is a very subtle

point: without this restriction we lose confluence. To see this, consider
8
:

∃x . (if (x > 0) then 55 else (44 2)); x =1; (77 99)
−→{subst} ∃x . (if (1 > 0) then 55 else (44 2)); x =1; (77 99)
−→{simplify if} ∃x . 55; x =1; (77 99) −→{val-elim, eqn-elim} 77 99

8
Remember, if is syntactic sugar for a use of one (see Section 2.5), but using if makes the example easier to understand.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:16 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

But suppose instead we floated the choice out partway, like this
9
:

∃x . (if (x > 0) then 55 else (44 2)); x =1; (77 99)
−→{Bogus choose} ∃x . (if (x > 0) then 55 else (44 2)); ((x =1; 77) (x =1; 99))

Now the (x = 1) is inside the choice branches, so we cannot use subst to substitute for x in the

condition of the if. Nor can we use choose again to float the choice further out because the if is not

guaranteed choice-free (in this example, the else branch has a choice). So, alas, we are stuck! Our

not-entirely-satisfying solution is to force choose to float the choice all the way to the top. The SX

context (Fig. 4) formalizes what we mean by “the top”: rule choose can float a choice outward only

when it becomes part of the choice tree (context SC) immediately under a one or all construct

(context SX).

Rule choose moves choices around; only one-choice and all-choice decompose choices. So choice

behaves a bit like a data constructor, or normal form, of the language. This contrasts with other

semantic approaches that eliminate choice by non-deterministically picking one branch or the

other, which immediately gives up confluence. However, in implementation terms, treating choice

a bit like a data constructor is the basis for pull-tabbing in logically-complete implementations of

non-deterministic functional logic languages like Curry [Antoy 2011].

3.6 The Verse Calculus is Lenient
VC is lenient [Schauser and Goldstein 1995], not lazy (call-by-need), nor strict (call-by-value).

Under lenient evaluation, functions can run before their arguments have a ground value (as in a

lazy language), but (almost) everything is eventually evaluated (as in a strict language).

VC cannot be lazy, because ofVC’s commitment to determinism and, particularly, its first-class

all operator. Consider:

all{∃x . x = e; 3}
In a lazy language like Curry, the expression ∃x . x = e; 3 would return one result, 3, regardless of e,

because x is unused, and so x = e is simply dead code. But inVC we must evaluate e, and the all

expression will yield a tuple with one element for each result yielded by e. If e fails (returns zero

results), then the result tuple is empty. Since all reifies these results into a tuple, the multiplicity of

results is visible to the context of the all expression, via the length of the returned tuple. Moreover,

consider

all{∃x, y. x = ((y = 3; 1) (y = 4; 2)); y}
InVC, the expression to which x is equated must be evaluated, yielding two values, 1 and 2, which

are then discarded since x is unused. However, each of these values is accompanied by a distinct

binding for y, so the result of the whole expression is the tuple ⟨3, 4⟩. In short, we must eventually

evaluate the expression to which x is equated not only to get the size of the tuple, but also the

values of its elements, via the bindings of y.

So it seems hard to reconcile laziness with a deterministic all. ButVC is not strict, either; in

VC a function can be called without its argument having a ground value. For example:

∃f . f = (_x . x = 3; x); ∃y. f (y)
Here we can call f on an uninstantiated existential variable y; we do not have to wait until y gets a

ground value from the calling context. Rather, in this example it is the body of f that then constrains

y to be 3. This is part of the essence of functional logic programming, and indeed inVC a variable is

a value (Fig. 1). When lenience was introduced in the data-flow language Id [Schauser and Goldstein

9
As in the previous example, here and elsewhere we freely rewrite terms that have not been fully desugared, but that is just

an expository aid; formally, the rewrite rules of Fig. 3 apply only to programs in the basic “Syntax” language of Fig. 1.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:17

1995], it was a way to get parallelism, and it certainly justifies parallelism in an implementation of

VC. But forVC lenience has semantic significance, too, as we see in this example.

So inVC functions can be called on as-yet-unevaluated arguments, but almost all redexes that

are not under a lambda get evaluated eventually. You can see this enforced in the rule for one in

Figure 3, which fires only when the first choice in the body is a value v, and similarly for all. Why

“almost” all redexes? Because the one operator returns the value of its first choice and abandons all

other choices. For example one{1 loop⟨⟩} returns 1, discarding the infinite loop⟨⟩.
Note that lenience, like laziness, supports abstraction in the presence of unification. For example,

we can replace an expression (x = ⟨y, 3⟩; y > 7) by
∃f . f = (_⟨p, q⟩. p= ⟨q, 3⟩; q > 7); f ⟨x, y⟩

Here, we abstract over the free variables of the expression and define a named function f . Calling

the function is just the same as writing the original expression. This transformation would not be

valid under call-by-value.

3.7 Evaluation Strategy
Any rewrite rule can apply anywhere in the term, at any time. For example, in the term (x =

3 + 4; y = 4 + 2; x + y) the rewrite rules do not say whether to rewrite 3 + 4→ 7 and then 4 + 2→ 6,

or the other way around. The rules do, however, require us to reduce 3 + 4→ 7 before substituting

for x in x + y, because rule subst fires only when the RHS is a value. The rewrite rules thereby

express semantics.

For example, in the lambda calculus, by changing the rewrite rule β to βV, we change the language

from call-by-name to call-by-value; by adding let, plus suitable rewrite rules, we can express call-

by-need [Ariola et al. 1995]. In VC, the rewrite rules are carefully crafted in a similar way; for

example, subst will substitute x =v only when the equation binds a variable to a value, rather like

βV in the lambda calculus. Similarly, the elimination rules never discard a term that could fail.

In any term there may of course be many redexes—that is good. An evaluation strategy answers

the question: given a closed term, which unique redex, out of the many possible redexes, should be

rewritten next to make progress toward the result? Let us call an evaluation strategy normalizing

if it guarantees to terminate if there is any terminating sequence of reductions—that is, if any

path terminates with a value, then a normalizing evaluation strategy will terminate with that

same value
10
. For example, in the pure lambda calculus, normal-order reduction, sometimes called

leftmost-outermost reduction, is a normalizing strategy.

ForVC, a first step towards a normalizing strategy is to avoid no-ops. For example, there is no

point in applying rule subst if x ∉ fvs(𝑒); nor in applying fail-elim if 𝑋 = □. Next, a normalizing

strategy must be careful with exi-swap, because it can easily apply infinitely; its role is to make it

possible to use exi-float. Dealing with these no-ops and flip-flops is not hard.

With that done, we believe that a fair outermost strategy is normalizing forVC: at each step,

just select any redex that is not within a lambda or another redex. That sounds easy, but is tricky

in practice for two reasons. First, a reduction may “unlock” a redex far to its left. For example,

consider (x + y; ⟨x, 3⟩ = ⟨2, y⟩; x). The (x + y) is not a redex, but the equation is; we can apply

unification to get (x = 2; y = 3), and then use substitution to rewrite the (x + y) to (2 + 3); and now

the (2 + 3) is a redex. Hence, a challenge for an implementation is to find the next redex efficiently.

Secondly, as with other functional-logic languages such as Curry, a normalizing strategy must be

able to pursue redexes within multiple subterms in parallel (or alternately), without starving any of

10
It would be even better if the strategy could guarantee to find the result in the minimal number of rewrite steps—so-called

“optimal reduction” [Asperti and Guerrini 1999; Lamping 1990; Lévy 1978]—but optimal reduction is typically very hard,

even in theory, and invariably involves reducing under lambdas, so for practical purposes it is well out of reach.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:18 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

them, hence “fair”. For example (loop⟨⟩; fail) and (fail; loop⟨⟩) should both fail, so a normalizing

strategy must, in both cases, avoid getting stuck in the loop.

We have not yet, however, formalized such a strategy forVC or proved it normalizing. We have

several prototype implementations ofVC, each involving an abstract machine with a stack, a heap,

a bunch of previously blocked computations, and so on. Exploring this design space is, however,

beyond the scope of this paper.

3.8 Logical Completeness
Our rewrite rules seek to implement the idea articulated in Section 2.1 that a program executes by

solving its equations, specifically by finding values for the logical variables that satisfy the equations.

Ideally, we would like to promise to find all substitutions for the logical variables that satisfy the

equations: this is logical completeness. Alas, in practice logical completeness is well out of reach, at

least in systems that support arithmetic. For example, consider ∃x . (x ∗ x ∗ x + 3 ∗ x − 8) = 0; x

(assuming a version ofVC extended to have a multiplication operator ∗ and subtraction operator −).
To solve this would require solving a cubic equation, and it is equally easy to express very difficult

problems such as Fermat’s last theorem. Moreover, remembering that VC is deterministic, in

what order would the (infinite sequence of) results of, say, ∃x . x + 1 be returned? So instead we

satisfy ourselves with a computable and deterministic approximation to this Platonic ideal, an

approximation that is described precisely by our rewrite rules, using unification as the mechanism.

Expressions that unification cannot solve, like the one above, are stuck; no rewrite rule applies. All

functional logic languages share this challenge to logical completeness.
11

The boundary between “stuck” and “soluble” can be quite subtle. Consider this tricky term:

∃x . x = if (x = 0; x > 1) then 33 else 55; x. At first we might think it was stuck—how can we

simplify the if when its condition mentions x, which is not yet defined? But in fact, rule subst

allows us to substitute locally in any 𝑋 -context surrounding the equation (x =0) thus:

∃x . x = if (x =0; x > 1) then 33 else 55; x

−→{subst} ∃x . x = if (x =0; 0 > 1) then 33 else 55; x

−→{app-gt-fail} ∃x . x = if (x =0; fail) then 33 else 55; x

−→{fail-elim} ∃x . x = if fail then 33 else 55; x

−→{simplify if} ∃x . x = 55; x −→{subst} ∃x . x = 55; 55 −→{eqn-elim} 55
Minor variants of the same example get stuck instead of reducing. For example, if we replace the

x = 0 with x = 100 then rewriting gets stuck, as the reader may verify (we cannot eliminate the

equation x =100); and yet there is a substitution that will satisfy the equations, namely {55/𝑥}. And
if we replace x =0 with x = 55, then rewriting again gets stuck; this time there is no substitution

that will satisfy the equations, and yet the expression gets stuck rather than failing.

3.9 Developing and Debugging Rules
The rules we describe here should both be able to transform a program to its value, and also

be confluent. To aid in the development of the rules, we have used several mechanized tools to

automate reduction, random test-case generation, and confluence checking. Initially, we used PLT

Redex [Felleisen et al. 2009], which is very easy to use but not very efficient. For better efficiency

we switched to a Haskell library for term rewriting. The library provides a DSL for writing rules,

and provides the infrastructure to apply the rules everywhere, detect cycles, provide traces, etc.

Some sample rewrite rules can be found in Fig. 5.

11
For countable domains, like the integers, or even the algebraic numbers—which would be adequate to solve our cubic

equation example—we could in theory simply try all possible values of x one by one; but that is hardly practical.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:19

rules lhs = "APP-ADD" ‘name‘ (do Op Add :@: Tup [Int k1, Int k2] ← [lhs]
pure (Int (k1 + k2)))

<> "EXI-SWAP" ‘name‘ (do EXI x (EXI y e) ← [lhs]
pure (EXI y (EXI x e)))

<> "EQN-ELIM" ‘name‘ (do EXI x a← [lhs]
(ctx, (Var x

′
:=: Val v) :>: e) ← execX a

guard (x =x
′ ∧ x ∉ free (ctx (v :>: e)))

pure (ctx e))
Fig. 5. Sample Haskell reduction rules

We used this infrastructure in two ways. First, we have a set of examples with known results,

against which we can test a potential rule set. Second, before beginning a proof of confluence, we

used QuickCheck [Claessen and Hughes 2000] to generate test cases and check them for confluence.

QuickCheck turned out to be invaluable at finding counterexamples to otherwise reasonable-looking

rules; it has run on the order of 100 million tests on the current rule set.

4 METATHEORY
The rules of our rewrite semantics can be applied anywhere, in any order; they give meaning to

programs without committing to a specific evaluation strategy. But then it had better be true that

no matter how the rules are applied, one always obtains the same result! That is, our rules should

be confluent. In this section, we describe our proof of confluence. Because the rule set is quite big

(compared, say, to the pure lambda calculus), this proof turns out to be a substantial undertaking.

Reductions and confluence.A binary relation is a set of pairs of related items. A reduction relation

R is the compatible closure
12
of any binary relation on a set of tree-structured terms, such as the

terms generated by some BNF grammar. We write R∗ for the reflexive transitive closure of R. We

write 𝑒 −→R 𝑒 ′ (𝑒 steps to 𝑒 ′) if (𝑒, 𝑒 ′) ∈ R and 𝑒 −→→R 𝑒 ′ (𝑒 reduces to 𝑒 ′) if (𝑒, 𝑒 ′) ∈ R∗. A reduction

relation R is confluent if whenever 𝑒 −→→R 𝑒
1
and 𝑒 −→→R 𝑒

2
, there exists an 𝑒 ′ such that 𝑒

1
−→→R 𝑒 ′ and

𝑒
2
−→→R 𝑒 ′. Confluence gives us the assurance that we will not get different results when choosing

different rules, or get stuck with some rules and not with others.

Normal forms and unicity. A term 𝑒 is an R-normal form if there does not exist any 𝑒 ′ such that

𝑒 −→R 𝑒 ′. Confluence implies uniqueness of normal forms (unicity): if 𝑒 −→→R 𝑒
1
and 𝑒 −→→R 𝑒

2
, and

𝑒
1
and 𝑒

2
are normal forms, then 𝑒

1
= 𝑒

2
[Barendregt 1984, Corollary 3.1.13(ii)].

4.1 Two Challenges to Confluence
Confluence is a purely syntactic property, which leads to two tiresome challenges.

4.1.1 Tiresome Challenge 1: Unifying Lambdas. InVC, an attempt to unify a lambda with another

value is stuck (Section 3.2). That choice has two consequences. One is easy to handle, one is tiresome.

First, while u-lit lets us eliminate equalities on the same literal k = k, VC has no analogous

u-var rule to drop equalities on the same variable x = x. To see why not, suppose we had such a

u-var rule, and consider the term (∃x . x = (_y. y); x =x; 0). If we first apply u-var to eliminate the

equality x =x, then the remainder reduces to 0. However, if we first subst the equality x = (_y. y),
we get ((_y. y) = (_y. y); 0), which is stuck. Therefore, to preserve confluence,VC has no rule

u-var: such equalities can be eliminated only after the value of x is substituted in and checked to

not be a lambda.

12
“Compatible closure” means that, for any context 𝐸 and any two terms𝑀 and 𝑁 , if (𝑀,𝑁) ∈ R then (𝐸 [𝑀], 𝐸 [𝑁]) ∈ R.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:20 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Second, the inability to fail when unifying different lambdas leads to non-confluence. Here is an

expression that rewrites in two different ways, depending on which equation we subst first:

(_p. 1) = (_q. 2); 1 ←←− ∃x . x = (_p. 1); x = (_q. 2); x ⟨⟩ −→→ (_q. 2) = (_p. 1); 2
These two outcomes cannot be joined. This non-confluence is tiresome because the program is

wrong anyway: we should not be attempting to unify lambdas.

4.1.2 Tiresome Challenge 2: Recursion and the Notorious Even/odd Problem. It is well known that

adding letrec to the lambda calculus makes it non-confluent, in a very tiresome, but hard-to-avoid,

way [Ariola and Blom 2002]. In our context, consider the term:

∃x y. x = ⟨1, y⟩; y = (_z. x); x −→→ ∃y. y = (_z. ⟨1, y⟩); ⟨1, y⟩ (1) substitute for x first

∃x y. x = ⟨1, y⟩; y = (_z. x); x −→→ ∃x . x = ⟨1, _z. x⟩; x (2) substitute for y first

The results of (1) and (2) have the same meaning (are indistinguishable by aVC context) but cannot

be joined by our rewrite rules. Nor is this easily fixed by adding new rules, as we did when we

added var-swap (Section 3.2) and seq-swap (Section 3.4). Why not? Because the terms are equivalent

only under some kind of graph isomorphism.

4.1.3 Resolving the Two Challenges. We explored three different ways to address these challenges.

The first is simply to abandon confluence as a goal altogether. Confluence is, after all, purely

syntactic, and hence much stronger than what we really need, which is only that each of our

rules be semantics-preserving. But that, of course, requires an independent notion of semantics,

a direction we sketch in Appendix E.

Second, we can simply exclude programs that unify lambdas, or that use recursion. To be precise:

• An equation is obviously problematic if either

– it is an equation of form hnf = _x . e or _x . e = hnf , or

– it is an equation of the form x =V [_y. e], where 𝑥 ∈ fvs(𝑒).
• A term 𝑒 is obviously problematic if it contains an obviously problematic equation.

• A term 𝑒 is problematic if there exists an obviously problematic term 𝑒 ′ such that 𝑒 −→→ 𝑒 ′.
• A term 𝑒 is well-behaved if it is not problematic.

Then we prove confluence only for well-behaved terms. We take this approach for our main proof

in this paper (Section 4.2). Excluding lambda unification is fine; programmers simply cannot expect

that to work. Excluding recursion may seem drastic, but no expressiveness is lost thereby: in our

untyped setting, one can still write recursive (and non-terminating) programs using one’s favorite

fixpoint combinator, such as Y or Z.

But excluding recursion is not entirely satisfying: it is hard to prove that a term has no recursion,

and it is clumsy to write recursive programs using only Y-combinators. Our third approach is to

adopt the idea of skew confluence [Ariola and Blom 2002], a clever technique developed specifically

to handle the even/odd problem; we give an overview of skew confluence in Section 4.3, and provide

details of our approach to a proof of skew confluence in Appendix D, with several new lemmas,

but we emphasize that the proof of skew confluence is not yet complete.

4.2 Proof of Confluence
Our main result is thatVC’s reduction rules are confluent for well-behaved terms. We sketch the

proof here, with full details in Appendix C(and relevant preliminaries in Appendix B).

Theorem 4.1 (Confluence). The reduction relation in Fig. 3 is confluent for well-behaved terms.

Proof sketch. Our proof strategy is to (1) divide the rules into groups for application, unification, etc.,

approximately as in Fig. 3, (2) prove confluence for each separately, and then (3) prove that their

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:21

combination is confluent via commutativity. Given two reduction relations 𝑅 and 𝑆 , we say that 𝑅

commutes with 𝑆 if for all terms 𝑒, 𝑒
1
, 𝑒

2
such that 𝑒 −→→𝑅 𝑒

1
and 𝑒 −→→𝑆 𝑒

2
there exists 𝑒 ′ such that

𝑒
1
−→→𝑆 𝑒 ′ and 𝑒

2
−→→𝑅 𝑒 ′. We prove each individual sub-relation is confluent and that they pairwise

commute. Then confluence of their union follows, using a theorem of Huet [1980]: If 𝑅 and 𝑆 are

confluent and commute, then 𝑅 ∪ 𝑆 is confluent. Proving confluence for application, elimination

and choice is easy: they all satisfy the diamond property—namely, that two different reduction steps

can be joined at a common term by a single step—which suffices to show the relations are confluent

[Barendregt 1984]. The diamond property itself can be verified easily by considering critical pairs

of transitions. The rules for unification and normalization, however, pose two problems.

The unification problem. The first problem is that the unification relation does not satisfy the

diamond property—it may needmultiple steps to join the results of two different one-step reductions.

For example, consider the term (x = ⟨1, y⟩; x = ⟨z, 2⟩; x = ⟨1, 2⟩; 3). The term can be reduced in one

step by substituting x in the third equation by either ⟨1, y⟩ or ⟨z, 2⟩. After this, it will take multiple

steps to join the two terms.

Following a well-trodden path in proofs of confluence for the λ-calculus (e.g., [Barendregt 1984]),

our proof of confluence for the unification rules works in two stages. First, we prove that the

reductions are locally confluent, meaning if 𝑒 single-steps to each of 𝑒
1
and 𝑒

2
, then 𝑒

1
and 𝑒

2
can be

joined at some 𝑒 ′ by taking multiple unification rule steps. Second, we prove that the unification

reductions are terminating, which relies upon eliminating recursion in tuples via u-occurs and in

lambdas via the well-behaved-ness condition. Newman’s Lemma [Huet 1980, Lemma 2.4] then

implies that the locally confluent, terminating unification relation is also confluent.

The normalization problem. The second problem is that the normalization rules do not commute

with the unification rules. Recall from Section 3.3 that the unification rules rely upon variable

ordering to orient equations between variables in a canonical fashion. The normalization rule

exi-swap can change the variable order and hence, its behavior is deeply intertwined with unification

and cannot be factored out via a commutativity argument. Instead, we prove that the union of

unification and normalization is confluent by showing that unification postpones after normalization

[Hindley 1964]; see Appendix C for the gory details.

4.3 Overview of Skew Confluence
We travel a path very similar to the one blazed by Ariola and her co-authors. Ariola and Klop

studied a form of the lambda calculus with an added letrec construct and determined (like us) that

their calculus was not confluent; then they added a specific constraint on recursive substitution

and proved that the modified calculus is confluent [Ariola and Klop 1994, 1997]. In a later paper,

Ariola and Blom proved that their calculus without the constraint, while not confluent, does obey a

weaker related property, which they invented, called skew confluence [Ariola and Blom 2002]. We

believe, and currently are trying to prove, thatVC without the pesky no-recursion side condition

of Theorem 4.1 is skew confluent.

Confluence: ∀e, e
1
, e

2
. e −→→R e

1
∧ e −→→R e

2
=⇒ ∃𝑒 ′. e

1
−→→R e

′ ∧ e
2
−→→R e

′
.

Skew confluence: ∀e, e
1
, e

2
. e −→→R e

1
∧ e −→→R e

2
=⇒ ∃𝑒 ′. e

1
−→→R e

′ ∧ e
2
⪯𝜔R e

′
.

These are depicted here as two commutative diagrams, which differ only on the bottom edge:

Confluence Skew confluence

𝑒 𝑒
1

𝑒
2

𝑒 ′

R
R R

R

𝑒 𝑒
1

𝑒
2

𝑒 ′

R
RR

⪯𝜔R

For each diagram, given e, e
1
, e

2
that obey

the relationships indicated by all the solid

lines, there exists e
′
such that all relationships

indicated by dotted lines are also satisfied.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:22 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

You can understand skew confluence as follows: if two different reduction paths from e produce

terms e
1
, e

2
, then e

1
can be further reduced to some e

′
such that all of e

2
’s permanent structure

is present in e
′
, written e

2
⪯𝜔R e

′
. By “permanent structure” we mean an outer shell of tuples,

lambdas, and constants, that will never change no matter how much further reduction takes place.

For example, however far we reduce the term ⟨1, _z. e⟩, the result will always look like ⟨1, _z. e′⟩,
where 𝑒 −→→R 𝑒 ′. We can formalize the notion of permanent structure by defining an information

content function 𝜔R (e) that replaces all the impermanent bits of e with a new dummy term Ω. Thus

𝜔R (⟨1, _z. x⟩) = ⟨1, _z.Ω⟩. Then e
2
⪯𝜔R e

′
if 𝜔R (e2) can be made equal to e

′
by replacing each

occurrence of Ω in 𝜔R (e2) with an (individually-chosen) term.

Consider the even-odd problem discussed in Section 4.1.2.

∃x y. x = ⟨1, y⟩; y =_z. x; x

−→→∃y. y =_z. ⟨1, y⟩; ⟨1, y⟩ −→→∃x . x = ⟨1, _z. x⟩; x

−→ ∃y. y =_z. ⟨1, y⟩; ⟨1, _z. ⟨1, y⟩⟩ −→ ∃x . x = ⟨1, _z. x⟩; ⟨1, _z. x⟩
−→ ∃y. y =_z. ⟨1, y⟩; ⟨1, _z. ⟨1, _z. ⟨1, y⟩⟩⟩ −→ ∃x . x = ⟨1, _z. x⟩; ⟨1, _z. ⟨1, _z. x⟩⟩
−→ · · · −→ · · ·

The two columns can never join up, but if you pick any term in either column, there is a term in

the other column that has at least as much permanent structure. That in turn means that the terms

in the left-hand column are contextually equivalent to those in the right-hand column, because the

context can inspect only the permanent structure. This contextual equivalence is the real reason

for seeking confluence in the first place.

InVC, the notion of permanent structure must be generalized from an outer shell of tuples, lamb-

das, and constants to a sequence (right-associative tree) of choices of such outer shells. For example,

however far we reduce the term ⟨68, _x . e
1
⟩ ⟨_y. e

2
, 57, _z. e

3
⟩ e

4
, the result will always look like

⟨68, _x . e′
1
⟩ ⟨_y. e′

2
, 57, _z. e′

3
⟩ e

′
4
, where 𝑒𝑘 −→→R 𝑒 ′

𝑘
for 1 ⩽ 𝑘 ⩽ 4; or ⟨68, _x . e′

1
⟩ ⟨_y. e′

2
, 57, _z. e′

3
⟩

if 𝑒
4
−→→R fail. In Appendix D we sketch our plan to adapt the proof strategy of Section 4.2 and

Appendix C for skew confluence.

5 VARIATIONS AND CHOICES
In a calculus likeVC, there is room for many design variations. We discuss some of them here.

5.1 Simplifying the Rules
The rules of Figure 3 are more complicated than we would like, because our proof of confluence

requires that the unification rules form a terminating rewrite system (Section 4.2). Tantalizingly,

we have found simpler versions of four of the unification and elimination rules that we believe are

equally expressive and still support (modified versions of) our proofs of termination and confluence:

subst
′

x =v; e −→ x =v; e{v/x} if v ≠ V [x]
var-swap

′
y =x; e −→ x =y; e (unconditionally)

seq-swap
′ 𝑒𝑞; x =v; e −→ x =v; 𝑒𝑞; e (unconditionally)

eqn-elim
′ ∃x . x =v; e −→ e if x ∉ fvs(v, e)

Each of these rules is simpler than its counterpart in Figure 3. In particular, rules subst
′
and eqn-

elim
′
need no context 𝑋 : instead, they rely on other rules (eqn-float and seq-swap

′
) to float the

equation of interest upward and to the left. Our testing framework (Section 3.9) has given us strong

confidence that the entire set of rules, with these four simplifications, remains confluent; actually

proving it confluent is work in progress. We speculate that these same simplifications will also

support a proof of skew confluence.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:23

5.2 Ordering and Choices
As we discussed in Section 3.5, rule choose is less than satisfying for two reasons. First, the 𝐶𝑋

context uses a conservative, syntactic analysis for choice-free expressions; and second, the SX

context is needed to force 𝐶𝑋 to be maximal. A rule like this would be more satisfying:

simpler-choose 𝐶𝑋 [e
1

e
2
] −→ 𝐶𝑋 [e

1
] 𝐶𝑋 [e

2
]

The trouble with this is that it may change the order of the results (Section 2.3). Another possibility

would be to accept that results may come out in the “wrong” order, but have some kind of sorting

mechanism to put them back into the “right” order. Something like this:

labeled-choose 𝐶𝑋 [e
1

e
2
] −→ 𝐶𝑋 [𝐿 ⊲ e

1
] 𝐶𝑋 [𝑅 ⊲ e

2
]

Here, the two branches are labeled with L and R. We can add new rules to reorder such labeled

expressions, something in the spirit of:

sort (𝑅 ⊲ e
1
) (𝐿 ⊲ e

2
) −→ (𝐿 ⊲ e

2
) (𝑅 ⊲ e

1
)

We believe this can be made to work, and it would allow more programs to evaluate, but it adds

unwelcome clutter to program terms, and the cure may be worse than the disease. However, the

idea inspired our denotational semantics (Appendix E.4), where it seems to work rather beautifully.

5.3 Generalizing one and all
InVC, we introduced one and all as the primitive choice-consuming operators, and neither is

more general than the other, as discussed in Section 2.6. We could have introduced a more general

operator split
13
as 𝑒 ::= · · · | split{e}⟨v

1
, v

2
⟩ and rules:

split-fail split{fail}⟨f , g⟩ −→ f ⟨⟩
split-value split{v}⟨f , g⟩ −→ g⟨v, _⟨⟩. fail⟩
split-choice split{v e}⟨f , g⟩ −→ g⟨v, _⟨⟩. e⟩

The intuition behind split is that it distinguishes a failing computation from one that returns at

least one value. If e fails, it calls f ; but if e returns at least one value, it passes that to g together

with the remaining computation, safely tucked away within a lambda. When adding more effects

toVC (see Appendix F), it is in fact crucial to use split to exactly control the order of effects.

Indeed, this is more general, as we can implement one and all with split:

one{e} ≡ f (x) := fail; g⟨x, y⟩ :=x; split{e}⟨f , g⟩
all{e} ≡ f (x) := ⟨⟩; g⟨x, y⟩ := cons⟨x, split{y⟨⟩}⟨f , g⟩⟩; split{e}⟨f , g⟩

For this paper, we stuck to the arguably simpler one and all, to avoid confusing the presentation

with these higher-order encodings, but there are no complications using split instead.

6 VC IN CONTEXT: REFLECTIONS AND RELATEDWORK
Functional logic programming has a rich literature; excellent starting points are the CACM review

article by Antoy and Hanus [2010] and the longer survey by Hanus [2013]. Now that we know

whatVC is, we can identify its distinctive features, and compare them to other approaches.

13
The name split was inspired by Kiselyov et al. [2005].

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:24 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

6.1 Choice and Non-determinism
A significant difference between our presentation and earlier works is our treatment of choice.

Consider an expression like (3+ (20 30)). Choice is typically handled by a pair of non-deterministic

rewrite rules:

e
1

e
2
−→ e

1
e
1

e
2
−→ e

2

So our expression rewrites (non-deterministically) to either (3 + 20) or (3 + 30), and that in turn

allows the addition to make progress. Of course, including non-deterministic choice means the

rules are non-confluent by construction. Instead, one must generalize to say that a reduction

does not change the set of results; in the context of lambda calculi, see for example Kutzner and

Schmidt-Schauß [1998]; Schmidt-Schauß and Machkasova [2008].

In contrast, our rules never pick one side or the other of a choice. And yet, (3 + (20 30))
can still make progress by floating out the choice (rule choose in Fig. 3), thus (3 + 20) (3 + 30).
In effect, choices are laid out in space (in the syntax of the term), rather than being explored by

non-deterministic selection. Rule choose is not a new idea: it is common in calculi with choice, see

e.g., de’Liguoro and Piperno [1995, Section 6.1] and Dal Lago et al. [2020, Section 3], and, more

recently, has been used to describe functional logic languages, where it is variously called bubbling

[Antoy et al. 2007] or pull-tabbing [Antoy 2011]. However, laziness imposes significant additional

complications, including the need to attach an identifier to each choice.

Recent work by Barenbaum et al. [2020, 2021] describes a functional logic calculus that, likeVC,
is just an extension of lambda calculus. They deal with lambda, existentials, choice, and equations

in a similar way toVC, but lack the all and one operators which are central toVC. As a result
they can always float choice up to the top level of the whole program, and indeed they do so in the

very structure of their terms.

6.2 One and all
Logical variables, choice, and equalities are present in many functional logic languages. However,

one and all are distinctive features ofVC, with the notable exception of Fresh, a very interesting

design introduced in a technical report nearly 40 years ago [Smolka and Panangaden 1985] that

also aims to unify functional and logical constructs. Fresh reifies choice into data via confinement

(corresponding to one) and collection (corresponding to all). However, Fresh differs fromVC in

crucial ways. First, it solves equations in a strictly left-to-right fashion, which means that it is not

lenient in the sense discussed in Section 3.6. Second, its semantics are presented in an operational

fashion with explicit stacks and heaps, in contrast to our focus on developing an equational account

of functional logic programming. Finally, Fresh appears not to have been implemented.

Several aspects of all and one are worth noting. First, all reifies choice (a control operator) into

a tuple (a data structure); for example, all{1 7 2} returns the tuple ⟨1, 7, 2⟩. In the other direction,

indexing turns a tuple into choice (for example, ∃i. ⟨1, 7, 2⟩(i) yields (1 7 2)). Other languages
can reify choices into a (non-deterministic) list, via an operator called bagof, or a mechanism called

set-functions in an extension of Curry [Antoy and Hanus 2021, Section 4.2.7], implemented in the

Kiel Curry System [Antoy and Hanus 2009; Braßel and Huch 2007, 2009]. But in Curry, this is

regarded as a somewhat sophisticated feature, whereas it is part of the foundational fabric ofVC.
Curry’s set-functions need careful explanation about sharing across non-deterministic choices

14
,

or what is “inside” and “outside” the set function, something that appears as a straightforward

consequence ofVC’s single rule choose.

Second, even under the reification of all, VC is deterministic. VC takes pains to maintain

order, so that when reifying choice into a tuple, the order of elements in that tuple is completely

14
Again, this complexity in Curry appears to be a consequence of laziness.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:25

determined. This determinism has a price: we have to take care to maintain the left-to-right order

of choices (see Section 2.3 and Section 3.5, for example). However, maintaining that order has

other payoffs. For example, it is relatively easy to add effects other than choice, including mutable

variables and input/output, to VC. To substantiate this claim, Appendix F gives the additional

syntax and rewrite rules for mutable variables.

Thirdly, one allows us to reify failure: to try something and take different actions depending on

whether or not it succeeds. Prolog’s “cut” operator [Clocksin and Mellish 2003, Chapter 4] has a

similar flavor, and Curry’s set-functions allow one to do the same thing.

Finally, one and all neatly encapsulate the idea of “flexible” vs. “rigid” logical variables. As we

saw in Section 2.5, logical variables bound outside one/all cannot be unified inside it; they are

“rigid.” This notion is nicely captured by the fact that equalities cannot float outside one and all

(Section 3.4).

6.3 The semantics of logical variables
Our logical variables, introduced by ∃, are often called extra variables in the literature, because they

are typically introduced as variables that appear on the right-hand side of a function definition, but

are not bound on the left. For example, in Curry we can write:

first x | x =:= (a,b) = a where a,b free

Here, a and b are logical variables, not bound on the left; they get their values through unification

(written “=:=”). In Curry, they are explicitly introduced by the “where a,b free” clause, while in
many other papers their introduction is implicit in the top-level rules, simply by not being bound on

the left. These extra variables (our logical variables) are at the heart of the “logic” part of functional

logic programming.

Constructor-based ReWrite Logic (CRWL) [González-Moreno et al. 1999] is the brand leader

for high-level semantics for non-strict, non-deterministic functional logic languages. CRWL is a

“big-step” rewrite semantics that rewrites a term to a value in a single step. López-Fraguas et al.

[2007] make a powerful case for instead giving the semantics of a functional logic language using

“small-step” rewrite rules, more like those of the lambda calculus, that successively rewrite the

term, one step at a time, until it reaches a normal form. Their paper does exactly this, and proves

equivalence to the CRWL framework. Their key insight (like us, inspired by Ariola et al. [1995]’s

formalization of the call-by-need lambda calculus) is to use let to make sharing explicit.

However, both CRWL and López-Fraguas et al. are in some ways too high level: they require

something we call magical rewriting. A key rewrite rule is this:

𝑓 (\ (𝑒
1
), . . . , \ (𝑒𝑛)) −→ \ (𝑟ℎ𝑠)

if (𝑒
1
, . . . , 𝑒𝑛) −→ 𝑟ℎ𝑠 is a top-level function binding, and

\ is a substitution mapping variables to closed values, s.t. 𝑑𝑜𝑚(\) = fvs(𝑒
1
, . . . , 𝑒𝑛, 𝑟ℎ𝑠)

The substitution for the free variables of the left-hand-side can readily be chosen by matching

the left-hand-side against the call. But the substitution for the extra variables on the right-hand

side must be chosen “magically” [López-Fraguas et al. 2007, Section 7] or clairvoyantly, so as to

make the future execution work out. This is admirably high-level because it hides everything about

unification, but it is not much help to a programmer trying to understand a program, nor is it

directly executable. In a subsequent journal paper, they refine CRWL to avoid magical rewriting by

using “let-narrowing” [López-Fraguas et al. 2014, Section 6]; this system looks rather different to

ours, especially in its treatment of choice, but is rather close in spirit.

To explain actual execution, the state of the art is described by Albert et al. [2005]. They give both

a big-step operational semantics (in the style of Launchbury [1993]), and a small-step operational

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:26 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

semantics. These two approaches both thread a heap through the execution, which holds the

unification variables and their unification state; the small-step semantics also has a stack, to specify

the focus of execution. The trouble is that heaps and stacks are difficult to explain to a programmer,

and do not make it easy to reason about program equivalence. In addition to this machinery, the

model is further complicated with concurrency to account for residuation.

In contrast, our rewrite rules give a complete, executable (i.e., no “magic”) account of logical

variables and choice, directly as small-step rewrites on the original program, rather than as the

evolution of a (heap, control, stack) configuration. Moreover, we have no problem with residuation.

The Escher language [Lloyd 1999] extends a Haskell-like functional base with logical (existentially

quantified) variables and constraints to yield an integration of functional and logical constructs,

and informally describes a rewriting based evaluation mechanism. However, the language does not

have the equivalent of one and allwhich reify choice as data, the rules are not precisely formalized,

and no confluence result is established for them.

Goffin [Chakravarty et al. 1998] also presents a way to extend a higher-order functional language

with existentially quantified logical variables. However, Goffin is rather different from VC in

that it falls in the tradition of Concurrent Constraint Programming [Saraswat and Rinard 1990],

where the constraints over logical variables are used to declare data dependencies as a means to

co-ordinate efficient concurrent execution of sub-computations, rather than in the tradition of

logic programming (andVC) where we seek to declare the properties of solutions. Consequently,

in Goffin, the logical variables are never “unified” but instead are “updated” as values are computed

in parallel, yielding a completely different model of computation.

6.4 Flat vs. Higher Order
When giving the semantics of functional logic languages, a first-order presentation is almost

universal. User-defined functions can be defined at top level only, and the names of functions are

syntactically distinguished from ordinary variables. As Hanus describes, it is possible to translate

a higher-order program into a first-order form using defunctionalization [Hanus 2013, Section 3.3]

and a built-in apply function. (Hanus does not mention this, but for a language with arbitrarily

nested lambdas, one would need to do lambda-lifting [Johnsson 1985] as well; this is perhaps a minor

point.) Sadly, this encoding is hardly a natural rendition of the lambda calculus, and it obstructs

the goal of using rewrite rules to explain to programmers how their program might behave. In

contrast, a strength of ourVC presentation is that it deals natively with the full lambda calculus.

6.5 Intermediate Language
Hanus’s Flat Language [Albert et al. 2005, Fig 1], FLC, plays the same role asVC: it is a small core

language into which a larger surface language can be desugared. There are some common features:

variables, literals, constructor applications, and sequencing (written hnf in FLC). However, it seems

thatVC has a greater economy of concepts. In particular, FLC has two forms of equality (==) and

(=:=), and two forms of case-expression, case and fcase. In each pair, the former suspends if

it encounters a logical variable; the latter unifies or narrows respectively. In contrast,VC has a

single equality (=), and the orthogonal one construct, to deal with all four concepts.

FLC has let-expressions (let x=e in b) whereVC uses ∃ and (again) unification. FLC also

uses the same construct for a different purpose, to bring a logical variable into scope, using the

strange binding x=x, thus (let x=x in e). In contrast, ∃x . e seems more direct.

6.6 Comparison with Various Functional Language Extensions to Datalog
Datalog [Ceri et al. 1989] in its purest form is a subset of Prolog [Clocksin and Mellish 2003; Warren

et al. 1977] that is carefully limited so that every Datalog program is guaranteed to terminate.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:27

Datalog variants are often used as database query languages and to concisely express fixpoint

computations on lattices (for example, static-analysis phases for compilers). Some of these variants

support functional programming while preserving the guarantee that every program terminates.

• Datafun [Arntzenius and Krishnaswami 2016] is perhaps closest in spirit to Verse in that it

supports higher-order functions as first-class values; it uses a strong type system to prohibit

testing functions for equality and to prohibit unbounded recursion.

• Flix [Madsen et al. 2016] makes it easy to work with arbitrary user-defined lattices; programs

are guaranteed to terminate as long as (a) all declared lattices are complete and of finite

height, and (b) all functions are strict and monotone. Functions are not first-class and their

use is syntactically restricted.

• QL [Avgustinov et al. 2016] has an object-oriented, class-based syntax that is then compiled

to pure Datalog; this allows the programmer to use inheritance to organize code on related

types of database records. In some cases what looks like a “method call” appears to produce

multiple values, but this is just a bit of syntactic sugar for expressing relations.

• Formulog [Bembenek et al. 2020] extends Datalog with a first-order functional language (a

subset of ML) and an SMT solver. Functions are not first-class; functions, predicates, and

variables have separate namespaces.

• Functional IncA [Pacak and Erdweg 2022] is a language that supports first-class higher-order

functions over sets and algebraic data types; this language is compiled to pure Datalog. The

compilation process eliminates first-class functions through defunctionalization. The paper

does not discuss an equality operator or whether it may be applied to functions.

None of these languages supports unbounded computation, a choice operator, or failure.

6.7 Comparison with Icon
There are many obvious similarities between Verse and the Icon programming language [Griswold

1979; Griswold and Griswold 1983, 2002; Griswold et al. 1979, 1981]:

• An expression can (successively) produce any number of values. An expression that produces

zero values is said to fail [Griswold et al. 1981, §3.1]; an expression that produces at least one

value is said to succeed.

• The expression e
1

e
2
produces all the values of e

1
followed by all the values of e

2
.

• There is a way to turn an array (or tuple) 𝑎 into a sequence of produced values. In Icon, this

is written !a [Griswold et al. 1979, §3]; in Verse, a?; inVC, ∃i. a(i).
• Most “scalar” operations (such as addition and comparisons) run through all possible combi-

nations of values of their operand expressions, using a specific left-to-right evaluation order

and automatic chronological backtracking.

• Success and failure are used in place of boolean values for control-structure purposes, just as

in Section 2.5.

• The “ ” construct is idiomatically used as a logical or operation [Griswold et al. 1979, §3].

• There is a control structure that executes a specified expression once for every value produced

by another expression. In Icon, this is every e
1
do e

2
and in Verse, it is written for(e

1
) do e

2
.

In each language, the “do e
2
” may be omitted to simply evaluate e

1
repeatedly until it has

yielded all its values. In Icon, every e may also be written as repeat e.

• It is impossible to name a generator (Icon) or choice (Verse); if e produces multiple values,

x := e will provide one value at a time from e to be named by variable x.

But there are also major differences. Icon was designed primarily to use expressions as generators

to automatically explore a combinatorial space of possibilities (“goal-directed evaluation”), and

secondarily to use success/failure rather than booleans to drive control structure. But in other

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:28 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

respects, Icon is a fairly conventional imperative language, relying on side effects (assignments)

to process the generated combinations. The designers judged that the interactions of such side

effects with completely unrestrained control backtracking would be difficult for programmers to

understand [Griswold et al. 1981, §3.1]; therefore, the design of Icon emphasizes limited scopes for

control backtracking and tools for controlling the backtracking process [Griswold et al. 1981, §3.3].

In contrast, Verse is a declarative language and avoids these difficulties by using a functional logic

approach rather than an imperative approach to processing generated combinations:

• While Icon typically processes multiple values from an expression by using assignment, Verse

typically processes multiple values by using equations (which are then solved).

• Verse also has a concise way to turn a finite sequence of multiple values into a tuple directly.

For example, to make variable a refer to an array containing all values generated by expression
e, code such as the following (using a repeat loop containing an assignment) is idiomatic in

Icon [Griswold et al. 1979, §8]:

a := array 0 string; i := 0; repeat a[i+] := e; close(a)
In Verse, a = for{e} does the job; inVC, a=all{e} is all it takes.
• Backtracking in Icon is “only control backtracking”; side effects, such as assignments, are not

undone [Griswold et al. 1981, §3.1].

• Both languages have an implicit “cut” (permanent acceptance of the first produced value)

after the predicate part of an if-then-else, but Icon furthermore has an implicit cut at each

statement end (semicolon or end of line) [Griswold et al. 1981, §3.1], each closing brace “}”,
and most keywords [Icon PC 1980].

7 LOOKING BACK, LOOKING FORWARD
We believe that this is the first presentation of a functional logic language as a deterministic rewrite

system. A rewrite system has the advantage (compared to more denotational, or more operational,

methods) that it is sufficiently low-level to capture the computational model of the language, and

yet sufficiently high-level to be illuminating to a programmer or compiler writer. Our focus on

rewriting as a way to define the semantics has forced us to focus on confluence, a syntactic property

that is stronger (and hence more delicate and harder to prove) than the contextual equivalence

that is all we really need. That in turn led us to study the elegant and ingenious notion of skew

confluence, which has been barely revisited during the last 20 years, but which we believe deserves

a wider audience.

We have much left to do. The full Verse language has statically checked types. In the dynamic

semantics, the types can be represented by partial identity functions—identity for the values of

the type, and fail otherwise. This gives a distinctive new perspective on type systems, one that

we intend to develop in future work. The full Verse language also has a statically checked effect

system, including both mutable references and input/output. All these effects must be transactional;

for example, when the condition of an if fails, any store effects in the condition must be rolled back.

We have preliminary reduction rules for references see Appendix F.

ACKNOWLEDGMENTS
We thank our colleagues for their helpful and specific feedback on earlier drafts of this paper,

including Jessica Augustsson, Francisco López-Fraguas, Andy Gordon, David Holz, Juan Rodríguez

Hortalá, John Launchbury, Dale Miller, Andy Pitts, Niklas Röjemo, Jaime Sánches-Hernández,

Andrew Scheidecker, Stephanie Weirich, and the anonymous ICFP reviewers. We are particularly

grateful to Michael Hanus, who helped us a great deal to positionVC more accurately in the rich

space of functional logic languages.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:29

REFERENCES
Elvira Albert, Michael Hanus, Frank Huch, Javier Oliver, and German Vidal. 2005. Operational semantics for declarative multi-

paradigm languages. Journal of Symbolic Computation 40, 1 (2005), 795–829. https://doi.org/10.1016/j.jsc.2004.01.001

Reduction Strategies in Rewriting and Programming special issue.

Sergio Antoy. 2011. On the Correctness of Pull-Tabbing. Theory and Practice of Logic Programming 11, 4-5 (July 2011),

713–730. https://doi.org/10.1017/S1471068411000263

Sergio Antoy, Daniel W. Brown, and Su-Hui Chiang. 2007. Lazy Context Cloning for Non-Deterministic Graph Rewriting.

Electronic Notes in Theoretical Computer Science 176, 1 (May 2007), 3–23. https://doi.org/10.1016/j.entcs.2006.10.026

Proceedings of the Third International Workshop on Term Graph Rewriting (TERMGRAPH 2006).

Sergio Antoy and Michael Hanus. 2009. Set Functions for Functional Logic Programming. In Proceedings of the 11th ACM

SIGPLAN Conference on Principles and Practice of Declarative Programming (Coimbra, Portugal) (PPDP ’09). Association

for Computing Machinery, New York, NY, USA, 73–82. https://doi.org/10.1145/1599410.1599420

Sergio Antoy and Michael Hanus. 2010. Functional Logic Programming. Commun. ACM 53, 4 (April 2010), 74–85.

https://doi.org/10.1145/1721654.1721675

Sergio Antoy and Michael Hanus. 2021. Curry: A Tutorial Introduction. Technical Report. Kiel University (Christian-

Albrechts-Universität zu Kiel). https://web.archive.org/web/20220121070135/https://www.informatik.uni-kiel.de/~curry/

tutorial/tutorial.pdf

Zena M. Ariola and Stefan Blom. 2002. Skew confluence and the lambda calculus with letrec. Annals of Pure and Applied

Logic 117, 1 (2002), 95–168. https://doi.org/10.1016/S0168-0072(01)00104-X

Zena M. Ariola and Jan Willem Klop. 1994. Cyclic lambda graph rewriting. In Proceedings of the Ninth Annual IEEE

Symposium on Logic in Computer Science (LICS ’94). IEEE, 416–425. https://doi.org/10.1109/LICS.1994.316066

Zena M. Ariola and Jan Willem Klop. 1997. Lambda Calculus with Explicit Recursion. Information and Computation 139, 2

(Dec. 1997), 154–233. https://doi.org/10.1006/inco.1997.2651

Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler. 1995. A Call-by-Need Lambda

Calculus. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San

Francisco, California, USA) (POPL ’95). Association for Computing Machinery, New York, NY, USA, 233246. https:

//doi.org/10.1145/199448.199507

Michael Arntzenius and Neelakantan R. Krishnaswami. 2016. Datafun: A Functional Datalog. In Proceedings of the 21st ACM

SIGPLAN International Conference on Functional Programming (Nara, Japan) (ICFP 2016). Association for Computing

Machinery, New York, NY, USA, 214–227. https://doi.org/10.1145/2951913.2951948

Andrea Asperti and Stefano Guerrini. 1999. The Optimal Implementation of Functional Programming Languages. Cambridge

University Press.

Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. 2016. QL: Object-oriented Queries on Relational

Data. In 30th European Conference on Object-Oriented Programming (ECOOP 2016) (Leibniz International Proceedings in

Informatics (LIPIcs)), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.), Vol. 56. Schloss Dagstuhl—Leibniz-Zentrum

für Informatik, Dagstuhl, Germany, 2:1–2:25. https://doi.org/10.4230/LIPIcs.ECOOP.2016.2

Pablo Barenbaum, Federico Lochbaum, and Mariana Milicich. 2020. Semantics of a Relational _-Calculus. In Theoretical

Aspects of Computing (ICTAC 2020), Violet Ka I Pun, Volker Stolz, and Adenilso Simao (Eds.). Springer International

Publishing, Cham, 242–261. https://doi.org/10.1007/978-3-030-64276-1_13

Pablo Barenbaum, Federico Lochbaum, and Mariana Milicich. 2021. Semantics of a Relational _-Calculus (Extended Version),

version 4. CoRR abs/2009.10929 (28 Feb. 2021), 51. arXiv:2009.10929 https://arxiv.org/abs/2009.10929

H. P. (Hendrik Pieter) Barendregt. 1984. The Lambda Calculus: Its Syntax and Semantics (revised ed.). Studies in Logic and

the Foundations of Mathematics, Vol. 103. North-Holland (Elsevier Science Publishers), Amsterdam.

Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2020. Formulog: Datalog for SMT-Based Static Analysis. Proc.

ACM Programming Languages 4, OOPSLA, Article 141 (Nov. 2020), 31 pages. https://doi.org/10.1145/3428209

Bernd Braßel, Michael Hanus, and Frank Huch. 2004a. Encapsulating Non-Determinism in Functional Logic Compu-

tations [extended journal version]. Journal of Functional and Logic Programming 2004, 6 (Dec. 2004), 28. http:

//danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2004/S04-01/A2004-06/JFLP-A2004-06.pdf Special Issue 1. Archived

at https://web.archive.org/web/20060505093657/http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2004/S04-01/

A2004-06/JFLP-A2004-06.pdf.

Bernd Braßel, Michael Hanus, and Frank Huch. 2004b. Encapsulating Non-Determinism in Functional Logic Computations

[workshop version]. In 13th International Workshop on Functional and (Constraint) Logic Programming (WFLP’04). 74–

90. Full proceedings available at http://www-i2.informatik.rwth-aachen.de/WFLP04/WFLP-proceedings.pdf. RWTH

Aachen, Department of Computer Science, Technical Report AIB-2004-05. Archived at https://web.archive.org/web/

20040713053113/http://www-i2.informatik.rwth-aachen.de/WFLP04/WFLP-proceedings.pdf.

Bernd Braßel and Frank Huch. 2007. On a Tighter Integration of Functional and Logic Programming. In 5th Asian Symposium

on Programming Languages and Systems (APLAS 2007) (LNCS 4807), Zhong Shao (Ed.). Springer-Verlag, Berlin, Heidelberg,

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

https://doi.org/10.1016/j.jsc.2004.01.001
https://doi.org/10.1017/S1471068411000263
https://doi.org/10.1016/j.entcs.2006.10.026
https://doi.org/10.1145/1599410.1599420
https://doi.org/10.1145/1721654.1721675
https://web.archive.org/web/20220121070135/https://www.informatik.uni-kiel.de/~curry/tutorial/tutorial.pdf
https://web.archive.org/web/20220121070135/https://www.informatik.uni-kiel.de/~curry/tutorial/tutorial.pdf
https://doi.org/10.1016/S0168-0072(01)00104-X
https://doi.org/10.1109/LICS.1994.316066
https://doi.org/10.1006/inco.1997.2651
https://doi.org/10.1145/199448.199507
https://doi.org/10.1145/199448.199507
https://doi.org/10.1145/2951913.2951948
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.1007/978-3-030-64276-1_13
https://arxiv.org/abs/2009.10929
https://doi.org/10.1145/3428209
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2004/S04-01/A2004-06/JFLP-A2004-06.pdf
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2004/S04-01/A2004-06/JFLP-A2004-06.pdf
https://web.archive.org/web/20060505093657/http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2004/S04-01/A2004-06/JFLP-A2004-06.pdf
https://web.archive.org/web/20060505093657/http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2004/S04-01/A2004-06/JFLP-A2004-06.pdf
http://www-i2.informatik.rwth-aachen.de/WFLP04/WFLP-proceedings.pdf
https://web.archive.org/web/20040713053113/http://www-i2.informatik.rwth-aachen.de/WFLP04/WFLP-proceedings.pdf
https://web.archive.org/web/20040713053113/http://www-i2.informatik.rwth-aachen.de/WFLP04/WFLP-proceedings.pdf

203:30 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

122–138. https://doi.org/10.1007/978-3-540-76637-7_9

Bernd Braßel and Frank Huch. 2009. The Kiel Curry System KiCS. In Applications of Declarative Programming and Knowledge

Management (LNAI 5437), Dietmar Seipel, Michael Hanus, and Armin Wolf (Eds.). Springer-Verlag, Berlin, Heidelberg,

195–205. https://doi.org/10.1007/978-3-642-00675-3_13

Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1989. What You Always Wanted to Know about Datalog (and Never Dared to

Ask). IEEE Transactions on Knowledge and Data Engineering 1, 1 (March 1989), 146–166. https://doi.org/10.1109/69.43410

A comprehensive survey with an extensive bibliography.

Manuel M.T. Chakravarty, Yike Guo, Martin Köhler, and Hendrik C.R. Lock. 1998. GOFFIN: Higher-order Functions Meet

Concurrent Constraints. Science of Computer Programming 30, 1 (June 1998), 157–199. https://doi.org/10.1016/S0167-

6423(97)00010-5

Jan Christiansen, Daniel Seidel, and Janis Voigtländer. 2011. An Adequate, Denotational, Functional-Style Semantics for

Typed FlatCurry. In Functional and Constraint Logic Programming: 19th International Workshop, WFLP 2010, Julio Mariño

(Ed.). Springer-Verlag, Berlin, Heidelberg, 119–136. https://doi.org/10.1007/978-3-642-20775-4_7

Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. In

Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (Montreal, Canada) (ICFP ’00).

Association for Computing Machinery, New York, NY, USA, 268–279. https://doi.org/10.1145/351240.351266

William F. Clocksin and Christopher S. Mellish. 2003. Programming in Prolog (Using the ISO Standard) (fifth ed.). Springer-

Verlag New York Berlin Heidelberg.

Ugo Dal Lago, Giulio Guerrieri, and Willem Heijltjes. 2020. Decomposing Probabilistic Lambda-Calculi. In Foundations of

Software Science and Computation Structures: 23rd International Conference (FoSSaCS’20) (LNCS 12077), Jean Goubault-

Larrecq and Barbara König (Eds.). Springer International, 136–156. https://doi.org/10.1007/978-3-030-45231-5_8

Ugo de’Liguoro and Adolfo Piperno. 1995. Nondeterministic Extensions of Untyped _-Calculus. Information and Computation

122, 2 (1995), 149–177. https://doi.org/10.1006/inco.1995.1145

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. 2009. Semantics Engineering with PLT Redex. MIT Press,

Cambridge, Massachusetts, USA. https://mitpress.mit.edu/9780262062756/semantics-engineering-with-plt-redex/

Matthias Felleisen and Daniel P. Friedman. 1986. Control Operators, the SECD Machine, and the _-Calculus. In Formal

Description of Programming Concepts III: Proceedings of the IFIP TC 2/WG 2.2 Working Conference (Ebberup, Denmark).

Elsevier Science Publishers (North-Holland), 193–217. https://web.archive.org/web/20220709064643/https://www.cs.

tufts.edu/~nr/cs257/archive/matthias-felleisen/cesk.pdf

Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce Duba. 1987. A Syntactic Theory of Sequential Control.

Theoretical Computer Science 52, 3 (1987), 205–237. https://doi.org/10.1016/0304-3975(87)90109-5

J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and M. Rodríguez-Artalejo. 1999. An approach to

declarative programming based on a rewriting logic. The Journal of Logic Programming 40, 1 (July 1999), 47–87.

https://doi.org/10.1016/S0743-1066(98)10029-8

Ralph E. Griswold. 1979. User’s Manual for the Icon Programming Language. Technical Report TR 78-14. Department of

Computer Science, University of Arizona. https://www2.cs.arizona.edu/icon/ftp/doc/tr78_14.pdf

Ralph E. Griswold and Madge T. Griswold. 1983. The Icon Programming Language. Prentice-Hall, Englewood Cliffs, New

Jersey.

Ralph E. Griswold and Madge T. Griswold. 2002. The Icon Programming Language (third ed.). Peer-to-Peer Communications.

https://web.archive.org/web/20040723085807/https://www2.cs.arizona.edu/icon/ftp/doc/lb1up.pdf

Ralph E. Griswold, David R. Hanson, and John T. Korb. 1979. The Icon Programming Language: An Overview. SIGPLAN

Notices 14, 4 (April 1979), 18–31. https://doi.org/10.1145/988078.988082

Ralph E. Griswold, David R. Hanson, and John T. Korb. 1981. Generators in Icon. ACM Trans. Programming Languages and

Systems 3, 2 (April 1981), 144–161. https://doi.org/10.1145/357133.357136

Michael Hanus. 2013. Functional Logic Programming: From Theory to Curry. In Programming Logics: Essays in Memory of

Harald Ganzinger, Andrei Voronkov and Christoph Weidenbach (Eds.). LNCS, Vol. 7797. Springer, Berlin, Heidelberg,

123–168. https://doi.org/10.1007/978-3-642-37651-1_6

Michael Hanus, Sergio Antoy, Bernd Braßel, Herbert Kuchen, Francisco J. López-Fraguas, Wolfgang Lux, Juan José Moreno

Navarro, Björn Peemöller, and Frank Steiner. 2016. Curry: An Integrated Functional Logic Language (Version 0.9.0).

Technical Report. University of Kiel. https://web.archive.org/web/20161020144634/https://www-ps.informatik.uni-

kiel.de/currywiki/_media/documentation/report.pdf

J. Roger Hindley. 1964. The Church-Rosser Property and a Result in Combinatory Logic. Ph.D. Dissertation. University of

Newcastle-upon-Tyne, United Kingdom.

Gérard Huet. 1980. Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems. J. ACM 27, 4

(Oct. 1980), 797–821. https://doi.org/10.1145/322217.322230

Icon PC 1980. Programming Corner from Icon Newsletter 4. https://www2.cs.arizona.edu/icon/progcorn/pc_inl04.htm

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

https://doi.org/10.1007/978-3-540-76637-7_9
https://doi.org/10.1007/978-3-642-00675-3_13
https://doi.org/10.1109/69.43410
https://doi.org/10.1016/S0167-6423(97)00010-5
https://doi.org/10.1016/S0167-6423(97)00010-5
https://doi.org/10.1007/978-3-642-20775-4_7
https://doi.org/10.1145/351240.351266
https://doi.org/10.1007/978-3-030-45231-5_8
https://doi.org/10.1006/inco.1995.1145
https://mitpress.mit.edu/9780262062756/semantics-engineering-with-plt-redex/
https://web.archive.org/web/20220709064643/https://www.cs.tufts.edu/~nr/cs257/archive/matthias-felleisen/cesk.pdf
https://web.archive.org/web/20220709064643/https://www.cs.tufts.edu/~nr/cs257/archive/matthias-felleisen/cesk.pdf
https://doi.org/10.1016/0304-3975(87)90109-5
https://doi.org/10.1016/S0743-1066(98)10029-8
https://www2.cs.arizona.edu/icon/ftp/doc/tr78_14.pdf
https://web.archive.org/web/20040723085807/https://www2.cs.arizona.edu/icon/ftp/doc/lb1up.pdf
https://doi.org/10.1145/988078.988082
https://doi.org/10.1145/357133.357136
https://doi.org/10.1007/978-3-642-37651-1_6
https://web.archive.org/web/20161020144634/https://www-ps.informatik.uni-kiel.de/currywiki/_media/documentation/report.pdf
https://web.archive.org/web/20161020144634/https://www-ps.informatik.uni-kiel.de/currywiki/_media/documentation/report.pdf
https://doi.org/10.1145/322217.322230
https://www2.cs.arizona.edu/icon/progcorn/pc_inl04.htm

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:31

Thomas Johnsson. 1985. Lambda lifting: Transforming programs to recursive equations. In Functional Programming

Languages and Computer Architecture, Jean-Pierre Jouannaud (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

190–203.

Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, and Amr Sabry. 2005. Backtracking, interleaving, and terminating

monad transformers: (functional pearl). In Proceedings of the 10th ACM SIGPLAN International Conference on Functional

Programming, ICFP 2005, Tallinn, Estonia, September 26-28, 2005, Olivier Danvy and Benjamin C. Pierce (Eds.). ACM,

192–203. https://doi.org/10.1145/1086365.1086390

Arne Kutzner and Manfred Schmidt-Schauß. 1998. A Non-Deterministic Call-by-Need Lambda Calculus. In Proceedings of

the Third ACM SIGPLAN International Conference on Functional Programming (Baltimore, Maryland, USA) (ICFP ’98).

Association for Computing Machinery, New York, NY, USA, 324–335. https://doi.org/10.1145/289423.289462

John Lamping. 1990. An Algorithm for Optimal Lambda Calculus Reduction. In Proceedings of the 17th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (San Francisco, California, USA) (POPL ’90). Association for

Computing Machinery, New York, NY, USA, 16–30. https://doi.org/10.1145/96709.96711

John Launchbury. 1993. A Natural Semantics for Lazy Evaluation. In Proceedings of the 20th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (Charleston, South Carolina, USA) (POPL ’93). Association for

Computing Machinery, New York, NY, USA, 144–154. https://doi.org/10.1145/158511.158618

Jean-Jacques Lévy. 1976. An Algebraic Interpretation of the _𝛽K-Calculus; and an Application of a Labelled _-Calculus.

Theoretical Computer Science 2, 1 (June 1976), 97–114. https://doi.org/10.1016/0304-3975(76)90009-8

Jean-Jacques Lévy. 1978. Réductions Correctes et Optimales dans le Lambda-calcul. Ph.D. Dissertation. Université Paris vii.

https://web.archive.org/web/20051016053439/http://pauillac.inria.fr/~levy/pubs/78phd.pdf

John W. Lloyd. 1999. Programming in an Integrated Functional and Logic Language. Journal of Functional and Logic

Programming 1999, 3 (March 1999). http://danae.uni-muenster.de/lehre/kuchen/JFLP//articles/1999/A99-03/JFLP-A99-03.

pdf Archived at https://web.archive.org/web/20040627000956/http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/

1999/A99-03/JFLP-A99-03.pdf. Also available at https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=

31d9a554f61ced1304ecd0ded9fca6fee2173b99.

Francisco Javier López-Fraguas, Enrique Martin-Martin, Juan Rodríguez-Hortalá, and Jaime Sánchez-Hernández. 2014.

Rewriting and narrowing for constructor systems with call-time choice semantics. Theory and Practice of Logic pro-

gramming 14, 2 (March 2014), 165–213. https://doi.org/doi:10.1017/S1471068412000373 Published online on 30 October

2012.

Francisco J. López-Fraguas, Juan Rodríguez-Hortalá, and Jaime Sánchez-Hernández. 2007. A Simple Rewrite Notion for

Call-Time Choice Semantics. In Proceedings of the 9th ACM SIGPLAN International Conference on Principles and Practice

of Declarative Programming (Wroclaw, Poland) (PPDP ’07). Association for Computing Machinery, New York, NY, USA,

197–208. https://doi.org/10.1145/1273920.1273947

Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. 2016. From Datalog to Flix: A Declarative Language for Fixed Points

on Lattices. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Santa Barbara, California, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 194–208.

https://doi.org/10.1145/2908080.2908096

André Pacak and Sebastian Erdweg. 2022. Functional Programming with Datalog. In 36th European Conference on Object-

Oriented Programming (ECOOP 2022) (Leibniz International Proceedings in Informatics (LIPIcs)), Karim Ali and Jan Vitek

(Eds.), Vol. 222. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 7:1–7:28. https://doi.org/10.

4230/LIPIcs.ECOOP.2022.7

Simon L. Peyton Jones. 1992. Implementing Lazy Functional Languages on Stock Hardware: The Spineless Tagless G-

machine. Journal of Functional Programming 2, 2 (April 1992), 127–202. https://doi.org/10.1017/S0956796800000319 Also

available at https://www.microsoft.com/en-us/research/publication/implementing-lazy-functional-languages-on-stock-

hardware-the-spineless-tagless-g-machine/.

John C. Reynolds. 1972. Definitional Interpreters for Higher-Order Programming Languages. In Proceedings of the ACM

Annual Conference—Volume 2 (Boston, Massachusetts, USA) (ACM ’72). Association for Computing Machinery, New York,

NY, USA, 717–740. https://doi.org/10.1145/800194.805852

J. A. Robinson. 1965. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12, 1 (Jan. 1965), 23–41.

https://doi.org/10.1145/321250.321253

Amr Sabry and Matthias Felleisen. 1992. Reasoning about Programs in Continuation-Passing Style. In Proceedings of the

1992 ACM Conference on LISP and Functional Programming, LFP ’92. ACM.

Vijay A. Saraswat and Martin C. Rinard. 1990. Concurrent Constraint Programming. In Proceedings of the 17th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco, California, USA) (POPL ’90),

Frances E. Allen (Ed.). ACM Press, 232–245. https://doi.org/10.1145/96709.96733

Klaus E. Schauser and Seth C. Goldstein. 1995. How Much Non-strictness Do Lenient Programs Require?. In Proceedings of

the Seventh International Conference on Functional Programming Languages and Computer Architecture (La Jolla, California,

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

https://doi.org/10.1145/1086365.1086390
https://doi.org/10.1145/289423.289462
https://doi.org/10.1145/96709.96711
https://doi.org/10.1145/158511.158618
https://doi.org/10.1016/0304-3975(76)90009-8
https://web.archive.org/web/20051016053439/http://pauillac.inria.fr/~levy/pubs/78phd.pdf
http://danae.uni-muenster.de/lehre/kuchen/JFLP//articles/1999/A99-03/JFLP-A99-03.pdf
http://danae.uni-muenster.de/lehre/kuchen/JFLP//articles/1999/A99-03/JFLP-A99-03.pdf
https://web.archive.org/web/20040627000956/http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1999/A99-03/JFLP-A99-03.pdf
https://web.archive.org/web/20040627000956/http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1999/A99-03/JFLP-A99-03.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=31d9a554f61ced1304ecd0ded9fca6fee2173b99
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=31d9a554f61ced1304ecd0ded9fca6fee2173b99
https://doi.org/doi:10.1017/S1471068412000373
https://doi.org/10.1145/1273920.1273947
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.4230/LIPIcs.ECOOP.2022.7
https://doi.org/10.4230/LIPIcs.ECOOP.2022.7
https://doi.org/10.1017/S0956796800000319
https://www.microsoft.com/en-us/research/publication/implementing-lazy-functional-languages-on-stock-hardware-the-spineless-tagless-g-machine/
https://www.microsoft.com/en-us/research/publication/implementing-lazy-functional-languages-on-stock-hardware-the-spineless-tagless-g-machine/
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/96709.96733

203:32 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

USA) (FPCA ’95). Association for Computing Machinery, New York, NY, USA, 216–225. https://doi.org/10.1145/224164.

224208

Manfred Schmidt-Schauß and Elena Machkasova. 2008. A Finite Simulation Method in a Non-deterministic Call-by-Need

Lambda-Calculus with Letrec, Constructors, and Case. In 19th International Conference on Rewriting Techniques and

Applications (RTA ’08) (LNCS 5117). Springer, Berlin, Heidelberg, 321–335. https://doi.org/10.1007/978-3-540-70590-1_22

Gert Smolka and Prakash Panangaden. 1985. FRESH: A Higher-Order Language with Unification and Multiple Results.

Technical Report TR 85-685. Cornell University, Ithaca, New York, USA. https://hdl.handle.net/1813/6525

Guy Lewis Steele Jr. 1978. Rabbit: A Compiler for Scheme. Technical Report 474. Artificial Intelligence Laboratory,

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. https://web.archive.org/web/20211108071621/

https://dspace.mit.edu/bitstream/handle/1721.1/6913/AITR-474.pdf Master’s Dissertation.

David H D Warren, Luis M. Pereira, and Fernando Pereira. 1977. Prolog - The Language and Its Implementation Compared

with Lisp. In Proceedings of the 1977 Symposium on Artificial Intelligence and Programming Languages (Rochester, New

York, USA). Association for Computing Machinery, New York, NY, USA, 109–115. https://doi.org/10.1145/800228.806939

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

https://doi.org/10.1145/224164.224208
https://doi.org/10.1145/224164.224208
https://doi.org/10.1007/978-3-540-70590-1_22
https://hdl.handle.net/1813/6525
https://web.archive.org/web/20211108071621/https://dspace.mit.edu/bitstream/handle/1721.1/6913/AITR-474.pdf
https://web.archive.org/web/20211108071621/https://dspace.mit.edu/bitstream/handle/1721.1/6913/AITR-474.pdf
https://doi.org/10.1145/800228.806939

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:33

A EXAMPLE
A complete reduction sequence for a small example can be found in Fig. 6. This example shows how

constraining the output of a function call can constrain the argument. While most of the reductions

are administrative in nature, these are the highlights: At 1○ the swap function is inlined so that at

2○ a β-reduction can happen. Step 3○ inlines the argument, and 4○ does the matching of the tuple.

At 5○ and 6○ the actual numbers are inlined.

swap ⟨x, y⟩ := ⟨y, x ⟩; ∃p. swap (p) = ⟨2, 3⟩; p

−→{desugar} ∃swap. swap= (_xy. ∃x y. ⟨x, y⟩ =xy; ⟨y, x ⟩) ; ∃p t. t = swap (p) ; t = ⟨2, 3⟩; p

1○ −→{subst,eqn-elim} ∃p t. t = (_xy. ∃x y. ⟨x, y⟩ =xy; ⟨y, x ⟩) (p) ; t = ⟨2, 3⟩; p

−→{subst,eqn-elim} ∃p. (2, 3) = (_xy. ∃x y. ⟨x, y⟩ =xy; ⟨y, x ⟩) (p) ; p

2○ −→{app-beta} ∃p. (2, 3) = (∃xy. xy =p; ∃x y. ⟨x, y⟩ =xy; ⟨y, x ⟩) ; p

−→{exi-float} ∃pxy. (2, 3) = ((xy =p; ∃x y. ⟨x, y⟩ =xy; ⟨y, x ⟩)) ; p

3○ −→{subst,eqn-elim} ∃p. (2, 3) = (∃x y. ⟨x, y⟩ =p; ⟨y, x ⟩) ; p

−→{exi-float,exi-float} ∃px y. (2, 3) = (⟨x, y⟩ =p; ⟨y, x ⟩) ; p

−→{eqn-float,seq-assoc} ∃px y. ⟨x, y⟩ =p; (2, 3) = ⟨y, x ⟩; p

−→{hnf-swap} ∃px y. p= ⟨x, y⟩; (2, 3) = ⟨y, x ⟩; p

−→{subst,eqn-elim} ∃x y. (2, 3) = ⟨y, x ⟩; ⟨x, y⟩
4○ −→{u-tup,seq-assoc} ∃x y. 2=y; 3=x; ⟨x, y⟩
−→{hnf-swap} ∃x y. y =2; 3=x; ⟨x, y⟩

5○ −→{subst,eqn-elim} ∃x . 3=x; ⟨x, 2⟩
−→{hnf-swap} ∃x . x =3; ⟨x, 2⟩

6○ −→{subst,eqn-elim} ⟨3, 2⟩

Fig. 6. A sample reduction sequence

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:34 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

B CONFLUENCE: PRELIMINARIES
B.1 Reduction relations
Definition B.1 (Binary relations). A binary relation is a set of pairs of related items; if 𝑅 is a

relation, then we may write 𝑎 𝑅 𝑏 to mean (𝑎, 𝑏) ∈ 𝑅.

Definition B.2 (Prototype reduction relations and rewrite rules). Let R̂ be any binary relation on a

set of tree-structured terms, such as the terms generated by some BNF grammar; we sometimes

refer to R̂ as a prototype reduction relation.

Often a prototype reduction relation is specified by a rewrite rule of the form 𝛼 −→ 𝛽 , which

indicates that for any substitution 𝜎 that consistently instantiates all the metavariables (BNF

nonterminals) in 𝛼 and 𝛽 , (𝜎 (𝛼), 𝜎 (𝛽)) is a member of the prototype reduction relation. A prototype

reduction relation may also be specified by a set of rewrite rules, in which case the prototype

reduction relation is the union of the prototype reduction relations specified by the individual

rewrite rules.

Definition B.3 (Reduction relations). A reduction relation R is the compatible closure of some

prototype reduction relation R̂; compatibility means that, for any context 𝐸 and any two terms𝑀

and 𝑁 , if (𝑀, 𝑁) ∈ R then (𝐸 [𝑀], 𝐸 [𝑁]) ∈ R. Because most of the relations we consider here are

compatible, we find it more convenient to use a hat over relation symbol to indicate that it may not

be compatible, rather than using some special mark to indicate that a relation is compatible or to

indicate the taking of a compatible closure.

Definition B.4 (Derived relations). For any relation—but typically for a reduction relation, so we

will call it R here—we write R𝑘 for the composition of 𝑘 copies of R and R∗ for the reflexive and
transitive closure of R, i.e. R∗ ≡ ∪

0⩽𝑘R𝑘 . We write

• 𝑎 −→R 𝑏 (𝑎 steps to 𝑏) if (𝑎, 𝑏) ∈ R,
• 𝑎 𝜖−→R 𝑏 (𝑎 skips to 𝑏) if 𝑎 ≡ 𝑏 or (𝑎, 𝑏) ∈ R,
• 𝑎 −→→R 𝑏 (𝑎 reduces to 𝑏) if (𝑥,𝑦) ∈ R∗.
• 𝑎 𝑘−→→R 𝑏 (𝑎 𝑘-steps to 𝑏) if (𝑎, 𝑏) ∈ R𝑘 , and

Sometimes we use this same notation and terminology with a prototype reduction relation R̂, thus
for example 𝑎 −→R̂ 𝑏. In such a case, the arrow indicates rewriting of the entire term 𝑎 (at the root),

and not of some subterm of 𝑎.

Definition B.5 (Size). The size of a reduction 𝑎 −→→ 𝑏 is the smallest 𝑖 such that 𝑎
𝑖−→→ 𝑏.

Definition B.6 (Normal Forms). A term 𝑎 is an R-Normal Form if there does not exist any 𝑏 such

that 𝑎 −→R 𝑏.

For clarity, we will omit the subscript R when it is clear from the context.

B.2 Confluence
Definition B.7 (Diamond Property). A reduction relation satisfies the diamond property if when-

ever 𝑎 −→ 𝑏 and 𝑎 −→ 𝑐 , there is a 𝑑 such that 𝑏 −→ 𝑑 and 𝑐 −→ 𝑑 .

Definition B.8 (Confluence). Two terms 𝑏, 𝑐 can be R-joined written 𝑏 ↓R 𝑐 , if there is a 𝑑 such

that 𝑏 −→→R 𝑑 and 𝑐 −→→R 𝑑 . A reduction relation R is confluent if whenever 𝑎 −→→R 𝑏 and 𝑎 −→→R 𝑐 ,

we have 𝑏 ↓R 𝑐 .

Definition B.9 (Local Confluence). A reduction relation R is locally confluent if whenever 𝑎 −→R 𝑏

and 𝑎 −→R 𝑐 , we have 𝑏 ↓R 𝑐 .

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:35

𝑎

𝑏 𝑐

𝑑

𝑎

𝑏 𝑐

𝑑

𝑎

𝑏 𝑐

𝑑

Fig. 7. Diamond Property (L), Local Confluence (M), and Confluence (R)

𝑎

𝑏 𝑐

• •
𝜖 𝜖

Fig. 8. Strong Confluence

Lemma B.10 (Diamond [Barendregt 1984]). If R satisfies the diamond property then R is

confluent.

Lemma B.11 (Unicity [Barendregt 1984]). If R is confluent then every term reduces to at most

one normal form.

Lemma B.12 (Closure [Barendregt 1984]). If R is confluent then R∗ is confluent.

Definition B.13 (Noetherian Reduction). A reduction relation R is Noetherian if there is no infinite

sequence 𝑎
0
−→R 𝑎

1
−→R . . . −→R 𝑎𝑛 −→R

The following result is known as Newman’s Lemma [Barendregt 1984; Huet 1980].

Lemma B.14 (Newman’s Lemma). If R is locally confluent and Noetherian then R is confluent.

Definition B.15 (Strong Confluence). A reduction relation is strongly confluent if whenever 𝑎 −→ 𝑏

and 𝑎 −→ 𝑐 , either 𝑏 −→→ 𝑐 or there is a 𝑑 such that 𝑏 −→→ 𝑑 and 𝑐 −→ 𝑑 , as shown in Fig. 8, where the 𝜖

label indicates 0 or 1 step.

Lemma B.16 ([Huet 1980, Lemma 2.5]). If R is strongly confluent then R is confluent.

B.3 Commutativity
Definition B.17 (Commutativity). A reduction relation 𝑅 commutes with 𝑆 if for all terms 𝑎, 𝑏, 𝑐

such that 𝑎 −→→𝑅 𝑏 and 𝑎 −→→𝑆 𝑐 there exists 𝑑 such that 𝑏 −→→𝑆 𝑑 and 𝑐 −→→𝑅 𝑑 , as illustrated on the

left in Fig. 9.

Definition B.18 (Strong commutativity). A reduction relation 𝑅 strongly commutes with 𝑆 if for all

terms 𝑎, 𝑏, 𝑐 such that 𝑎 −→𝑅 𝑏 and 𝑎 −→𝑅 𝑐 there exists 𝑑 such that 𝑏 −→𝑆 𝑑 and 𝑐 −→𝑅 𝑑 , as illustrated

in the middle in Fig. 9.

Note that if 𝑅 strongly commutes with itself then, by Definition B.7, 𝑅 has the diamond property.

Lemma B.19 (Strong-Commutativity). If 𝑅 strongly commutes with 𝑆 then 𝑅 commutes with 𝑆 .

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:36 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

𝑎

𝑏 𝑐

𝑑

𝑆𝑅

𝑆 𝑅

𝑎

𝑏 𝑐

𝑑

𝑆𝑅

𝑆 𝑅

𝑎

𝑏 𝑐

𝑑

𝑆𝑅

𝑆 𝑅

Fig. 9. Commutativity (L), Strong Commutativity (C), ∗-Commutativity (R)

Proof. Via the following “chase” diagram (probably well known?)

• • • •

• • • •

• • • •

• • • •

𝑆 𝑆 𝑆

𝑅

𝑅

𝑅

𝑆

𝑅

𝑆 𝑆

𝑅 𝑅

𝑅𝑅𝑅

𝑆

𝑆 𝑆

𝑅 𝑅 𝑅

𝑆

𝑆 𝑆

□

Lemma B.20 (Union). If 𝑅 and 𝑆
1
commute and 𝑅 and 𝑆

2
commute then 𝑅 and 𝑆

1
∪ 𝑆

2
commute.

Proof. Via the following chase diagram (probably well known?)

• • • • • •

• • • • • •

𝑆1 𝑆2

𝑅

𝑆1

𝑅

𝑆2

𝑅 𝑅

𝑆1 𝑆2

𝑅 𝑅

𝑆1 𝑆2

□

Definition B.21 (Postpones). A reduction relation 𝑅 strongly postpones after 𝑆 if 𝑒 −→𝑅 · −→𝑆 𝑒 ′

implies 𝑒 −→→𝑆 · −→𝑅 𝑒 ′.

Lemma B.22 ([Hindley 1964]). If 𝑅 strongly postpones after 𝑆 then if 𝑒 −→→𝑅∪𝑆 𝑒 ′ then 𝑒 −→→𝑆 · −→→𝑅

𝑒 ′.

Definition B.23 (Hops). A reduction relation 𝑅 hops after 𝑆 if 𝑒 −→𝑅 · −→𝑆 𝑒 ′ implies there is an 𝑒 ′′

such that 𝑒 ′ −→→𝑅 𝑒 ′′ and 𝑒 −→𝑆 · −→→𝑅 𝑒 ′′.

𝑒 • 𝑒 ′

• 𝑒 ′′

𝑅 𝑆

𝑆

𝑅

𝑅

Lemma B.24. If 𝑅 is confluent and hops after 𝑆 then

𝑒 • 𝑒 ′

• 𝑒 ′′

𝑅 𝑆

𝑆

𝑅

𝑅

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:37

Proof. By induction on size of −→→𝑅 .

Base case By definition of hops after.

Inductive case Assume the lemma for reductions of size upto 𝑘 and complete the proof via

the following diagram where (1) is from the induction hypothesis, (2) is from the definition

of hops over, and (3) is from the assumption that 𝑅 is confluent.

• • • •

• • (1)

(2) (3)

𝑅 𝑅𝑘 𝑆

𝑆 𝑆

𝑅

𝑅

𝑅
𝑅

𝑅

𝑅

□

Lemma B.25. If 𝑅 is confluent and hops after 𝑆 then

𝑒 𝑒 ′

• 𝑒 ′′
𝑆

𝑅

𝑅

𝑅∪𝑆

Proof. By induction on the number of 𝑆 steps in −→→𝑅∪𝑆 , via the following diagram.

• • • •

• • •

• •

𝑅 𝑆

𝑆 𝑅

(𝑅∗∪𝑆)𝑘

𝑅

𝐿𝑒𝑚𝑚𝑎 𝐵.24

(𝑅∗∪𝑆)𝑘

𝑅𝐿𝑒𝑚𝑚𝑎 𝐵.29

𝑆

𝑅

𝑅
𝐼𝐻

□

Definition B.26 (half-commutes). A reduction relation𝑅 half-commuteswith 𝑆 if whenever 𝑒 −→𝑅 𝑒
1

and 𝑒 −→𝑆 𝑒
2
there exists 𝑒 ′ such that 𝑒

2
−→→𝑅 𝑒 ′ and 𝑒

1
−→𝑆𝜖 · −→→𝑅 𝑒 ′.

𝑒 𝑒
2

𝑒
1

• 𝑒 ′

𝑆

𝑅

𝑆𝜖 𝑅

𝑅

Lemma B.27. If 𝑅 is confluent and 𝑅 half-commutes with 𝑆 then 𝑅 commutes with 𝑅 ∪ 𝑆 .

Proof. Via the following diagram, where: (1) is 𝑅 is confluent, and (2) is Lemma B.28.

• • • • • •

• (1) (2) (1) (2) (2)

𝑅 𝑆 𝑅 𝑆

𝑅 𝑅 𝑅 𝑅 𝑅 𝑅

𝑅 𝑅∪𝑆 𝑅 𝑅∪𝑆

□

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:38 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Lemma B.28. If 𝑅 is confluent and 𝑅 half-commutes with 𝑆 then if 𝑒 −→→𝑅 𝑒
1
and 𝑒 −→→𝑆 𝑒

2
then

exists 𝑒 ′ such that 𝑒
1
−→→𝑅∪𝑆 𝑒 ′ and 𝑒

2
−→→𝑅 𝑒 ′.

𝑒 𝑒
2

𝑒
1

𝑒 ′

𝑅

𝑆𝑘

𝑅

(𝑅∗∪𝑆)𝑘

Proof. By repeatedly tiling (1) Lemma B.30 as follows

• • • • •

• (1) (1) (1) (1)

𝑆1 𝑆2 𝑆 𝑆𝑘

𝑅 𝑅 𝑅 𝑅 𝑅

(𝑅∗∪𝑆)1 (𝑅∗∪𝑆)2 (𝑅∗∪𝑆) (𝑅∗∪𝑆)𝑘

□

Lemma B.29. If 𝑅 is confluent and 𝑅 half-commutes with 𝑆 then if 𝑒 −→→𝑅 𝑒
1
and 𝑒 −→(𝑅∗∪𝑆)𝑘 𝑒

2
then

exists 𝑒 ′ such that 𝑒
1
−→→(𝑅∗∪𝑆)𝑘 𝑒 ′ and 𝑒

2
−→→𝑅 𝑒 ′.

𝑒 𝑒
2

𝑒
1

𝑒 ′

𝑅

(𝑅∗∪𝑆)𝑘

𝑅

(𝑅∗∪𝑆)𝑘

Proof. Similar to Lemma B.28, by repeatedly “tiling” (1) Lemma B.30 and using (2) 𝑅 is confluent

to match the 𝑅∗ reductions.

• • • • •

• (2) (1) (1) (1)

𝑅 𝑆1 𝑆𝑘

𝑅 𝑅 𝑅 𝑅 𝑅

𝑅 (𝑅∗∪𝑆)1 (𝑅∗∪𝑆)𝑘

□

Lemma B.30. If 𝑅 is confluent and 𝑅 half-commutes with 𝑆 then if 𝑒 −→→𝑅 𝑒
1
and 𝑒 −→𝑆 𝑒

2
then exists

𝑒 ′ such that 𝑒
1

𝜖−→𝑆 · −→→𝑅 𝑒 ′ and 𝑒
2
−→→𝑅 𝑒 ′.

𝑒 𝑒
2

𝑒
1

• 𝑒 ′

𝑅

𝑆

𝑅

𝑆𝜖 𝑅

Proof. By induction on the size of 𝑒 −→→𝑅 𝑒
1
.

Base Case Immediate from the definition of half-commutes.

Inductive Case Assume the lemma holds for reductions of size 𝑘 , complete the proof via the

following diagram where (1) is due to the induction hypothesis, (2) is from the definition of

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:39

𝑅 half-commutes with 𝑆 and, (3) follows from the fact that 𝑅 is confluent.

𝑒 𝑒
2

• • (1)

𝑒
1

• (2) (3)

𝑅𝑘

𝑅

𝑆

𝑅

𝑅𝑆𝜖

𝑅

𝑅

𝑅

𝑆𝜖 𝑅

□

B.4 ∗-Commutativity
Definition B.31 (∗-Commutativity). A reduction relation 𝑅 ∗-commutes with 𝑆 if for all terms

𝑎, 𝑏, 𝑐 such that 𝑎 −→𝑅 𝑏 and 𝑎 −→𝑆 𝑐 there exists 𝑑 such that 𝑏 −→→𝑆 𝑑 and 𝑐
𝜖−→𝑅 𝑑 (right in Fig. 9.)

Lemma B.32. If 𝑅 ∗-commutes with 𝑆 then for all 𝑎, 𝑏, 𝑐 if 𝑎 −→𝑅 𝑏 and 𝑎 −→→𝑆 𝑐 then there exists 𝑑

such that 𝑏 −→→𝑆 𝑑 and 𝑐
𝜖−→𝑅 𝑑 .

Proof. By induction on the size of the reduction 𝑎 −→→𝑆 𝑐 .

(Base case) Here 𝑐 is the same as 𝑎, so just pick 𝑑 = 𝑏.

(Ind. case) Assume the lemma for reductions of size less than or equal to 𝑛. Suppose that

𝑎
𝑛+1−−−→→𝑆 𝑐 . Then there exists 𝑐 ′ such that 𝑎

𝑛−→→𝑆 𝑐 ′ and 𝑐 ′ −→𝑆 𝑐 . The proof is completed by

the diagram:

𝑎

𝑏 𝑐 ′

𝑑 ′ 𝑐

𝑑

𝑆𝑛𝑅

𝑆 𝑅𝐼𝐻
𝑆

𝑆 𝑅𝐵.31

□

Lemma B.33. If 𝑅 ∗-commutes with 𝑆 then for all 𝑎, 𝑏, 𝑐 if 𝑎 −→→𝑅 𝑏 and 𝑎 −→𝑆 𝑐 then there exists 𝑑

such that 𝑏 −→→𝑆 𝑑 and 𝑐 −→→𝑅 𝑑 .

Proof. By induction on the size of the reduction 𝑎 −→→𝑅 𝑏.

(Base case) Here 𝑏 is the same as 𝑎, so just pick 𝑑 = 𝑐 .

(Ind. case) Assume the lemma for reductions of size less than or equal to 𝑛. Suppose that

𝑎
𝑛+1−−−→→𝑅 𝑏. Then there exists some 𝑏 ′ such that 𝑎

𝑛−→→𝑅 𝑏 ′ and 𝑏 ′ −→𝑅 𝑏. The proof is completed

by the diagram below.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:40 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

𝑎

𝑏 ′ 𝑐

𝑏 𝑑 ′

𝑑

𝑆𝑅𝑛

𝑆 𝑅

𝑅

𝑆 𝑅

𝐼𝐻

𝐵.32

□

Lemma B.34 (∗-Commutativity). If 𝑅 ∗-commutes with 𝑆 then 𝑅 commutes with 𝑆 .

Proof. By induction on the size of the reduction 𝑎 −→→𝑆 𝑐 .

(Base case) Here 𝑐 is the same as 𝑎, so just pick 𝑑 = 𝑏.

(Ind. case) Assume the lemma for reductions of size less than or equal to 𝑛. Suppose that

𝑎
𝑛+1−−−→→𝑆 𝑐 . Then there exists some 𝑐 ′ such that 𝑎

𝑛−→→𝑆 𝑐
′
and 𝑐 ′ −→𝑆 𝑐 . The proof is completed

by the diagram below.

𝑎

𝑏 𝑐 ′

𝑑 ′ 𝑐

𝑑

𝑆𝑛𝑅

𝑆 𝑅𝐼𝐻
𝑆

𝑆 𝑅𝐵.33

□

B.5 Commutativity and Confluence
Lemma B.35 (Commutativity). If 𝑅 and 𝑆 are confluent and commute, then 𝑅 ∪ 𝑆 is confluent.

Lemma B.36 (N-Commutativity). If (i) ∀0 ⩽ 𝑖 ⩽ 𝑛, the reduction relation 𝑅𝑖 is confluent, and

(ii) ∀0 ⩽ 𝑖 < 𝑗 ⩽ 𝑛, the reduction relations 𝑅𝑖 and 𝑅 𝑗 commute then ∪𝑛𝑖=0𝑅𝑖 is confluent.

Proof. By induction on 𝑛 using Lemma B.35 and Lemma B.20. □

B.6 Confluent Kernels
Definition B.37 (Kernel). A reduction relation 𝑆 is a kernel of 𝑅, written 𝑆 ⪯ 𝑅 if (1) 𝑆 ⊆ 𝑅 and

(2) If 𝑎 −→𝑅 𝑏 there exists 𝑐 such that 𝑎, 𝑏 −→→𝑆 𝑐 .

Lemma B.38 (Kernel-Steps). If 𝑆 ⪯ 𝑅 and 𝑆 is confluent and 𝑎 −→→𝑅 𝑏 then ∃𝑐. 𝑎, 𝑏 −→→𝑆 𝑐 .

Proof. By induction on 𝑎 −→→𝑅 𝑏.

Base Case: 𝑎 ≡ 𝑏 so trivially 𝑎, 𝑏 −→→𝑆 𝑎.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:41

𝑎

𝑏 𝑐

𝑅
𝑆

𝑆

Fig. 10. 𝑆 is a kernel of 𝑅 written 𝑆 ⪯ 𝑅

Inductive Case: Assume theorem for 𝑎
𝑛−→→𝑅 𝑏. Suppose that 𝑎

𝑛−→→𝑅 𝑏 ′ via 𝑎
𝑛−→→𝑅 𝑏 and 𝑏 −→𝑅 𝑏 ′.

The proof follows from the diagram below: 𝑐 is from the IH, 𝑐 ′ from 𝑆 ⪯ 𝑅 and 𝑐 ′′ from the

confluence of 𝑆 .

𝑎

𝑏 𝑐

𝑏 ′ 𝑐 ′ 𝑐 ′′

𝑅𝑛 𝑆

𝑆

𝑅

𝑆

𝑆

𝑆

𝑆

□

Theorem B.39. Kernel Confluence If 𝑆 ⪯ 𝑅 and 𝑆 is confluent, then 𝑅 is confluent.

Proof. Suppose that 𝑎 −→→𝑅 𝑏
1
and 𝑎 −→→𝑅 𝑏

2
. The following diagram shows how to construct 𝑐

such that 𝑏
1
−→→𝑅 𝑐 and 𝑏

2
−→→𝑅 𝑐 . 𝑐

1
(resp. 𝑐

2
) follows from Lemma B.38 using 𝑎 and 𝑏

1
(resp. 𝑏

2
).

Recall that 𝑆 ⪯ 𝑅 implies every 𝑆 reduction is also an 𝑅 reduction.

𝑎

𝑏
1

𝑐
1

𝑐
2

𝑏
2

𝑐

𝑅 𝑅

𝑆,𝑅

𝑆𝑆

𝑆,𝑅

𝑆,𝑅 𝑆,𝑅

□

C CONFLUENCE OFVC: PROOF
Definition C.1 (Reductions). LetR be the reduction relation defined as the unionU∪N∪A∪G∪C

of five distinct reduction relations, each of which is defined as the compatible closure of a prototype

reduction relation that is in turn defined by rewrite rules in Fig. 3, as follows:

• U (Unification) is the compatible closure of Û, which is the union of the prototype reduction

relations specified by rules u-lit, u-tup, u-fail, u-occurs, subst, hnf-swap, var-swap, choose,

seq-assoc, eqn-float, and seq-swap.

• N (Normalization) is the compatible closure of N̂ , which is the union of the prototype

reduction relations specified by rules exi-swap, exi-float, subst (restricted to x = y), and

var-swap.

• A (Application) is the compatible closure of Â, which is the union of the prototype reduction

relations specified by rules app-add, app-gt, app-gt-fail, app-beta, app-tup, and app-tup-0.

• G (Garbage Collection) is the compatible closure of Ĝ, which is the union of the prototype

reduction relations specified by rules fail-elim, val-elim, exi-elim, and eqn-elim.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:42 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

U and Û N and N̂ A and Â G and Ĝ C and Ĉ
u-lit exi-swap app-add fail-elim one-fail

u-tup exi-float app-gt val-elim one-value

u-fail subst (restricted to x =y) app-gt-fail exi-elim one-choice

u-occurs var-swap app-beta eqn-elim all-fail

subst app-tup all-value

hnf-swap app-tup-0 all-choice

var-swap choose-l

choose choose-r

seq-assoc

eqn-float

seq-swap

Fig. 11. Division of the rewrite rules shown in Fig. 3 into groups

U N A G C

Unification U C.19 C.42 C.49 C.50 C.51

Normalization N C.31 C.52 C.53 C.54

Application A C.55 C.56 C.57

Garbage Collection G C.58 C.59

Choice C C.60

Fig. 12. Summary of the confluence and commutativity of the reductions in Definition C.1. The lemmas
on the diagonal (resp. non-diagonal) entries establish confluence (resp. commutativity) for the respective
relation (resp. pairs of relations).

• C (Choice) is the compatible closure of Ĉ, which is the union of the prototype reduction

relations specified by rules one-fail, one-value, one-choice, all-fail, all-value, all-choice,

choose-l, and choose-r.

Let R̂ = Û ∪ N̂ ∪ Â ∪ Ĝ ∪ Ĉ; then R may also be described as the compatible closure of R̂ (because

the operation of taking a compatible closure distributes over ∪).
These groups correspond approximately to the sub-headings in Fig. 3, but not precisely. In particular,

some rewrite rules appear in more than one group: var-swap is used in bothU andN , and subst is

used in bothU and (in restricted form)N . Moreover, choose is used inU but not in C, although it

is listed under “Choice” in Fig. 3.

For convenient reference, the five lists of rules are also displayed in tabular form in Fig. 11.

Definition C.2 (Well-behaved Terms). An equation is obviously problematic if

• It is an equation of the form x =V [_y. e], where 𝑥 ∈ fvs(𝑒), or
• It is an equation of form hnf = _x . e or _x . e = hnf .

A term 𝑒 is obviously problematic if it contains an obviously problematic equation. A term 𝑒 is

problematic if there exists an obviously-problematic term 𝑒 ′ such that 𝑒 −→→ 𝑒 ′. A term 𝑒 is well-

behaved if it is not problematic.

Our main confluence theorem is as follows:

Theorem C.3 (Confluence). If 𝑒 is well-behaved and 𝑒 −→→R 𝑒
1
and 𝑒 −→→R 𝑒

2
then 𝑒

1
↓R 𝑒

2
.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:43

Notation

𝑎, 𝑏, 𝑐, 𝑑, 𝑒 Expressions (syntax in Fig. 1)

Δ An expression 𝑒 that has a redex at the root

𝑒
1
⊂ 𝑒

2
The expression 𝑒

1
is a strict sub-term of 𝑒

2

𝑒
1
⊆ 𝑒

2
The expression 𝑒

1
is a sub-term of 𝑒

2
, including 𝑒

2
itself

𝑎 −→R̂ 𝑏 𝑎 reduces to 𝑏 via one root-level step of R
𝑎 −→R 𝑏 𝑎 reduces to 𝑏 in one step of R
𝑎

𝜖−→R 𝑏 𝑎 reduces to 𝑏 in zero or one step of R
𝑎 −→→R 𝑏 𝑎 reduces to 𝑏 in zero or more steps of R
𝑎

𝑘−→→R 𝑏 𝑎 reduces to 𝑏 in 𝑘 steps of R

Expression contexts

𝐸 ::= □ | E; e | v =E; e | ∃x . E | E e | e E | one{E} | all{E}
| E(v) | v(E) | ⟨v

1
, ···, E, ···, v

n
⟩ | _x . E

Note: 𝑒
1
⊆ 𝑒

2
is equivalent to ∃𝐸. 𝐸 [𝑒

1
] ≡ 𝑒

2
.

Fig. 13. Summary of notation

Proof. First, we partition R into the relationsU ∪N , A, G and C. Next, we show that each

of these relations is confluent and pairwise commutative (Fig. 12). Finally, we use Lemma B.36 to

prove their union R is confluent. □

The no-recursion condition is only needed to proveU is confluent, but we assume it globally for

clarity.

C.1 Disjointness, Reduction under, and the Diamond property
In talking about confluence we often speak of two different reduction steps with a common starting

point, thus 𝑒 −→R 𝑒
1
and 𝑒 −→R 𝑒

2
. In the first of these there is a sub-term of 𝑒 , say Δ

1
, that is the

actual redex; the root of Δ
1
matches some rule in R. Δ

1
is just an ordinary expression, but we use

the notation “Δ” to stress that it is the root of a redex (see Fig. 13). Δ
1
is a sub-term of 𝑒 (or possibly

Δ = 𝑒), which we write Δ
1
⊆ 𝑒 (again in Fig. 13). Note that 𝑒

1
⊆ 𝑒

2
is equivalent to saying that there

exists some expression context 𝐸 such that 𝐸 [𝑒
1
] ≡ 𝑒

2
, i.e. that 𝑒

2
can be decomposed into a context

𝐸 whose hole is filled by 𝑒
1
.

Similarly we may identify Δ
2
, the redex that is reduced by 𝑒 −→R 𝑒

2
. Now there are two cases to

consider:

(1) Δ
1
is disjoint from Δ

2
in 𝑒; or

(2) Δ
1
⊆ Δ

2
, or Δ

2
⊆ Δ

1
.

One might wonder if Δ
1
can overlap Δ

2
, but that is not possible: we are discussing syntax trees, not

graphs, and so for distinct Δ
1
and Δ

2
, either the root of Δ

1
is a child of the root of Δ

2
, or vice versa,

or neither.

In the first case (a) we have the diamond property immediately:

Lemma C.4 (Disjoint). Let 𝑒 ≡ . . . Δ
1
. . . Δ

2
. . . be an expression with two disjoint redexes Δ

1
and

Δ
2
. If 𝑒 −→ . . . Δ′

1
. . . Δ

2
. . . ≡ 𝑒

1
and 𝑒 −→ . . . Δ

1
. . . Δ′

2
. . . ≡ 𝑒

2
then there exists 𝑒 ′ such that 𝑒

1
−→ 𝑒 ′

and 𝑒
2
−→ 𝑒 ′.

Proof. Trivial: 𝑒 ′ = . . . Δ′
1
. . . Δ′

2
. . .. □

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:44 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

C.2 Lemmas for Reductions-Under
So to prove the diamond property for a relation R, we should focus attention only on case (b) where

the redexes are not disjoint, i.e. one occurs under the other. To this end, it suffices to consider the

case where one of the reductions is at the root, written 𝑒 −→R̂ 𝑒
1
(see Fig. 13 and Appendix B.1), and

the other occurs under 𝑒 i.e. is of the form 𝐸 [Δ] −→R 𝑒
2
where 𝑒

2
≡ 𝐸 [Δ′], and Δ −→R̂ Δ′.

Next, we prove a set of “reductions-under” 𝑅 lemmas that say that if a term 𝑒 can be (1) reduced

using two different rules 𝑅 and 𝑆 as 𝑒 −→𝑅 𝑒𝑅 and 𝑒𝑆 −→𝑆 , such that (2) the redex for the 𝑆 reduction

occurs under the redex for the 𝑅 reduction, then there exists some 𝑒 ′ such that 𝑒𝑅 (resp. 𝑒𝑆) can be

reduced to 𝑒 ′ using some number of 𝑆 (resp. 𝑅) reductions.

The lemmas will be used in two ways. First, to show that two different relations commute. Second,

that a relation (strongly) commutes with itself, i.e. has the diamond property, and hence is confluent.

In each case, we will split cases on which relation is the “outer” reduction and which is the “inner”

and then applying the appropriate “reduction-under” lemma for the outer relation, and using

Lemma C.4 for the case where the redexes are disjoint.

C.2.1 Application. The following lemma says that if a term ΔA is the root of an A reduction

ΔA −→A Δ′A and the ΔA additionally contains under it a subterm Δ that is the root of some R
reduction Δ −→R Δ′ then it is possible to join the result of the R and A reduction at a common

term Δ′′A by executing a single step of the other reduction, i.e. A and R respectively. (Recall that

𝐸 [𝑒 ′] ≡ 𝑒 means that 𝑒 ′ ⊆ 𝑒 i.e. 𝑒 ′ occurs under or is a sub-term of 𝑒).

Lemma C.5 (Under-A). If ΔA −→Â Δ′A and ΔA ≡ 𝐸 [Δ] and Δ −→R̂ Δ′ then there exists Δ′′A such

that Δ′A −→R Δ′′A and 𝐸 [Δ′] −→Â Δ′′A .

ΔA ≡ 𝐸 [Δ] 𝐸 [Δ′]

Δ′A Δ′′A

Â

R

Â

R

Proof. Split cases on the rule used in Â.

Case: app-beta i.e. ΔA −→A Δ′A ≡ (_x . e)v −→ ∃x . x =v; e. If Δ ⊆ e, i.e. R : 𝑒 −→ 𝑒 ′, then join

at Δ′′A ≡ ∃x . x =v; e
′
. If Δ ⊆ v, i.e. R : v −→ v

′
, then join at Δ′′A ≡ ∃x . x =v

′
; e.

Case: app-tup i.e. ΔA −→A Δ′A ≡ ⟨v0 . . . v
n
⟩v −→ ∃x . x = v; (x = 0; v

0
. . . x = n; v

n
). If

Δ ⊆ v
i
, i.e. R : v

i
−→ v

′
i
, then join at ∃x . x = v; (x = 0; v

0
. . . x = i; v

′
i
. . . x = n; v

n
). If

Δ ⊆ v, i.e. R : v −→ v
′
, then join at ∃x . x =v

′
; (x =0; v

0
. . . x =n; v

n
).

Case: app-tup0 i.e. ΔA −→A Δ′A ≡ ⟨⟩v −→ fail. Here, Δ ⊆ 𝑣 , i.e. R : v −→ v
′
, then join at

Δ′′A ≡ fail.

Case: app-add, app-gt-* In any of the primitive application rules, Δ ̸⊆ ΔA .

□

C.2.2 Unification.

Lemma C.6 (Under-U). Let R ′ ≡ R − subst − var-swap. If ΔU −→Û Δ′U and ΔU ≡ 𝐸 [Δ] and
Δ −→R̂′ Δ′ then there exists Δ′′U such that Δ′U −→→R′ Δ′′U and 𝐸 [Δ′] −→Û Δ′′U .

ΔU ≡ 𝐸 [Δ] 𝐸 [Δ′]

Δ′U Δ′′U

Û

R′

Û

R′

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:45

Proof. Split cases on the rule used in Û.

Case subst : Here, ΔU ≡ 𝑋 [x =v]. Split cases on the occurrence of Δ.
Case Δ ⊆ 𝑋 , i.e. 𝑋 ≡ 𝑋 ′[Δ].

𝑋 ′[Δ] [𝑥 = 𝑣] 𝑋 ′{𝑣/𝑥}[Δ{𝑣/𝑥}] [𝑥 = 𝑣]

𝑋 ′[Δ′] [𝑥 = 𝑣] 𝑋 ′{𝑣/𝑥}[Δ′{𝑣/𝑥}] [𝑥 = 𝑣]
R′

U

U
R′ via 𝐿𝑒𝑚𝑚𝑎 𝐶.11

Case Δ ⊆ 𝑣 , i.e. 𝑣 −→R′ 𝑣 ′

𝑋 [𝑥 = 𝑣] 𝑋 {𝑣/𝑥}[𝑥 = 𝑣]

𝑋 [𝑥 = 𝑣 ′] 𝑋 {𝑣 ′/𝑥}[𝑥 = 𝑣 ′]
R′

U

U
R′ (repeat at each 𝑣)

Case hnf-swap : ΔU ≡ hnf =x and ℎ −→R′ ℎ′, so join at Δ′′U ≡ x = hnf
′
.

hnf = 𝑥 𝑥 = hnf

hnf
′ = 𝑥 𝑥 = hnf

′

U

R′ R′

U

Case u-occurs : ΔU ≡ 𝑥 = 𝑉 [𝑥] and 𝑉 [𝑥] −→R′ 𝑉 ′[𝑥], so join at Δ′′U ≡ fail.

𝑥 = 𝑉 [𝑥] fail

𝑥 = 𝑉 ′[𝑥]

U

R′ U

Case var-swap : Impossible, no Δ ⊆ ΔU
Case u-lit : Impossible, no Δ ⊆ ΔU
Case u-fail : Join at Δ′′U ≡ fail.

Case u-tup : ΔU ≡ (u1
... u

n
) == (v

1
... v

n
).

Case Δ ⊆ 𝑢𝑖 i.e. 𝑢𝑖 −→R′ 𝑢 ′𝑖 Join at Δ′′U ≡ 𝑢1 = 𝑣
1
; . . . 𝑢 ′𝑖 = 𝑣𝑖 ; . . . 𝑢𝑛 = 𝑣𝑛 .

Case Δ ⊆ 𝑣 𝑗 i.e. 𝑣 𝑗 −→R′ 𝑣 ′𝑗 Join at Δ′′U ≡ 𝑢1 = 𝑣
1
; . . . 𝑢 𝑗 = 𝑣 ′𝑗 ; . . . 𝑢𝑛 = 𝑣𝑛 .

Case seq-assoc : ΔU ≡ (𝑒𝑞; 𝑒1); 𝑒2 −→ 𝑒𝑞; (𝑒
1
; 𝑒

2
) ≡ Δ′U . Split cases on where Δ occurs, which

as we’re precluding subst is either in 𝑒𝑞 or in 𝑒
1
or in 𝑒

2
.

Case Δ ⊆ 𝑒𝑞 i.e. 𝑒𝑞 −→R′ 𝑒𝑢 ′ Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑒1; 𝑒2).
Case Δ ⊆ 𝑒

1
i.e. 𝑒

1
−→R′ 𝑒 ′1 Join at Δ′′U ≡ 𝑒𝑞; (𝑒 ′1; 𝑒2).

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→R′ 𝑒 ′2 Join at Δ′′U ≡ 𝑒𝑞; (𝑒1; 𝑒 ′2).

Case Δ spans (𝑒𝑞; 𝑒
1
) or (𝑒𝑞; 𝑒

1
); 𝑒

2
via fail-elim. Join at fail.

Case eqn-float : ΔU ≡ 𝑣 = (𝑒𝑞; 𝑒
1
); 𝑒

2
−→ 𝑒𝑞; (𝑣 = 𝑒

1
; 𝑒

2
) ≡ Δ′U . Split cases on where Δ occurs,

which as we’re precluding subst is either in 𝑣 , 𝑒𝑞, 𝑒
1
or in 𝑒

2
.

Case Δ ⊆ 𝑣 i.e. 𝑣 −→R′ 𝑣 ′ Join at Δ′′U ≡ 𝑒𝑞; (𝑣 ′ = 𝑒
1
; 𝑒

2
).

Case Δ ⊆ 𝑒𝑞 i.e. 𝑒𝑞 −→R′ 𝑒𝑢 ′ Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑣 = 𝑒
1
; 𝑒

2
).

Case Δ ⊆ 𝑒
1
i.e. 𝑒

1
−→R′ 𝑒 ′1 Join at Δ′′U ≡ 𝑒𝑞; (𝑣 = 𝑒 ′

1
; 𝑒

2
).

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→R′ 𝑒 ′2 Join at Δ′′U ≡ 𝑒𝑞; (𝑣 = 𝑒

1
; 𝑒 ′

2
).

Case Δ spans (𝑒𝑞; 𝑒
1
) or 𝑣 = (𝑒𝑞; 𝑒

1
); 𝑒

2
via fail-elim. Join at fail.

Case choose : via Lemma C.7.

□

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:46 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Lemma C.7 (Under-choose). If Δ𝑐ℎ −→�choose Δ′𝑐ℎ and Δ𝑐ℎ ≡ 𝐸 [Δ] and Δ −→R̂ Δ′ then there exists

Δ′′𝑐ℎ such that Δ′𝑐ℎ −→→R Δ′′𝑐ℎ and 𝐸 [Δ′] −→�choose Δ′′𝑐ℎ .

Δ𝑐ℎ ≡ 𝐸 [Δ] 𝐸 [Δ′]

Δ′𝑐ℎ Δ′′𝑐ℎ

�choose
R

�choose
R

Proof. By the definition of choose we have

Δ𝑐ℎ ≡ SX [𝐶𝑋 [e
1

e
2
]] −→ SX [𝐶𝑋 [e

1
] 𝐶𝑋 [e

2
]] ≡ Δ′𝑐ℎ

Split cases on where Δ occurs

Case Δ ⊆ 𝑒
1
i.e. 𝑒

1
−→R 𝑒 ′

1
, so join at SX [𝐶𝑋 [e′

1
] 𝐶𝑋 [e

2
]].

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→R 𝑒 ′

2
, so join at SX [𝐶𝑋 [e

1
e
′
2
]].

Case Δ ⊆ e
1

e
2
i.e. e

1
e
2
−→R e

i
where 𝑒

3−𝑖 is fail so join at SX [𝐶𝑋 [e
i
]].

Case Δ ⊆ 𝐶𝑋 i.e. 𝐶𝑋 −→R 𝐶𝑋 ′ so join (via two R steps) at SX [CX
′[e

1
] CX

′[e
2
]].

Case Δ ⊆ 𝐶𝑋 [e
1

e
2
] i.e. 𝐶𝑋 [e

1
e
2
] −→R CX

′[e′
1

e
′
2
], so join at SX [CX

′[e′
1
] CX

′[e′
2
]].
□

C.2.3 Normalization.

Lemma C.8 (Under-N). Let R ′ = R − N − U. If ΔN −→N̂ Δ′N and ΔN ≡ 𝐸 [Δ] and Δ −→R̂′ Δ′
then exists Δ′′N such that Δ′N −→R′ Δ′′N and 𝐸 [Δ′] −→N̂ Δ′′N .

Proof. Split cases on the reduction rule used in ΔN −→N̂ Δ′N
Case exi-swap : i.e. N : ∃x . ∃y. e −→ ∃y. ∃x . e. Split cases on the position of Δ.
Case Δ ⊆ 𝑒 : i.e. 𝑒 −→R′ 𝑒 ′; join at ∃x . ∃y. e′.
Case Δ ⊆ (∃y. e) : i.e. 𝑦 eliminated via an exi-elim or eqn-elim ∃y. e −→R′ 𝑒 ′; join at ∃x . e′.
Case Δ ⊆ (∃x . ∃y. e) : i.e. 𝑥 eliminated via an exi-elim or eqn-elim ∃x . ∃y. e −→R′ ∃y. e′; join

at ∃y. e′.
Case exi-float : i.e. N : 𝑋 [∃x . e] −→ ∃x . 𝑋 [e]. Split cases on the position of Δ.
Case Δ ⊆ 𝑒 : i.e. 𝑒 −→R′ 𝑒 ′; join at ∃x . 𝑋 [e′].
Case Δ ⊆ (∃x . e) : i.e. 𝑥 eliminated via an exi-elim or eqn-elim ∃x . e −→R′ 𝑒 ′; join at 𝑋 [e′].
Case Δ ⊆ 𝑋 : i.e. 𝑋 [∃x . e] −→R′ X

′[∃x . e′]; join at ∃x .X ′[e′].
Case subst-var : i.e. N : 𝑋 [x = y] −→ (𝑋 {y/x}) [x = y]. The only possible position of Δ is

Δ ⊆ 𝑋 i.e. 𝑋 [𝑥 = 𝑦] −→R′ 𝑋 ′[𝑥 = 𝑦]; join at (X ′{y/x}) [x = y].
Case var-swap : i.e. N : x = y −→ y = x. Impossible to have Δ ⊆ x = y.

□

C.2.4 Garbage Collection.

Lemma C.9 (Under-G). If ΔG −→Ĝ Δ′G and ΔG ≡ 𝐸 [Δ] and Δ −→R̂ Δ′ then there exists Δ′′G such

that Δ′G
𝜖−→R Δ′′G and 𝐸 [Δ′] −→Ĝ Δ′′G .

Proof. Let ΔG −→Ĝ Δ′G be the G redex and split cases on the reduction rule used in the step.

Case val-elim : i.e. G : v; e −→ e. Split cases on position of Δ
Case Δ ⊆ v : Join at e.

Case Δ ⊆ e : i.e. 𝑒 −→R 𝑒 ′; join at e
′
.

Case Δ ⊆ v; e : i.e. 𝑣 ; 𝑒 −→
fail-elim

fail as 𝑒 ≡ 𝑋 [fail]; join at fail.

Case fail-elim : i.e. G : 𝑋 [fail] −→ fail. Then 𝑋 [fail] −→R X
′[fail] hence join at fail.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:47

Case exi-elim : i.e. G : ∃𝑦, x, 𝑧. e −→ ∃𝑦, 𝑧. e; (We can generalize exi-elim to first use a sequence

of exi-swap to bring the x binder to the end before applying exi-elim as this does not change

the order of the remaining binders.) Split cases on position of Δ
Case Δ ⊆ e : i.e. 𝑒 −→R 𝑒 ′; join at ∃𝑦, 𝑧. e′.
Case Δ ⊆ ∃𝑦, x, 𝑧. e : i.e. via exi-swap; join at ∃𝑦, 𝑧. e.

Case eqn-elim : i.e. G : ∃x . 𝑋 [x = v; e] −→ 𝑋 [e] where 𝑥 ∉ fvs(𝑋 [v; e]). (We can generalize

exi-elim to first use a sequence of exi-swap to bring the x binder to the end before applying

eqn-elim as this does not change the order of the remaining binders.) Split cases on position

of Δ
Case Δ ⊆ v : i.e. 𝑣 −→R 𝑣 ′; join at 𝑋 [e].
Case Δ ⊆ e : i.e. 𝑒 −→R 𝑒 ′ (where fvs(𝑒 ′) = fvs(𝑒)); join at 𝑋 [e′].
Case Δ ⊆ 𝑋 : i.e. 𝑋 [x = v; e] −→R X

′[x = v; e] (where fvs(𝑋 ′) = fvs(𝑋)); join at X
′[e].

□

C.2.5 Choice.

Lemma C.10 (Under-C). If ΔC −→Ĉ Δ′C and ΔC ≡ 𝐸 [Δ] and Δ −→R Δ′ then there exists Δ′′C such

that Δ′C
𝜖−→R Δ′′C and 𝐸 [Δ′] −→Ĉ Δ′′C .

Proof. Split cases on the rule used in ΔC −→Ĉ Δ′C .

Case one-fail (symmetric all-fail) Impossible as Δ ̸⊆ ΔC .
Case one-value : Here ΔC −→C Δ′C ≡ one{v} −→ v. Hence Δ ⊆ v i.e. R : v −→ v

′
, so join at

v
′
.

Case all-value : Here ΔC −→C Δ′C ≡ all{v} −→ ⟨v⟩. Hence Δ ⊆ v i.e. R : v −→ v
′
, so join at

(v ′).
Case one-choice : Here ΔC −→C Δ′C ≡ one{v e} −→ v. If Δ ⊆ v, i.e. R : v −→ v

′
then join

at v
′
. If Δ ⊆ e, i.e. R : e −→ e

′
then join at v.

Case all-choice : Here ΔC −→C Δ′C ≡ all{v
1

. . . v
n
} −→ ⟨v

1
,. . ., v

n
⟩. If Δ ⊆ v

i
ie R : v

i
−→

v
′
i
then join at ⟨v

1
,. . ., v ′

i
,. . ., v

n
⟩.

Case choose-l : (symmetric choose-r) Here ΔC −→C Δ′C ≡ fail e −→ 𝑒 . Here, Δ ⊆ 𝑒 , i.e.

R : 𝑒 −→ 𝑒 ′ so join at e
′
.

Case choose-assoc : i.e. ΔC −→C Δ′C ≡ (𝑒1 𝑒2) 𝑒3 −→ 𝑒
1
(𝑒

2
𝑒
3
). Split cases on where Δ occurs.

Case Δ ⊆ 𝑒
1
, i.e. R : 𝑒

1
−→ 𝑒 ′

1
so join at 𝑒 ′

1
(𝑒

2
𝑒
3
).

Case Δ ⊆ 𝑒
2
, i.e. R : 𝑒

2
−→ 𝑒 ′

2
so join at 𝑒

1
(𝑒 ′

2
𝑒
3
).

Case Δ ⊆ 𝑒
3
, i.e. R : 𝑒

3
−→ 𝑒 ′

3
so join at 𝑒

1
(𝑒

2
𝑒 ′
3
).

Case Δ ≡ e
1

fail, i.e. R : e
1

fail −→ 𝑒
1
so join at 𝑒

1
𝑒
3
.

Case Δ ≡ fail e
2
, i.e. R : fail e

2
−→ 𝑒

2
so join at 𝑒

2
𝑒
3
.

□

C.3 Lemmas for Substitution and Unification
Lemma C.11 (Substitution). Let R ′ ≡ R −U. If Δ −→R̂′ Δ′ then Δ{𝑣/𝑥} −→R̂′ Δ′{𝑣/𝑥}.

Proof. By induction on the structure of Δ, splitting cases on the reduction rule used and using

the fact that e, v, 𝑋,𝐶𝑋, SX are all closed under value substitution. □

Lemma C.12 (Subst-Swap). If 𝑒 −→
subst

𝑒
1
and 𝑒 −→

swap
𝑒
2
then exists 𝑒 ′ such that 𝑒

1
, 𝑒

2
−→→U 𝑒 ′.

Proof. Let Δ
1
−→
subst

Δ′
1
and Δ

2
−→
swap

Δ′
2
be the respective reducts. Via Lemma C.4 it suffices

to consider two cases:

Case swap under subst : i.e. Δ
2
⊆ Δ

1
Let Δ

1
≡ 𝑋 [x =v]; split cases on Δ

2
position.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:48 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Case Δ
2
≡ x =v : via rule var-swap:

𝑋 [𝑥 = 𝑦] 𝑋 {𝑦/𝑥}[𝑥 = 𝑦]

𝑋 {𝑦/𝑥}[𝑦 = 𝑥]

𝑋 [𝑦 = 𝑥] 𝑋 {𝑥/𝑦}[𝑦 = 𝑥]

U

R′

R′

U
U

Case Δ
2
⊆ 𝑣 : i.e. 𝑣 −→

swap
𝑣 ′.

𝑋 [𝑥 = 𝑣] 𝑋 {𝑣/𝑥}[𝑥 = 𝑣]

𝑋 [𝑥 = 𝑣 ′] 𝑋 {𝑣 ′/𝑥}[𝑥 = 𝑣 ′]

subst

swap

subst

swap (repeat at each 𝑣)

Case Δ
2
⊆ 𝑋 : i.e. 𝑋 ≡ 𝑋 ′[. . . Δ

2
. . .]. Let 𝑢 ′ ≡ 𝑢{𝑣/𝑥}, split cases on swap RHS.

Case same variable : Δ
2
≡ u=x where 𝑢 is HNF or variable.

𝑋 ′[. . . 𝑢 = 𝑥 . . .] [𝑥 = 𝑣] 𝑋 ′{𝑣/𝑥}[. . . 𝑢 ′ = 𝑣 . . .] [𝑥 = 𝑣]

•

𝑋 ′[. . . 𝑥 = 𝑢 . . .] [𝑥 = 𝑣] 𝑋 ′{𝑣/𝑥}[. . . 𝑣 = 𝑢 ′ . . .] [𝑥 = 𝑣]

subst

*-swap

subst

𝐿𝑒𝑚𝑚𝑎 𝐶.18

Case different variable : Δ
2
≡ u=y where 𝑢 is HNF or variable.

𝑋 ′[. . . 𝑢 = 𝑦 . . .] [𝑥 = 𝑣] 𝑋 ′{𝑣/𝑥}[. . . 𝑢 ′ = 𝑦 . . .] [𝑥 = 𝑣]

𝑋 ′[. . . 𝑦 = 𝑢 . . .] [𝑥 = 𝑣] 𝑋 ′{𝑣/𝑥}[. . . 𝑦 = 𝑢 ′ . . .] [𝑥 = 𝑣]

subst

swap

subst

swap

Case subst under swap : i.e. Δ
1
⊆ Δ

2
Let Δ

2
≡ hnf =x, so Δ

1
⊆ hnf , i.e. hnf −→

subst
hnf

′
, so

join at x = hnf
′
.

hnf = 𝑥 hnf
′ = 𝑥

𝑥 = hnf 𝑥 = hnf
′

subst

swap swap

subst

□

Definition C.13 (Levels). Let 𝑒𝑞
1
≡ x

1
=v

1
and 𝑒𝑞

2
≡ x

2
=v

2
be two equations in a term 𝑒 . We say

𝑒𝑞
2
is under 𝑒𝑞

1
if 𝑒𝑞

2
⊆ 𝑋 and 𝑋 [𝑒𝑞

1
] ⊆ 𝑒 .

Lemma C.14 (Subst-Subst). If 𝑒 −→
subst

𝑒
1
and 𝑒 −→

subst
𝑒
2
then 𝑒

1
↓U 𝑒

2
.

Proof. Suppose that the redex 𝑒 −→ 𝑒𝑖 is using the equation 𝑒𝑞𝑖 ≡ x
i
=v

i
. Split cases on

Case 𝑒𝑞
1
is under 𝑒𝑞

2
and 𝑒𝑞

2
is under 𝑒𝑞

1
: Lemma C.15 completes the proof.

Case 𝑒𝑞
1
is under 𝑒𝑞

2
and 𝑒𝑞

2
is not under 𝑒𝑞

1
: Lemma C.16 completes the proof.

Case 𝑒𝑞
1
is not under 𝑒𝑞

2
and 𝑒𝑞

2
is under 𝑒𝑞

1
: Lemma C.16 completes the proof.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:49

Case 𝑒𝑞
1
is not under 𝑒𝑞

2
and 𝑒𝑞

2
is not under 𝑒𝑞

1
: The substitutions are disjoint, so Lemma C.4

completes the proof.

□

Lemma C.15 (Subst-Same). If 𝑒 −→
subst

𝑒
1
using 𝑒𝑞

1
and 𝑒 −→

subst
𝑒
2
using 𝑒𝑞

2
such that 𝑒𝑞

1
is

under 𝑒𝑞
2
and 𝑒𝑞

2
is under 𝑒𝑞

1
, then 𝑒

1
↓U 𝑒

2
.

Proof. Let 𝑒𝑞
1
≡ x = u and 𝑒𝑞

2
≡ y = v. As 𝑒𝑞

1
is under 𝑒𝑞

2
and 𝑒𝑞

2
is under 𝑒𝑞

1
, we have

𝑒 ≡ 𝑋 [x = u; b; y = w] where 𝑏 ≡ 𝑥
1
= 𝑤

1
; . . . ;𝑥𝑘 = 𝑤𝑘 . Let us split cases on whether 𝑥 ≡ 𝑦

Case 𝑥 ≡ 𝑦 : Now, we can further assume that we can use seq-assoc and seq-swap to ensure

that each 𝑥𝑖 ≡ 𝑥 (by swapping the other equations to the left of 𝑒𝑞
1
or right of 𝑒𝑞

2
if 𝑥𝑖 < 𝑥 or

𝑥𝑖 > 𝑥 respectively). By the well-behaved assumption, neither𝑢 or 𝑣 are _-terms, as otherwise,

substituting one equation for the other would yield a problematic equation. Hence, we can

join 𝑒
1
and 𝑒

2
using Lemma C.18 via the context 𝑋 ′ ≡ 𝑋 {z/x}[𝑥 = 𝑧;□] and 𝑏 ′ ≡ b{z/x}

where 𝑧 is a fresh variable.

𝑋 [𝑥 = 𝑢;𝑏;𝑥 = 𝑣]

𝑋 {𝑢/𝑥}[𝑥 = 𝑢; 𝑏{𝑢/𝑥}; 𝑢 = 𝑣] 𝑋 {𝑣/𝑥}[𝑣 = 𝑢; 𝑏{𝑣/𝑥}; 𝑥 = 𝑣]

𝑋 ′{𝑢/𝑧}[𝑏 ′{𝑢/𝑧}; 𝑢 = 𝑣] 𝑋 ′{𝑣/𝑧}[𝑣 = 𝑢; 𝑏 ′{𝑣/𝑧}]

•

𝑒𝑞1 𝑒𝑞2

swap𝑥=𝑣over 𝑣=𝑤𝑖≡

𝐿𝑒𝑚𝑚𝑎 𝐶.18

Case 𝑥 . 𝑦 : Let us split cases on whether 𝑥,𝑦 appear in fvs(𝑢), fvs(𝑣) respectively.
Case 𝑥 ∉ fvs(𝑣), 𝑦 ∉ fvs(𝑢) :

𝑋 [𝑥 = 𝑢; 𝑏; 𝑦 = 𝑣] 𝑋 {𝑢/𝑥}[𝑥 = 𝑢; 𝑏{𝑢/𝑥}; 𝑦 = 𝑣]

𝑋 {𝑣/𝑦}[𝑥 = 𝑢; 𝑏{𝑣/𝑦}; 𝑦 = 𝑣] 𝑋 {𝑢/𝑥, 𝑣/𝑦}[𝑥 = 𝑢; 𝑏{𝑢/𝑥, 𝑣/𝑦}; 𝑦 = 𝑣]

𝑒𝑞2

𝑒𝑞1

𝑒𝑞2

𝑒𝑢1

Case 𝑥 ∉ fvs(𝑣), 𝑦 ∈ fvs(𝑢) :

𝑋 [𝑥 = 𝑢; 𝑏; 𝑦 = 𝑣] 𝑋 {𝑢/𝑥}[𝑥 = 𝑢; 𝑏{𝑢/𝑥}; 𝑦 = 𝑣]

𝑋 {𝑣/𝑦}[𝑥 = 𝑢{𝑣/𝑦}; 𝑏{𝑣/𝑦}; 𝑦 = 𝑣] 𝑋 {𝑢{𝑣/𝑦}/𝑥, 𝑣/𝑦}[𝑥 = 𝑢{𝑣/𝑦}; 𝑏{𝑢{𝑣/𝑦}/𝑥, 𝑣/𝑦}; 𝑦 = 𝑣]

𝑒𝑞2

𝑒𝑞1

𝑒𝑞2

𝑒𝑞1

Case 𝑥 ∈ fvs(𝑣), 𝑦 ∉ fvs(𝑢) : Symmetric to previous case.

Case 𝑥 ∈ fvs(𝑣), 𝑦 ∈ fvs(𝑢) : Split cases on whether 𝑢 and 𝑣 are HNF values or not.

Case either 𝑢 or 𝑣 are HNF Join at fail if u-occurs, else impossible due to well behaved.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:50 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Case neither 𝑢 nor 𝑣 are HNF In this case, we have 𝑥 ≡ 𝑣 and 𝑦 ≡ 𝑢. WLOG assume that

𝑥 ≺ 𝑦 (the other case is symmetric) so we can join 𝑒
1
and 𝑒

2
using the following diagram.

𝑋 [𝑥 = 𝑦; 𝑏; 𝑦 = 𝑥] 𝑋 {𝑥/𝑦}[𝑥 = 𝑥 ; 𝑏{𝑥/𝑦}; 𝑦 = 𝑥]

𝑋 {𝑥/𝑦}[𝑥 = 𝑥 ; 𝑏{𝑥/𝑦}; 𝑥 = 𝑦]

𝑋 {𝑦/𝑥}[𝑥 = 𝑦; 𝑏{𝑦/𝑥}; 𝑦 = 𝑦] 𝑋 {𝑦/𝑥}[𝑦 = 𝑦; 𝑏{𝑦/𝑥}; 𝑥 = 𝑦]

•

𝑒𝑞2 (𝑦=𝑥)

𝑒𝑞1 (𝑥=𝑦)

var-swap

subst(𝑥=𝑦)

seq-swap seq-swap

□

Lemma C.16 (Subst-Diff). If 𝑒 −→
subst

𝑒
1
using 𝑒𝑞

1
and 𝑒 −→

subst
𝑒
2
using 𝑒𝑞

2
such that 𝑒𝑞

1
is

not under 𝑒𝑞
2
and 𝑒𝑞

2
is under 𝑒𝑞

1
, then 𝑒

1
↓U 𝑒

2
.

Proof. Here, we have 𝑒 ≡ 𝑋
1
[...𝑋

2
[𝑥

2
= 𝑣

2
] ...] [𝑥

1
= 𝑣

1
] where the substitution with x

2
= v

2

does not affect 𝑋
1
, 𝑥

1
, 𝑣

1
. Split cases on whether 𝑥

1
≡ 𝑥

2
.

Case 𝑥
1
≡ 𝑥

2
≡ 𝑥 : By well-behaved we have 𝑥 ∉ fvs(𝑣

1
), 𝑥 ∉ fvs(𝑣

2
), and neither 𝑣

1
nor 𝑣

2
are

_-terms, as otherwise, substituting one equation for the other would yield a problematic

equation. Hence, we can join 𝑒
1
and 𝑒

2
using Lemma C.17 on the sub-terms𝑋

2
{𝑣

1
/𝑥}[𝑣

1
= 𝑣

2
]

and 𝑋
2
{𝑣

2
/𝑥}[𝑣

1
= 𝑣

2
].

𝑋
1
[. . . 𝑋

2
[𝑥 = 𝑣

2
] . . .] [𝑥 = 𝑣

1
] 𝑋

1
[. . . 𝑋

2
{𝑣

2
/𝑥}[𝑥 = 𝑣

2
] . . .] [𝑥 = 𝑣

1
]

𝑋
1
{𝑣

1
/𝑥}[. . . 𝑋

2
{𝑣

1
/𝑥}[𝑣

1
= 𝑣

2
] . . .] [𝑥 = 𝑣

1
] • 𝑋

1
{𝑣

1
/𝑥}[. . . 𝑋

2
{𝑣

2
/𝑥}[𝑣

1
= 𝑣

2
] . . .] [𝑥 = 𝑣

1
]

𝑒𝑞1

𝑒𝑞2

𝑒𝑞1

𝐿𝑒𝑚𝑚𝑎 𝐶.17

Case 𝑥
1
. 𝑥

2
: Let 𝑣 ′

1
≡ 𝑣

1
{𝑣

2
/𝑥

2
} and 𝑣 ′

2
≡ 𝑣

2
{𝑣

1
/𝑥

1
}. Split cases on whether 𝑥𝑖 ∈ fvs(𝑣3−𝑖).

Case 𝑥
2
∉ fvs(𝑣

1
)

𝑋
1
[. . . 𝑋

2
[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
] 𝑋

1
[. . . 𝑋

2
{𝑣

2
/𝑥

2
}[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑋
1
{𝑣

1
/𝑥

1
}[. . . 𝑋

2
{𝑣

1
/𝑥}[𝑥

2
= 𝑣 ′

2
] . . .] [𝑥

1
= 𝑣

1
] 𝑋

1
{𝑣

1
/𝑥}[. . . 𝑋

2
{𝑣 ′

2
/𝑥

2
, 𝑣

1
/𝑥

1
}[𝑥

2
= 𝑣 ′

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑒𝑞1

𝑒𝑞2

𝑒𝑞2

𝑒𝑞1

Case 𝑥
2
∈ fvs(𝑣

1
), 𝑥

1
∉ fvs(𝑣

2
)

𝑋
1
[. . . 𝑋

2
[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
] 𝑋

1
[. . . 𝑋

2
{𝑣

2
/𝑥

2
}[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑋
1
{𝑣

1
/𝑥

1
}[. . . 𝑋

2
{𝑣

1
/𝑥

1
}[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
] 𝑋

1
{𝑣

1
/𝑥

1
}[. . . 𝑋

2
{𝑣

1
/𝑥

1
, 𝑣

2
/𝑥

2
}[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑋
1
{𝑣

1
/𝑥

1
}[. . . 𝑋

2
{𝑣 ′

1
/𝑥

1
, 𝑣

2
/𝑥

2
}[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑒𝑞1

𝑒𝑞2

𝑒𝑞1

𝑒𝑞2
𝑒𝑞2

Case 𝑥
2
∈ fvs(𝑣

1
), 𝑥

1
∈ fvs(𝑣

2
) Split cases on whether 𝑣

1
, 𝑣

2
are HNF values or not.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:51

Case either 𝑣
1
or 𝑣

2
are HNF In this case, we get the below diagram where, since 𝑥

2
∈

fvs(𝑣 ′
2
), the term 𝑥

2
= 𝑣 ′

2
either steps to fail (and so we can join at fail) or the term

violates the well-behaved assumption.

𝑋
1
[. . . 𝑋

2
[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
] 𝑋

1
[. . . 𝑋

2
{𝑣

2
/𝑥

2
}[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑋
1
{𝑣

1
/𝑥

1
}[. . . 𝑋

2
{𝑣

1
/𝑥

1
}[𝑥

2
= 𝑣 ′

2
] . . .] [𝑥

1
= 𝑣

1
] 𝑋

1
{𝑣

1
/𝑥

1
}[. . . 𝑋

2
{𝑣

1
/𝑥

1
, 𝑣 ′

2
/𝑥

2
}[𝑥

2
= 𝑣 ′

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑒𝑞1

𝑒𝑞2

𝑒𝑞1

Case neither 𝑣
1
nor 𝑣

2
are HNF In this case 𝑣

1
≡ 𝑥

2
and 𝑣

2
≡ 𝑥

1
, and we can join 𝑒

1
and

𝑒
2
as shown in the below diagram.

𝑋
1
[. . . 𝑋

2
[𝑥

2
= 𝑥

1
] . . .] [𝑥

1
= 𝑥

2
] 𝑋

1
[. . . 𝑋

2
{𝑥

1
/𝑥

2
}[𝑥

2
= 𝑥

1
] . . .] [𝑥

1
= 𝑥

2
]

𝑋
1
{𝑥

2
/𝑥

1
}[. . . 𝑋

2
{𝑥

2
/𝑥

1
}[𝑥

2
= 𝑥

2
] . . .] [𝑥

1
= 𝑥

2
]

𝑒𝑢1 (𝑥1=𝑥2)

𝑒𝑢2 (𝑥2=𝑥1)

𝑒𝑢1 (𝑥1=𝑥2)

□

Unification Lemmas The next two unification lemmas state that our rewrite rules encode classical

unification algorithms. A value-equation is an equation of the form 𝑣
1
= 𝑣

2
i.e. where both sides are

values. A block is a sequence of value-equations.

Lemma C.17 (Unify). If 𝑧 ∩ (fvs(𝑢) ∪ fvs(𝑣)) = ∅, 𝑢 and 𝑣 are not _-terms, and 𝑒, 𝑒 ′ are blocks then

𝑋 {𝑢/𝑧}[𝑒{𝑢/𝑧}; 𝑒 ′;𝑢 = 𝑣] ↓U 𝑋 {𝑣/𝑧}[𝑒 ′;𝑢 = 𝑣 ; 𝑒{𝑣/𝑧}]

Proof. Let 𝑋𝑤 ≡ 𝑋 {𝑤/𝑧} and 𝑒𝑤 ≡ 𝑒{𝑤/𝑧}. The proof follows by induction on the triple

(♯free, ♯size, ♯𝑛) where

♯free � ♯fvs(𝑢) + ♯fvs(𝑣)
♯size � Σ𝑛𝑖=1size(𝑢𝑖) + size(𝑣𝑖)

♯𝑛 � the cardinality of 𝑢, 𝑣

In the base case, the sequences 𝑢, 𝑣 are empty, and so we trivially have 𝑋 [𝑒 ′; 𝑒] ↓U 𝑋 [𝑒 ′; 𝑒] by
repeated applications of seq-swap as 𝑒, 𝑒 ′ are blocks. In the inductive case, assume that the sequences

are non-empty, and split cases on the first equation 𝑢
1
= 𝑣

1
.

Case hnf
1
= hnf

2
with incompatible values: Here,

𝑋𝑢 [𝑒𝑢 ; 𝑒 ′; hnf
1
= hnf

2
;𝑢 ′ = 𝑣 ′] −→

u-fail
𝑋𝑢 [. . . ; fail; . . .]

and

𝑋𝑣 [𝑒 ′; hnf
1
= hnf

2
;𝑢 ′ = 𝑣 ′; 𝑒𝑣] −→u-fail

𝑋𝑣 [. . . ; fail; . . .]

after which we can join at fail via fail-elim.

Case ⟨u
1
,. . ., u

k
⟩ = ⟨v

1
,. . ., v

k
⟩ with tuples of the same arity 𝑘 : use u-tup to get equations per

component and join using the induction hypothesis, which is well-founded as the ♯size is

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:52 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

strictly smaller:

𝑋𝑢 [𝑒𝑢 ; 𝑒 ′; ⟨𝑢1, ..., 𝑢𝑘⟩ = ⟨𝑣1, ..., 𝑣𝑘⟩;𝑢 ′ = 𝑣 ′] 𝑋𝑢 [𝑒𝑢 ; 𝑒 ′;𝑢1 = 𝑣
1
, ..., 𝑢𝑘 = 𝑣𝑘 ;𝑢

′ = 𝑣 ′]

•

𝑋𝑣 [𝑒 ′; ⟨𝑢1, ..., 𝑢𝑘⟩ = ⟨𝑣1, ..., 𝑣𝑘⟩;𝑢 ′ = 𝑣 ′; 𝑒𝑣] 𝑋𝑣 [𝑒 ′;𝑢1 = 𝑣
1
, ..., 𝑢𝑘 = 𝑣𝑘 ;𝑢

′ = 𝑣 ′; 𝑒𝑣]

u-tup

u-tup

𝐼𝐻

Case x = y (where wlog 𝑥 < 𝑦 as else use var-swap to make it so) use subst to replace all

occurrences of 𝑥 with 𝑦, and then apply the IH on the remaining 𝑛 − 1 equations 𝑢 ′ = 𝑣 ′.
Note that the induction is well-founded as in this case ♯free and ♯size are unchanged but the

number of equations decreases by one. In the below, 𝑢 ′′ ≡ 𝑢 ′{𝑦/𝑥} and 𝑣 ′′ ≡ 𝑣 ′{𝑦/𝑥}.

𝑋𝑢 [𝑒𝑢 ; 𝑒 ′;𝑥 = 𝑦;𝑢 ′ = 𝑣 ′] 𝑋𝑢′′ [𝑒𝑢′′ ; 𝑒 ′{𝑦/𝑥}; 𝑥 = 𝑦; 𝑢 ′′ = 𝑣 ′′]

•

𝑋𝑣 [𝑒 ′; 𝑥 = 𝑦; 𝑢 ′ = 𝑣 ′; 𝑒𝑣] 𝑋𝑣′′ [𝑒 ′{𝑦/𝑥}; 𝑥 = 𝑦; 𝑢 ′′ = 𝑣 ′′; 𝑒𝑣′′]

subst

subst

𝐼𝐻

Case x = h where ℎ is an HNF value and 𝑥 ∉ fvs(ℎ): use subst to replace all occurrences of 𝑥

withℎ, and then apply the IH on the remaining 𝑛−1 equations𝑢 ′ = 𝑣 ′. Note that the induction
is well-founded in this case as ♯free decreases since 𝑥 is removed from the free variables of

𝑢 ′ and 𝑣 ′ and 𝑋𝑢 and 𝑋𝑣 even though the ♯size may increase due to the substitution. In the

below, 𝑢 ′′ ≡ 𝑢 ′{ℎ/𝑥} and 𝑣 ′′ ≡ 𝑣 ′{ℎ/𝑥}.

𝑋𝑢 [𝑒𝑢 ; 𝑒 ′;𝑥 = ℎ;𝑢 ′ = 𝑣 ′] 𝑋𝑢′′ [𝑒𝑢′′ ; 𝑒 ′{ℎ/𝑥}; 𝑥 = ℎ; 𝑢 ′′ = 𝑣 ′′]

•

𝑋𝑣 [𝑒 ′; 𝑥 = ℎ; 𝑢 ′ = 𝑣 ′; 𝑒𝑣] 𝑋𝑣′′ [𝑒 ′{ℎ/𝑥}; 𝑥 = ℎ; 𝑢 ′′ = 𝑣 ′′; 𝑒𝑣′′]

subst

subst

𝐼𝐻

Case h = x where ℎ is an HNF value and 𝑥 ∉ fvs(ℎ): we use hnf-swap on both sides after which

the proof follows as in the previous case.

Case x = v where 𝑥 ∈ fvs(𝑣): either join at fail via u-occurs or violates the well-behaved

assumption.

□

Lemma C.18 (Unify-Flip). If 𝑧 ∩ (fvs(𝑢) ∪ fvs(𝑣)) = ∅, 𝑢 and 𝑣 are not _-terms, and 𝑒, 𝑒 ′ are blocks
then

𝑋 {𝑢/𝑧}[𝑒{𝑢/𝑧}; 𝑒 ′;𝑢 = 𝑣] ↓U 𝑋 {𝑣/𝑧}[𝑒 ′; 𝑣 = 𝑢; 𝑒{𝑣/𝑧}]

Proof. Same as Lemma C.17 except using hnf-swap and var-swap to make the equations the

same on both sides. □

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:53

Block b ::= {v = r ; b}ℓ | {𝑏;𝑏}ℓ | 𝑡
RHS r ::= b | t

Tail t ::= v | v
1

v
2
| ∃x . e | e

1
e
2
| one{e} | all{e} | fail

Fig. 14. Labeled Blocks

C.4 Unification is Confluent
Lemma C.19 (U-Confluent). U is confluent.

Proof. We prove thatU is confluent via the following strategy inspired by labeled reductions

[Lévy 1976]. LetU𝑘 which is a subset ofU that only applies reductions to terms that are under less

than 𝑘 _s.

(1) First, we show thatU𝑘 is locally confluent for all 𝑘 (Lemma C.21).

(2) Second, we show thatU𝑘 is terminating for all 𝑘 (Lemma C.23).

(3) Third, consequently, by Lemma B.14 we obtain thatU𝑘 is confluent for all 𝑘 .

(4) Finally, we show thatU is confluent by using the largest 𝑘 in two traces, to join two arbitrary

sequences ofU reductions Lemma C.22.

□

Definition C.20 (𝑘-Unification). A 𝑘-labeled term is a term where each subterm occurring under

at most 𝑘 _’s is marked by a special label ℓ . LetU𝑘 be defined as the set of allU reductions where:

(1) theU-redex is a ℓ-labeled or occurs under ⩽ 𝑘 _s, and (2) the subst preserves labels.

Lemma C.21. U𝑘 is locally confluent.

Proof. For simplicity, we directly prove thatU is locally confluent (Lemma C.28). The proof

carries over toU𝑘 as the only requiredU-reductions under > 𝑘 _s are on labeled subterms. □

We can now prove that any twoU𝑘 reductions (and henceU reductions) can be joined.

Lemma C.22 (U𝑘 -join). If 𝑒 −→→U𝑖
𝑒𝑖 and 𝑒 −→→U𝑗

𝑒 𝑗 then there exists 𝑒 ′ such that 𝑒𝑖 , 𝑒 𝑗 −→→U 𝑒 ′.

Proof. Let 𝑘 = max(𝑖, 𝑗). AsU𝑖 ,U𝑗 ⊆ U𝑘 we have 𝑒 −→→U𝑘
𝑒𝑖 and 𝑒 −→→U𝑘

𝑒 𝑗 . By Lemma C.23

and Lemma C.21 and Lemma B.14,U𝑘 is confluent, hence there exists 𝑒 ′ such that 𝑒𝑖 , 𝑒 𝑗 −→→U𝑘
𝑒 ′,

after whichU𝑘 ⊆ U completes the proof. □

Lemma C.23. U𝑘 is Noetherian.

Proof. By induction on 𝑘 .

Base case (𝑘 ≡ 0) via Lemma C.27.

Inductive case Assume the induction hypothesis that U𝑘 is Noetherian and prove U𝑘+1 is
Noetherian. Let 𝜎 be aU𝑘+1 reduction sequence 𝑒 −→ We will prove that 𝜎 is finite. By

the IH there is some finite prefix of the trace 𝑒 −→→U𝑘+1 𝑒
′
after which there are no moreU

steps at level⩽ 𝑘 . Note that 𝑒 ′ is finite and of the form . . . (_x
1
. e

1
) . . . (_x

n
. e

n
) . . . comprising

𝑛 disjoint _ terms. EveryU𝑘+1 reduction from 𝑒 ′ is aU𝑘 reduction from some e
i
, that occur

“in parallel” i.e. without influencing each other, and which can be sequenced to get aU𝑘+1
reduction sequence. Again, by the induction hypothesis, each of these reduction sequences

(for each 𝑒𝑖) is finite, and hence their sequencing is finite, hence 𝜎 must be finite.

□

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:54 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Labeled Blocks We prove the base case of Lemma C.23 by stratifying expressions into labeled

blocks, tails, rhs and expressions as shown in Fig. 14. A tail is a term that is “inert” for the purposes

ofU
0
reduction: namely a value, application, existential, one, all or choice. An rhs is either a block

or a tail (which includes a value). A labeled block is a sequence of equations v = r of a value and

an RHS r followed by a tail t. We assume each block carries a unique “ghost” label ℓ (that will be

used to prove termination). In any block 𝑏, for any two labels ℓ
1
and ℓ

2
we write ℓ

1
≺𝑏 ℓ

2
if the

block labelled by ℓ
2
occurs inside (under) the block labelled by ℓ

1
in 𝑏. We will use 𝑏ℓ to denote the

(unique) sub-block of 𝑏 labeled by ℓ . For rewrites like choose, seq-assoc, seq-swap and eqn-float, we

assume that the rewritten term is given a fresh set of distinct block labels. For rewrites with u-tup,

we assume fresh labels are given to the new (inner) blocks created by tuple matching equations.

All otherU rewrites preserve blocks or delete them, so we assume that the same labels carry over

to the rewritten terms.

Lemma C.24. seq-swap strongly postpones afterU.

Proof. Split cases on each reduction of U; the diamond is completed as the rules are non-

overlapping. □

Definition C.25 (Elimination). We say a reduction eliminates a variable 𝑥 from a block 𝑏 if the

reduction is (1) a subst reduction spanning 𝑏 or an enclosing block (2) using an equation x = v A

reduction sequence eliminates a variable 𝑥 from a block 𝑏 if there is some reduction in the sequence

that eliminates 𝑥 from 𝑏, and the sequence contains no subsequent subst reductions spanning any

block strictly enclosing 𝑏.

Lemma C.26. U
0
is Noetherian for all blocks b.

Proof. We prove that for any term b that it is only possible to take finitely manyU
0
steps from

b. Let 𝜎 � 𝑏 −→ 𝑏
1
−→ 𝑏

2
−→ . . . be aU

0
reduction sequence starting at 𝑏. Write 𝜎𝑖 for the prefix

𝑏 −→ . . . −→ 𝑏𝑖 . We will show that 𝜎 must be finite. LetU ′
0
� U

0
− seq-swap. As seq-swap strongly

postpones afterU Lemma C.24, any infinite 𝜎 can be translated to a either: (a) A sequence with a

finite prefix ofU ′
0
reductions followed by infinitely many seq-swap, or (b) An infinite sequence of

U ′
0
reductions. Next, we show neither case is possible.

Case (a) This case is ruled out by the ordering restriction on seq-swap which ensures that after

the finite prefix ofU ′
0
reductions, we can only keep swapping equations till they reach a canonical

linear order after which no further swaps are possible.

Case (b) Next, we (ignore seq-swap to) show there is no infinite sequence ofU ′
0
reductions. To

do so, suppose that 𝜎 is such a reduction sequence. For each prefix (𝜎𝑖 , 𝑒𝑖) we define the following
lexicographic termination metric

♯(𝜎𝑖 , 𝑏𝑖) � (♯choose(𝑏𝑖), ♯semi(𝑏𝑖), cands(𝜎𝑖 , 𝑏𝑖), size(𝑏𝑖), ♯swaps(𝑏𝑖))

where

choose(𝑏𝑖) � choose redexes in 𝑏𝑖

semi(𝑏𝑖) � seq-assoc or eqn-float redexes in 𝑏𝑖

cands(𝜎𝑖 , 𝑒𝑖) � [. . . ℓ ↦→ ♯cand(𝜎𝑖 , 𝑏𝑖 , ℓ) . . . | ℓ ∈ 𝑏𝑖]
where labels are ordered by ≺𝑏𝑖

size(𝑏𝑖) � size of the block 𝑏𝑖

swaps(𝑏𝑖) � var-swap redexes in 𝑏𝑖

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:55

and where, for a finite reduction (prefix) 𝜎 ′ block 𝑏 and label ℓ

cand(𝜎 ′, 𝑏, ℓ) � fvs(𝑏ℓ) − elim(𝜎 ′, 𝑏, ℓ)
elim(𝜎 ′, 𝑏, ℓ) � {𝑥 | 𝜎 ′ eliminates 𝑥 from 𝑏ℓ }

The unification reductions preserve the following invariant: once a variable 𝑥 has been eliminated

from a block, it appears at most once in the block as an LHS of an equation x = v or var-swapped

as v = x, and in either case that equation can never again be used to perform a substitution in

that block unless new occurrences of 𝑥 are injected into the block by a substitution performed

in an enclosing block, in which case, the block metric for the outer block will be strictly reduced.

Specifically, each application of

• choose strictly reduces ♯choose;
• seq-assoc or eqn-float strictly reduces ♯semi (leaving ♯choose unchanged);
• subst strictly reduces ♯cands (leaving ♯semi, ♯choose unchanged), as it eliminates a variable

from the block ℓ that the substitution spans, leaving enclosing blocks unchanged;

• u-tup strictly reduces size (leaving cands, ♯semi, ♯choose unchanged), as it preserves elim
and hence cand, but reduces the size of ℓ ;
• u-lit, u-fail, u-occurs strictly reduces size (leaving cands, ♯semi, ♯choose unchanged);
• var-swap strictly reduces swaps leaving the other components unchanged.

Thus, as ♯(𝜎𝑖 , 𝑏𝑖) is a strictly decreasing well-founded metric, the sequence (𝜎
1
, 𝑏

1
), . . . , is finite,

and so any sequence ofU
0
’ steps is guaranteed to terminate. □

Lemma C.27. U
0
is Noetherian for all tails 𝑡 , rhs 𝑟 and expressions 𝑒 .

Proof. By induction on the structure of t, r and e, using Lemma C.26 for the base case. □

Lemma C.28. U is locally confluent.

Proof. Let Δ
1
−→

1
Δ′
1
and Δ

2
−→

2
Δ′
2
denote the twoU reducts. If the reducts are disjoint, then

the terms can be joined trivially in a single step via Lemma C.4. By symmetry it suffices to consider

the case where Δ
1
occurs under Δ

2
. Let us split cases on the rule used for Δ

1
.

Case Δ
1
viaU − subst − var-swap join using Lemma C.6.

Case Δ
1
via var-swap join using Lemma C.29.

Case Δ
1
via subst join using Lemma C.30.

□

Lemma C.29 (var-swap under). If ΔU −→U Δ′U and ΔU ≡ 𝐸 [Δ] and Δ −→
swap

Δ′ then there

exists Δ′′U such that Δ′U −→→swap
Δ′′U and 𝐸 [Δ′] −→U Δ′′R .

ΔU ≡ 𝐸 [Δ] 𝐸 [Δ′]

Δ′U Δ′′U

U

var-swap

U

var-swap

Proof. Split cases on the rule used inU.

Case u-lit or var-swap : impossible as no var-swap redex under k
1
=k

2
or x =y.

Case u-tup : Here, ΔU ≡ ⟨u1
,. . ., u

n
⟩ = ⟨v

1
,. . ., v

n
⟩ and wlog the var-swap redex is 𝑢 ′

1
−→𝑢1

so

join at u_1
′=v

1
; . . .; u

n
=v

n
.

Case u-fail : Here, ΔU ≡ hnf 𝑖 −→ hnf
′
𝑖 so join at fail

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:56 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Case u-occurs : Here, ΔU ≡ x =V [x] and the var-swap redex is under V [x], i.e.𝑉 [𝑥] −→
subst

𝑉 [𝑥] ′ as the free variables are preserved by var-swap hence we can join at fail.

Case hnf-swap : Here, ΔU ≡ hnf = 𝑥 and the var-swap redex is under hnf i.e. hnf −→
subst

hnf
′
, hence join at 𝑥 = hnf

′
.

Case subst : via Lemma C.12.

Case choose : via Lemma C.7.

Case seq-assoc : Here, ΔU ≡ (𝑒𝑞; 𝑒1); 𝑒2 −→ 𝑒𝑞; (𝑒
1
; 𝑒

2
) ≡ Δ′U . Split cases on where Δ occurs.

Case Δ ⊆ 𝑒𝑞 i.e. 𝑒𝑞 −→
var-swap

𝑒𝑢 ′ Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑒1; 𝑒2).
Case Δ ⊆ 𝑒

1
i.e. 𝑒

1
−→
var-swap

𝑒 ′
1
Join at Δ′′U ≡ 𝑒𝑞; (𝑒 ′1; 𝑒2).

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→
var-swap

𝑒 ′
2
Join at Δ′′U ≡ 𝑒𝑞; (𝑒1; 𝑒 ′2).

Case eqn-float : ΔU ≡ 𝑣 = (𝑒𝑞; 𝑒
1
); 𝑒

2
−→ 𝑒𝑞; (𝑣 = 𝑒

1
; 𝑒

2
) ≡ Δ′U . Split cases on where Δ occurs.

Case Δ ⊆ 𝑣 i.e. 𝑣 −→
var-swap

𝑣 ′ Join at Δ′′U ≡ 𝑒𝑞; (𝑣 ′ = 𝑒
1
; 𝑒

2
).

Case Δ ⊆ 𝑒𝑞 i.e. 𝑒𝑞 −→
var-swap

𝑒𝑢 ′ Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑣 = 𝑒
1
; 𝑒

2
).

Case Δ ⊆ 𝑒
1
i.e. 𝑒

1
−→
var-swap

𝑒 ′
1
Join at Δ′′U ≡ 𝑒𝑞; (𝑣 = 𝑒 ′

1
; 𝑒

2
).

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→
var-swap

𝑒 ′
2
Join at Δ′′U ≡ 𝑒𝑞; (𝑣 = 𝑒

1
; 𝑒 ′

2
).

□

Lemma C.30 (subst-under). If ΔU −→U Δ′U and ΔU ≡ 𝐸 [Δ] and Δ −→
subst

Δ′ then there exists

Δ′′U such that Δ′U −→→subst
Δ′′U and 𝐸 [Δ′] −→U Δ′′U .

ΔU ≡ 𝐸 [Δ] 𝐸 [Δ′]

Δ′U Δ′′U

U

subst

U

subst

Proof. Split cases on the rule used inU.

Case u-lit or var-swap : impossible as no subst redex under k
1
=k

2
or x =y.

Case u-tup : Here, ΔU ≡ ⟨u1,. . ., un
⟩ = ⟨v

1
,. . ., v

n
⟩ and wlog the subst redex is 𝑢 ′

1
−→𝑢1

so join at

u_1
′=v

1
; . . .; u

n
=v

n
.

Case u-fail : Here, ΔU ≡ hnf 𝑖 −→ hnf
′
𝑖 so join at fail

Case u-occurs : Here, ΔU ≡ x = V [x] and the subst redex is under V [x], i.e. 𝑉 [𝑥] −→
subst

𝑉 [𝑥] ′ as the free variables are preserved by subst hence we can join at fail.

Case hnf-swap : Here, ΔU ≡ hnf = 𝑥 and the subst redex is under hnf i.e. hnf −→
subst

hnf
′
,

hence join at 𝑥 = hnf
′
.

Case subst : via Lemma C.14.

Case choose : via Lemma C.7.

Case seq-assoc : ΔU ≡ (𝑒𝑞; 𝑒1); 𝑒2 −→ 𝑒𝑞; (𝑒
1
; 𝑒

2
) ≡ Δ′U . Split cases on where Δ occurs.

Case Δ ⊆ 𝑒𝑞 i.e. 𝑒𝑞 −→R′ 𝑒𝑢 ′ Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑒1; 𝑒2).
Case Δ ⊆ 𝑒

1
i.e. 𝑒

1
−→R′ 𝑒 ′1 Join at Δ′′U ≡ 𝑒𝑞; (𝑒 ′1; 𝑒2).

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→R′ 𝑒 ′2 Join at Δ′′U ≡ 𝑒𝑞; (𝑒1; 𝑒 ′2).

Case Δ ⊆ (𝑒𝑞; 𝑒
1
) i.e. subst : (𝑒𝑞; 𝑒

1
) −→ (𝑒𝑢 ′; 𝑒 ′

1
) Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑒 ′1; 𝑒2).

Case Δ ⊆ ((𝑒𝑞; 𝑒
1
); 𝑒

2
) i.e. subst : (𝑒𝑞; 𝑒

1
); 𝑒

2
−→ (𝑒𝑢 ′; 𝑒 ′

1
); 𝑒 ′

2
Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑒 ′1; 𝑒 ′2).

Case eqn-float : ΔU ≡ 𝑣 = (𝑒𝑞; 𝑒
1
); 𝑒

2
−→ 𝑒𝑞; (𝑣 = 𝑒

1
; 𝑒

2
) ≡ Δ′U . Split cases on where Δ occurs.

Case Δ ⊆ 𝑣 i.e. 𝑣 −→R′ 𝑣 ′ Join at Δ′′U ≡ 𝑒𝑞; (𝑣 ′ = 𝑒
1
; 𝑒

2
).

Case Δ ⊆ 𝑒𝑞 i.e. 𝑒𝑞 −→R′ 𝑒𝑢 ′ Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑣 = 𝑒
1
; 𝑒

2
).

Case Δ ⊆ 𝑒
1
i.e. 𝑒

1
−→R′ 𝑒 ′1 Join at Δ′′U ≡ 𝑒𝑞; (𝑣 = 𝑒 ′

1
; 𝑒

2
).

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→R′ 𝑒 ′2 Join at Δ′′U ≡ 𝑒𝑞; (𝑣 = 𝑒

1
; 𝑒 ′

2
).

Case Δ ⊆ (𝑒𝑞; 𝑒
1
) i.e. subst : 𝑣 = (𝑒𝑞; 𝑒

1
); 𝑒

2
−→ 𝑣 = (𝑒𝑢 ′; 𝑒 ′

1
); 𝑒

2
. Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑣 =

𝑒 ′
1
; 𝑒

2
).

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:57

Case Δ ⊆ 𝑣 = (𝑒𝑞; 𝑒
1
); 𝑒

2
i.e. subst : (𝑣 = 𝑒𝑞; 𝑒

1
); 𝑒

2
−→ (𝑣 ′ = 𝑒𝑢 ′; 𝑒 ′

1
); 𝑒 ′

2
Join at Δ′′U ≡

𝑒𝑢 ′; (𝑣 ′ = 𝑒 ′
1
; 𝑒 ′

2
).

□

C.5 Normalization is Confluent
Recall that N ≡ exi-swap + exi-float + var-swap + subst-var where

subst-var 𝑋 [x =y; e] −→ (𝑋 {y/x}) [x =y; e{y/x}]

It will be convenient to factor out exi-float so let

SS � subst-var + var-swap
N ′ � SS + exi-swap
N � N ′ + exi-float

Lemma C.31 (N -Confluent). N is confluent.

Proof. The above result follows in two steps. First we show thatN ′– i.e. normalization-without-

exi-float – is confluent in Lemma C.35. Second we show that N ′strongly postpones after exi-

float Lemma C.34. Consequently, each −→→N can be rewritten as the composition of −→→
exi-float

followed by −→→N′ after which the following diagram completes the proof, where (1) Lemma C.32

(2) Lemma C.33 (3) Lemma C.35. (4) Lemma C.35

•

• •

• •

• (1) •

(2) (2)

(3) (3)

(4)

exi-float exi-float

exi-float exi-float

N′ N′

N′

N′ N′

N′

N′ N′

N′

N′

exi-float

N′

exi-float

□

LemmaC.32. If 𝑒 −→→
exi-float

𝑒
1
and 𝑒 −→→

exi-float
𝑒
2
then exists 𝑒

1
−→→

exi-float
𝑒 ′
1
, 𝑒

2
−→→

exi-float

𝑒 ′
2
, such that 𝑒 ′

1
↓
exi-swap

𝑒 ′
2
.

Proof. On each side add the (missing) exi-float steps on the other side, and then use (multiple)

exi-swap to join. □

Lemma C.33. exi-float strongly commutes with N ′.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:58 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Proof. Split cases on each possible case of N ′, the diamond is completed trivially as the rules

are non-overlapping. □

Lemma C.34. N ′strongly postpones after exi-float, so N∗ ≡ exi-float
∗ · N ′∗.

Proof. Split cases on each possible case of N ′; the diamond is completed trivially as the rules

are non-overlapping. □

Lemma C.35. N ′is confluent.

Proof. Via the following diagram, where: (1) is LemmaC.36; (2) is LemmaC.40; (3) is LemmaC.39;

(4) is Lemma C.38.

•

• • • •

(1) (4) (1)

(2) (2)

(3)

N′ N′
𝐸 𝐸

SSSS SS SS𝐸 𝐸

SS SSN′ N′

SS SS

□

Lemma C.36. If 𝑒 −→→N′ 𝑒 ′ there exists 𝑒 ′′ such that 𝑒 ′ −→→SS 𝑒 ′′ and 𝑒 −→→
exi-swap

· −→→SS 𝑒 ′′.

𝑒 𝑒 ′

• 𝑒 ′′
exi-swap

SS

SS

N′

Proof. By using Lemma B.25 with the facts that SS is confluent (Lemma C.39) and SS hops

after exi-swap (Lemma C.37). □

Lemma C.37. SS(resp.U) hops after exi-swap.

Proof. By splitting cases on the SS(resp.U) reduction that precedes the exi-swap.

Case var-swap Let the Δ
swap

≡ 𝑋 [x =y]. If the exi-swap preserves the order of 𝑥 and 𝑦 then

the result follows trivially (as the reductions are non-overlapping.) If the exi-swap toggles the

order then the result follows via the diagram

∃𝑥,𝑦. . . . 𝑋 [𝑥 = 𝑦] ∃𝑥,𝑦. . . . 𝑋 [𝑦 = 𝑥]

∃𝑦, 𝑥 𝑋 [𝑥 = 𝑦] ∃𝑦, 𝑥 𝑋 [𝑦 = 𝑥]
exi-swap

var-swap

exi-swap

var-swap

Case non-var-swap AnU reduction other than var-swap is variable-order independent, so the

sequence ofU-step followed by exi-swap is equivalent to first doing the exi-swap and then

theUstep.

□

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:59

Lemma C.38. exi-swap is confluent.

Proof. Trivial, via the diamond property. □

Lemma C.39. SS = subst-var + swap is confluent.

Proof. Note that SS is a subset of U; the proof follows similar to the proof of Lemma C.19

(ignoring the bits about u-tup and u-lit and u-fail and substituting HNF values.) □

Lemma C.40. SScommutes with N ′.

Proof. Recall thatN ′ ≡ SS + exi-swap. The proof follows by observing that SS half-commutes

with exi-swap Lemma C.41, recalling that SS is confluent Lemma C.39, after which Lemma B.27

yields the conclusion SS commutes with SS + exi-swap ≡ N ′. □

Lemma C.41. SS half-commutes with exi-swap.

Proof. Recall that SS ≡ subst-var + var-swap. Split cases and show each reduction half-

commutes with exi-swap.

Case subst-var If the exi-swap occurs under subst-var then they trivially commute as the

variable order is unaffected by the exi-swap. If the subst-var occurs under exi-swap the proof

is completed by the following diagram.

∃𝑦, 𝑥 𝑋 [𝑥 = 𝑦] ∃𝑥,𝑦. . . . 𝑋 [𝑥 = 𝑦]

∃𝑥,𝑦. . . . 𝑋 [𝑦 = 𝑥]

∃𝑦, 𝑥 𝑋 {𝑦/𝑥}[𝑥 = 𝑦] ∃𝑥,𝑦. . . . 𝑋 {𝑦/𝑥}[𝑥 = 𝑦] ∃𝑥,𝑦. . . . 𝑋 {𝑥/𝑦}[𝑦 = 𝑥]

exi-swap

var-swap

subst-var

subst-var

exi-swap var-swap+subst-var

Case var-swap (under exi-swap) The non-trivial cases are where the same variables 𝑥 , 𝑦 are

being swapped by both rules (otherwise, the reductions half-commutes trivially via the

diamond property). For the variables to be the same, the var-swap must occur under the

exi-swap (as otherwise the same variables are not in scope.) Hence, the proof is completed by

the following diagram.

∃𝑥,𝑦. . . . 𝑋 [𝑥 = 𝑦] ∃𝑦, 𝑥 𝑋 [𝑥 = 𝑦]

∃𝑥,𝑦. . . . 𝑋 [𝑦 = 𝑥] ∃𝑦, 𝑥 𝑋 [𝑦 = 𝑥]
var-swap

exi-swap

var-swap

exi-swap

□

C.6 Unification + Normalization is Confluent
Recall that

N � exi-float + exi-swap + SS

and define

U ′ � U + exi-swap

Lemma C.42. U ∪N is confluent.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:60 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Proof. We proveU∪N is confluent by a generalization of the proof of LemmaC.31 where we use

the fullU relation (instead of the subset SS). First we show thatU’ – i.e.U∪N without-exi-float

– is confluent Lemma C.45. Second we show thatU’ strongly postpones after exi-float Lemma C.44.

Consequently, each −→→U∪N can be rewritten as the composition of −→→
exi-float

followed by −→→U′
after which the following diagram completes the proof.

•

• •

• •

• • •

• •

• •

•

exi-float exi-float

exi-float exi-float

U′ U′

U′

U′ U′

U′

U′ U′

𝐿𝑒𝑚𝑚𝑎 𝐶.32

𝐿𝑒𝑚𝑚𝑎 𝐶.45

U′

exi-float

U′
𝐿𝑒𝑚𝑚𝑎 𝐶.43

𝐿𝑒𝑚𝑚𝑎 𝐶.45

U′

exi-float

𝐿𝑒𝑚𝑚𝑎 𝐶.43

U′

𝐿𝑒𝑚𝑚𝑎 𝐶.45

□

Lemma C.43. exi-float strongly commutes withU’.

Proof. Split cases on each possible case ofU’; the diamond is completed trivially as the rules

are non-overlapping. □

Lemma C.44. LetU ′ � U+exi-swap.Ustrongly postpones after exi-float, soU ′∗ ≡ exi-float
∗ ·U∗.

Proof. Same as Lemma C.34. □

Lemma C.45. LetU ′ � U + exi-swap.U ′ is confluent.

Proof. Via the following diagram, where: (1) is LemmaC.46; (2) is LemmaC.47; (3) is LemmaC.19;

(4) is Lemma C.38.

•

• • • •

(1) (4) (1)

(2) (2)

(3)

U′ U′
𝐸 𝐸

UU U U𝐸 𝐸

U UU′ U′

U U

□

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:61

Lemma C.46. Let U ′ = U + exi-swap. If 𝑒 −→→U′ 𝑒 ′ there exists 𝑒 ′′ such that 𝑒 ′ −→→U 𝑒 ′′ and
𝑒 −→→

exi-swap
· −→→U 𝑒 ′′.

𝑒 𝑒 ′

• 𝑒 ′′
exi-swap

U

U

U′

Proof. (Similar to Lemma C.36), By using Lemma B.25 with the facts that U is confluent

(Lemma C.19) andU hops after exi-swap (Lemma C.37). □

Lemma C.47. LetU ′ = U + exi-swap.U’ commutes withU.

Proof. The proof follows by observing thatU half-commutes with exi-swap Lemma C.48, recall-

ing thatU is confluent Lemma C.19, after which Lemma B.27 yields the conclusionU commutes

withU + exi-swap ≡ U ′. □

Lemma C.48. U half-commutes with exi-swap.

Proof. Same as Lemma C.41; the rules in Uother than those in the subset SS trivially half-

commutes as they do not overlap with exi-swap. □

C.7 U ∪N Commute With A ∪ G ∪ C
Lemma C.49 (U-A-Comm). U and A commute.

Proof. We show thatU ∗-commutes withA and hence commutes via Lemma B.34. Let ΔU −→U
Δ′U and ΔA −→A Δ′A denote the reducts forU and A respectively.

Case: ΔU and ΔA disjoint via Lemma C.4.

Case: ΔU ⊆ ΔA via Lemma C.5.

Case: ΔA ⊆ ΔU via Lemma C.6.

□

Lemma C.50 (U − G-Comm). U and G commute.

Proof. We show thatU ∗-commutes commutes wth G, and hence by Lemma B.34,U commutes

wth G. Let ΔU −→U Δ′U and ΔG −→G Δ′G denote the reducts forU and G respectively. If the reducts

are disjoint then terms can be trivially joined. Let us split cases on whether ΔU occurs under ΔG
or vice versa.

Case ΔU ⊆ ΔG : via Lemma C.9.

Case ΔG ⊆ ΔU : via Lemma C.6.

□

Lemma C.51 (U − C-Comm). U and C commute.

Proof. We show thatU ∗-commutes with C, and hence by Lemma B.34,U commutes wth C.
Let ΔU −→U Δ′U and ΔC −→C Δ′C denote the reducts forU and C respectively. If the reducts are

disjoint then terms can be trivially joined. Let us split cases on whether ΔU occurs under ΔC or
vice versa.

Case ΔU ⊆ ΔC via Lemma C.10.

Case ΔC ⊆ ΔU via Lemma C.6.

□

Lemma C.52. N and A commute.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:62 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Proof. We show that N strongly commutes with A, hence commutes via Lemma B.19. Let

ΔA −→A Δ′A and ΔN −→N Δ′N denote the reducts for A and N respectively. If the reducts are

disjoint then terms can be trivially joined in a single step. Let us split cases on whether ΔA occurs

under ΔN or vice versa.

Case ΔA ⊆ ΔN via Lemma C.8.

Case ΔN ⊆ ΔA via Lemma C.5.

□

Lemma C.53. N and G commute.

Proof. We show that N strongly commutes with G, hence commutes via Lemma B.19. Let

ΔG −→G Δ′G and ΔN −→N Δ′N denote the reducts for G andN respectively. If the reducts are disjoint

then terms can be trivially joined in a single step. Let us split cases on whether ΔG occurs under

ΔN or vice versa.

Case ΔG ⊆ ΔN via Lemma C.8.

Case ΔN ⊆ ΔG via Lemma C.9.

□

Lemma C.54. N and C commute.

Proof. We show that N strongly commutes with C, hence commutes via Lemma B.19. Let

ΔC −→C Δ′C and ΔN −→N Δ′N denote the reducts for C andN respectively. If the reducts are disjoint

then terms can be trivially joined in a single step. Split cases on whether ΔC occurs under ΔN or

vice versa.

Case ΔC ⊆ ΔN via Lemma C.8.

Case ΔN ⊆ ΔC via Lemma C.10.

□

C.8 Application
Lemma C.55. A is confluent.

Proof. We show that A satisfies the diamond property and hence, is confluent by Lemma B.10.

Suppose that 𝑒 −→A 𝑒
1
via the redux Δ

1
−→A Δ′

1
, and 𝑒 −→A 𝑒

2
via the redux Δ

2
−→A Δ′

2
. If Δ

1
and Δ

2

are disjoint in 𝑒 , the terms 𝑒
1
and 𝑒

2
can be trivially joined in a single step. If Δ

1
⊆ Δ

2
(or Δ

2
⊆ Δ

1
)

then Lemma C.5 completes the proof. □

Lemma C.56. A and G commute.

Proof. We show that A strongly commutes with G, hence commutes via Lemma B.19. Let

ΔA −→A Δ′A and ΔG −→G Δ′G denote the reducts for A and G respectively. If the reducts are

disjoint then terms can be trivially joined in a single step. Let us split cases on whether ΔA occurs

under ΔN or vice versa.

Case ΔA ⊆ ΔG via Lemma C.9.

Case ΔG ⊆ ΔA via Lemma C.5.

□

Lemma C.57. A and C commute.

Proof. We show that A strongly commutes with C, hence commutes via Lemma B.19. Let

ΔA −→A Δ′A and ΔC −→C Δ′C denote the reducts forA and C respectively. If the reducts are disjoint

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:63

then terms can be trivially joined in a single step. Let us split cases on whether ΔA occurs under

ΔC or vice versa.

Case ΔC ⊆ ΔA via Lemma C.5.

Case ΔA ⊆ ΔC via Lemma C.10.

□

C.9 Garbage Collection
Lemma C.58. G is confluent.

Proof. We show that G satisfies the diamond property and hence, is confluent by Lemma B.10.

Suppose that 𝑒 −→G 𝑒
1
via the redux Δ

1
−→G Δ′

1
𝑒 −→G 𝑒

2
via the redux Δ

2
−→G Δ′

2
. If Δ

1
and Δ

2
are

disjoint, the terms 𝑒
1
and 𝑒

2
can be trivially joined in a single step. If Δ

1
⊆ Δ

2
(or Δ

2
⊆ Δ

1
) then

Lemma C.9 completes the proof. □

Lemma C.59. G and C commute.

Proof. We show that G and C strongly commute. Let ΔG −→G Δ′G and ΔC −→C Δ′C denote the
reducts for G and N respectively. If the reducts are disjoint then terms can be trivially joined in a

single step. Let us split cases on whether ΔG occurs under ΔC or vice versa.

Case ΔG ⊆ ΔC : via Lemma C.10.

Case ΔC ⊆ ΔG : via Lemma C.9.

□

C.10 Choice
Lemma C.60. C is confluent.

Proof. Lemma C.10 shows that C has the diamond property (as C ⊆ R), and hence C is confluent

via Lemma B.10. □

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:64 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

D SKEW CONFLUENCE

[This is a sketch of an incomplete proof of skew confluence.]

We now consider a version of VC that fully supports recursive substitution, and lifts the

pesky no-recursion precondition on the confluence theorem. Rather than lifting the side condition

x ∉ fvs(𝑣) on rule subst, which avoids using a recursive equation for substitution, we take another

approach that we believe leads to a simpler proof: we introduce the familiar, conventional fixpoint

operator `x . hnf , but allow it to be applied only to head values, not to general expressions. A

new unification rule u-occurs-wrap can turn a recursive equation into one that is not recursive

(by packaging up the right-hand side within a fixpoint), after which rule subst may be applied.

A corresponding new rule u-unwrap can expand a fixpoint by applying the conventional rewrite

rule `x . hnf −→ hnf {`x . hnf /x}. While this rule allows infinite application, a sensible evaluation

strategy would apply this rule “only when needed”—when it is on either side of an equation, or

when it is in the function position of an application. If we regard anyVC data structure as tree, the

fixpoint construct in effect can label any subtree in such a way that any node beneath it can have a

“back pointer” up to the labeled node by referring to the bound variable that serves as the label.

The overall plan is to adapt the proof strategy of Section 4.2 and Appendix C for skew confluence.

To do this we need a new result: if two relations are skew confluent with respect to the same

information content function and commute, then their union is also skew confluent. (In fact, it is

not required that the two relations fully commute: a slightly weaker precondition suffices.) Using

this result, our plan is to (i) define an appropriate information content function forVC expressions;

(ii) prove that all the rewrite rules for VC are monotonic in this information content function;

(iii) prove that the Unification rules (modified to permit recursive substitution) together with the

Normalization rules are skew confluent; (iv) prove that this combined set of rules commutes in the

necessary way with the rules for Application, Elimination, and Choice (which taken together are

already known to be confluent); and (v) then apply our new result to show that the entire set of

rewrite rules is skew confluent. At this time steps (iii) and (iv) are incomplete, so we emphasize

that we do not yet have a complete proof of skew confluence forVC.

D.1 Free Variables
We use the conventional notation fvs(e) to denote the set of variables that occur free in the

expression e. Variables are bound by the constructs ∃x . e, _x . e, and `x . hnf . Figure 15 contains a

formal definition of this function forVC.
We use the variation fvsol(e) to denote the set of variables that occur free in the expression

e in at least one position that is not within the body of a lambda expression
15
. As an example,

fvsol(∃x . ⟨x, f , g, _y. ⟨x, g, y, z⟩⟩) = {𝑓 , 𝑔} because:
• x is bound by ∃, so it is not free.

• f is free in a position not within the body of a lambda expression.

• g is free in at least one position not within the body of a lambda expression (it also happens

to be free in a second position that is within the body of a lambda expression).

• y is bound by _, so it is not free.

• z is free, but appears only in a position that is within the body of a lambda expression.

Figure 16 contains a formal definition of this function. Unlike fvs(𝑒), fvsol(v) is only ever appplied

to a value v.

15
“fvsol(·)” abbreviates “free variables outside lambda”

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:65

D.2 Substitution
We use the notation e{v/x} to denote the expression that results from performing standard capture-

avoiding substitution of the value v for every occurrence of the variable x within the expression e

(it turns out that, forVC, substitution of general expressions for variables is not required, only

substitution of values for variables). Figure 17 contains a formal definition of how this notation

applies to theVC grammar (compare [Barendregt 1984, §2.1.15]).

D.3 Modified grammar and rewrite rules
Let us modify the grammar forVC to have one additional kind of value, a fixpoint value `x . hnf :

Values v ::= x | hnf | `x . hnf

and a modify the set of Unification rewrite rulesU so that rule u-occurs

u-occurs x = V [x] −→ fail if V ≠ □

is replaced by the two rules
1617

u-occurs-fail x = hnf ; e −→ fail if x ∈ fvsol(hnf)
u-occurs-wrap x = hnf ; e −→ x = `x . hnf ; e if x ∈ fvs(hnf) and x ∉ fvsol(hnf)

Let us also add this rewrite rule:

u-unwrap `x . hnf −→ hnf {`x . hnf /x}
As we will see, rule u-unwrap is confluent but not Noetherian.

The resulting grammar is not confluent; in particular, it suffers from the even-odd problem

described in Section 4.1.2 [Ariola and Blom 2002, Example 4.1]. Therefore we will modify the proof

of confluence forU to become a proof of skew confluence [Ariola and Blom 2002], and then go on

to prove thatVC itself, with this modification, is skew confluent.

D.4 Unwrapping of Fixpoints is Confluent but not Noetherian
Lemma D.1. The rule u-unwrap is confluent.

Proof. Suppose that e −→
u-unwrap

e
1
and e −→

u-unwrap
e
2
for distinct redexes within 𝑒 .

If the redexes are disjoint, then Lemma C.4 applies.

Otherwise, without loss of generality assume the redex for e −→
u-unwrap

e
1
contains the redex

for e −→
u-unwrap

e
2
; let 𝑒 must be of the form C

1
[`x . C

2
[`y. hnf]] (𝛼-conversion may be used to

ensure that 𝑥 and 𝑦 are distinct variables).

Then e
1
= C

1
[C

2
[`y. hnf]{`x .C

2
[`y. hnf]/x}] and e

2
= C

1
[`x .C

2
[hnf {`y. hnf /y}]].

From e
2
we can take just one more u-unwrap step, using the outermost redex `x .C

2
[cdots],

obtaining e
′ = C

1
[(C

2
[hnf {`y. hnf /y}]){`x .C

2
[hnf {`y. hnf /y}]/x}].

[More to come.]

Thus we have e
1
−→→

u-unwrap
e
′
and e

2
−→
u-unwrap

e
′
, so u-unwrap is strongly confluent, and

therefore by Lemma B.16 is confluent. □

16
These two rules allow equations to be recursive through lambda expressions and possibly also tuples, but not through

tuples only; thus equations such as f = _y. ⟨y, f ⟩ and x = ⟨1, _y. ⟨y, x ⟩⟩ can be processed by rule u-occurs-wrap, but

the equation x = ⟨1, x ⟩ can be processed only by rule u-occurs-fail. An alternate design using the single rule

u-occurs-wrap x = hnf −→ x = `x . hnf if x ∈ fvs(hnf)
plus rule u-unwrap could be used instead to support recursion through tuples only as well as through lambda expressions.

17
u-occurs-fail is identical to u-occurs in its effect, but it is re-expressed using fvsol(·) , which we need anyway for

u-occurs-wrap. Now we can drop the context𝑉 , which was only used in u-occurs.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:66 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

fvs(x) = {x}
fvs(k) = { }
fvs(op) = { }

fvs(⟨v
1
, . . . , v

n
⟩) = fvs(v

1
) ∪ · · · ∪ fvs(v

n
)

fvs(_x . e) = fvs(e) \ {𝑥}
fvs(`x . e) = fvs(e) \ {𝑥}
fvs(𝑒𝑞; e) = fvs(𝑒𝑞) ∪ fvs(e)
fvs(v = e) = fvs(v) ∪ fvs(e)
fvs(∃x . e) = fvs(e) \ {𝑥}
fvs(fail) = { }

fvs(e
1

e
2
) = fvs(e

1
) ∪ fvs(e

2
)

fvs(v
1

v
2
) = fvs(v

1
) ∪ fvs(v

2
)

fvs(one{e}) = fvs(e)
fvs(all{e}) = fvs(e)

Fig. 15. Definition of the free-variables function fvs(e)

fvsol(x) = {x}
fvsol(k) = { }
fvsol(op) = { }

fvsol(⟨v
1
, . . . , v

n
⟩) = fvsol(v

1
) ∪ · · · ∪ fvsol(v

n
)

fvsol(_x . e) = { }
Fig. 16. Definition of the free-variables-outside-lambdas function fvsol(v)

x{v/x} ≡ v

y{v/x} ≡ y if 𝑦 ≠ 𝑥

k{v/x} ≡ k

op{v/x} ≡ op

⟨v
1
,. . ., v

n
⟩{v/x} ≡ ⟨v

1
{v/x},. . ., v

n
{v/x}⟩

(_y. e){v/x} ≡ _y. e{v/x} if 𝑦 ∉ fvs(x, v) [use 𝛼]
(`y. v ′){v/x} ≡ `y. v ′{v/x} if 𝑦 ∉ fvs(x, v) [use 𝛼]
(𝑒𝑞; e){v/x} ≡ 𝑒𝑞{v/x}; e{v/x}
(v ′ = e){v/x} ≡ v

′{v/x} = e{v/x}
(∃y. e){v/x} ≡ ∃y. e{v/x} if 𝑦 ∉ fvs(x, v) [use 𝛼]

fail{v/x} ≡ fail

(e
1

e
2
){v/x} ≡ e

1
{v/x} e

2
{v/x}

(v
1

v
2
){v/x} ≡ v

1
{v/x} v

2
{v/x}

(one{e}){v/x} ≡ one{e{v/x}}
(all{e}){v/x} ≡ all{e{v/x}}

Fig. 17. Definition of the substitution notation e{v/x}

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:67

Information Content: I
info-fix `x . v −→ Ω

info-seq 𝑒𝑞; e −→ Ω

info-exi ∃x . e −→ Ω

info-fail-l fail e −→ Ω

info-fail-r e fail −→ Ω

info-choice-omega Ω e −→ Ω

info-choice-assoc (e
1

e
2
) e

3
−→ Ω

info-app-omega Ω v −→ Ω

info-app-hnf hnf v −→ Ω

info-one one{e} −→ Ω

info-all all{e} −→ Ω

Fig. 18. Rewrite rules onVCΩ for defining the function 𝜔
VC
(𝑒)

To see that u-unwrap is not Noetherian, observe that

`x . ⟨1, x⟩ −→
u-unwrap

⟨1, `x . ⟨1, x⟩⟩ −→
u-unwrap

⟨1, ⟨1, `x . ⟨1, x⟩⟩⟩ −→
u-unwrap

· · ·
is an unending sequence of reduction steps.

D.5 Information Content
We define a second grammar, for a second language VC

Ω
, by adding one more value Ω, which

indicates a lack of information as to just what will be computed. When Ω appears in a context

where only a value is permitted, it indicates uncertainty as to what value will be provided; when Ω

appears in a context where any expression permitted, it furthermore indicates uncertainty as to

how many values will be provided (possibly none).

Values v ::= x | hnf | `x . hnf | Ω

For every term ofVC there is a corresponding term ofVC
Ω
, identical in structure and appearance

and containing no occurrence of Ω; we identify such terms and regard the set of terms ofVC as

simply a subset of the terms ofVC
Ω
.

The definition of substitution (Fig. 17) is extended in the expected trivial manner: Ω{v/x} ≡ Ω.

Definition D.2. (after [Ariola and Blom 2002, Definition 2.3]) Let T be a set of terms over a

signature that includes the constant Ω. Define ⩽𝑇
𝜔 be the relation such that Ω ⩽𝑇

𝜔 M for every term

M ∈ T ; then define ⩽𝜔 to be the transitive, reflexive, and compatible closure of ⩽𝑇
𝜔 .

Figure 18 shows a system I of rewrite rules onVC
Ω
. These may be compared to similar rules

for the _◦ calculus [Ariola and Blom 2002, Definition 5.20].

Lemma D.3. [Huet 1980, Lemma 3.1] The relation −→R is locally confluent iff for every critical pair

(e
1
, e

2
) of R, e

1
and e

2
can be joined—that is, there exists e

3
such that e

1
−→R e

3
and e

2
−→R e

3
.

Lemma D.4 (I-Confluent). I is locally confluent and Noetherian; therefore I is confluent.

Proof. Consider all critical pairs of I:
• Rules info-fail-l and info-fail-r produce the critical pair (Ω,Ω).
• Rules info-fail-l and info-choice-omega produce no critical pairs.

• Rules info-fail-l and info-choice-assoc produce the critical pair (Ω e,Ω).
• Rules info-fail-r and info-choice-omega produce the critical pair (Ω,Ω).

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:68 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

• Rules info-fail-r and info-choice-assoc produce the critical pairs (Ω,Ω) and (Ω e,Ω).
• Rules info-choice-omega and info-choice-assoc produce the critical pair (Ω e,Ω).
• No other pairs of rules produce any critical pairs.

The critical pair (Ω,Ω) can be trivially joined at Ω. The critical pair (Ω e,Ω) can be joined at Ω in

one step by using rule info-choice-omega on Ω e.

All critical pairs can be joined; therefore by Lemma D.3 I is locally confluent.

Let the size of a term ofVC
Ω
be the number of tokens it contains other than parentheses. Each

of the rewrite rules in Fig. 18 strictly decreases the number of such tokens. Because any given term

has a finite number 𝑛 of such tokens, and the number of tokens cannot be less than zero, for every

term every rewriting sequence from that term can have no more than 𝑛 steps. So I is bounded and

therefore Noetherian.

Because I is locally confluent and Noetherian, it is confluent by Newman’s lemma. □

Because I is confluent and Noetherian, it follows that I defines unique normal forms forVC
Ω
.

Therefore we are justified in defining 𝜔
VC
(𝑒) to be the function that takes any term inVC

Ω
and

returns the term that is its normal form under I.

Definition D.5. The comparison 𝑒 ⩽𝜔VC

𝑒 ′ is defined to mean 𝜔
VC
(𝑒) ⩽𝜔 𝜔

VC
(𝑒 ′).

[Need to prove that ⩽𝜔VC

is monotonic with respect to ⩽𝜔 ; this should be routine [Ari-

ola and Blom 2002, Proposition 5.21].]

Lemma D.6 (VC monotonic). Every rewrite rule inVC is monotonic with respect to ⩽𝜔VC

.

Proof. For every rewrite rule inA ∪U ∪N ∪ G ∪ C, the left-hand side is an expression that is

mapped to Ω by the function 𝜔
VC
, and no matter what expression e is the result of applying 𝜔

VC
to

the right-hand side, we have Ω ⩽𝜔 e. □

D.6 Preliminaries about Skew Confluence
Why use skew confluence? Ordinary confluence is useful because if term e has an R-normal form,

then that normal form is unique if R is confluent. Ariola and Blom define a related notion, which

we will refer to as R-skew-normal form
18
, and prove that under certain conditions, if term e has an

R-skew-normal form, then that normal form is unique if R is skew confluent.

A R-skew-normal form is not a single term, but rather a possibly infinite set of erased terms. We

summarize this idea, using our own terminology, as follows:

• Let an erasure of a term be a copy in which some number of subterms (possibly zero, and

possibly the entire term) have been replaced with Ω, a special term that means “unknown”

or “we don’t know yet.”

• We can compare erased terms with the partial order ⩽𝜔 , which is the transitive, reflexive,

and compatible closure of the relation in which Ω is less than any other term. Observe that if

e
′
is any erasure of e (including e itself) then e

′ ⩽𝜔 e.

• Define theR-information content 𝜔R (e) of a term e to be the unique erasure of e in which every

redex has been replaced by Ω. Any non-Ω structure in the result is therefore “permanent”:

no further reductions under R can alter that structure.

• Define the downward closure ⇓⩽𝜔
𝐴 of a set of terms 𝐴 to be the set of all elements of 𝐴 and

all possible erasures of those elements, that is, ⇓⩽𝜔
𝐴 = {e′ | e ∈ 𝐴, e′ ⩽𝜔 }.

• Define the R-skew-normal form of e to be the downward closure of the set of information

contents of all possible R-reducts of e, that is, ⇓⩽𝜔
{𝜔 (e′) | 𝑒 −→→R 𝑒 ′}.

18
Ariola and Blom call it the “infinite normal form”; this is a bit misleading because in fact not all such forms are infinite.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:69

Taking the downward closure with respect to ⩽𝜔 is crucial; without that step, it would not be

possible to prove that skew-normal forms are unique for certain reduction relations.

Skew confluence is a natural extension of confluence, in this sense: if R is skew confluent,

then an expression e has a unique R-normal form if and only if its R-skew-normal form is

the (finite) set consisting of all possible erasures of that R-normal form. (For example, ⟨1, 2⟩
is the unique normal form of ∃x . x = 2; ⟨1, x⟩, and the R-skew-normal form of that same term is

{⟨1, 2⟩, ⟨Ω, 2⟩, ⟨1,Ω⟩, ⟨Ω,Ω⟩,Ω}.)
But working with possibly infinite sets directly is tricky. Fortunately, there is a simpler path,

because Ariola and Blom prove an important theorem: Define the partial order e ⪯𝜔R e
′
to mean

𝜔R (e) ⩽𝜔 𝜔R (e′); then a reduction relation that is monotonic in ⪯𝜔R (𝑒 −→R 𝑒 ′ =⇒ 𝑒 ⪯𝜔R 𝑒 ′)
has unique skew-normal forms if and only if the reduction relation is skew confluent [Ariola and

Blom 2002, Theorem 5.4]—and skew confluence is much easier to prove, using techniques that do

not involve possibly infinite sets, but are fairly similar to proofs of ordinary confluence that use

commutative diagrams and case analysis. They also prove that if a reduction relation is confluent

and monotonic, then it is skew confluent [Ariola and Blom 2002, Corollary 5.5].

Definition D.7. Reduction relation R over the set of terms 𝑇 is skew confluent using quasi order

⪯ if for all 𝑎, 𝑏, 𝑐 ∈ 𝑇 , if 𝑎 −→→R 𝑏 and 𝑎 −→→R 𝑐 , there exists 𝑑 ∈ 𝑇 such that 𝑏 −→→R 𝑑 and 𝑐 ⪯ 𝑑 . As a

diagram:

𝑎 𝑏

𝑐 𝑑

R

RR

R
⪯

[More to come.]

D.7 New Lemmas about Skew Confluence
Lemma D.8. If relation R is monotonic in some quasi order ⪯ and confluent, then it is skew confluent

using ⪯.

Proof. By the definition of confluence,

𝑎 𝑐

𝑏 𝑑

R

R

R

R

Because R is monotonic, −→→R⊂
⪯←←−→→R , therefore

𝑎 𝑐

𝑏 𝑑

R

R

R

R
⪯

□

Definition D.9. Let reduction relation R be monotonic in quasi order ⪯ and skew confluent using

⪯. Let reduction relation R←⪯ be defined by a set of rewrite rules that are converses of those rewrite

rules of R whose converses are used in the proof that R is skew confluent. Then we say that R is

skew confluent using ⪯ and R←⪯ .

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:70 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Lemma D.10. Let relation R be monotonic in quasi order ⪯ and skew confluent using ⪯ and R←⪯ ;
similarly let S be monotonic in the same quasi order ⪯ and skew confluent using ⪯ and S←⪯ . Suppose
furthermore that R and S commute and that R and S←⪯ commute. Then the following four diagrams

hold:

𝑎 𝑏

𝑐 𝑑

R
RR

R∪S
⪯

𝑎 𝑏

𝑐 𝑑

S
RR

R∪S
⪯

𝑎 𝑏

𝑐 𝑑

R
RR

R∪S
⪯

𝑎 𝑏

𝑐 𝑑

S
RR

R∪S
⪯

Proof. (1) Because R is skew confluent, we have

𝑎 𝑏

𝑐 𝑑

R
RR

R
⪯

Because
⪯←←−→→R ⊂ ⪯←←−→→R∪S , the first diagram follows.

(2) Because R and S commute, we have

𝑎 𝑏

𝑐 𝑑

S
RR

S
Because −→→S⊂

⪯←←−→→R∪S , the second diagram follows.

(3) The following diagram clearly holds if the sequence of reduction steps from b to d is the same

as the sequence of reduction steps from b to a to d:

𝑎 𝑏

𝑐 𝑑

R
RR

≡

Because ≡⊂ ⪯←←−→→R∪S , the third diagram follows.

(4) Because R and S←⪯ commute, we have

𝑎 𝑏

𝑐 𝑑

S
RR

S
Because←←−S⊂

⪯←←−→→R∪S , the fourth diagram follows.

[It may turn out to be impossible to prove for our specific application that R and S←⪯
commute. In that case, it may be necessary to use a more complicated or more subtle

precondition. The important thing is to prove the fourth diagram somehow.]

□

Lemma D.11. Let relation R be monotonic in quasi order ⪯ and skew confluent using ⪯ and R←⪯ ;
similarly let S be monotonic in the same quasi order ⪯ and skew confluent using ⪯ and S←⪯ . Suppose
furthermore that R and S commute and that R and S←⪯ commute. Then

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:71

𝑎 𝑏

𝑐 𝑑

R∪S
⪯

RR

R∪S
⪯

Proof. By induction on the size of the top edge of the diagram. At each step one of the four

diagrams from Lemma D.10 will be used.

[More to come.]

□

Lemma D.12. Let relation R be monotonic in quasi order ⪯ and skew confluent using ⪯ and R←⪯ ;
similarly let S be monotonic in the same quasi order ⪯ and skew confluent using ⪯ and S←⪯ . Then

𝑎 𝑏

𝑐 𝑑

R∪S
⪯

R∪SR∪S

R∪S
⪯

Proof. By case analysis on whether left edge uses R or S; then project that left edge into R∗ or
S∗ respectively and apply Lemma D.11.

[More to come.]

□

Lemma D.13. Let relation R be monotonic in quasi order ⪯ and skew confluent using ⪯ and R←⪯ ;
similarly let S be monotonic in the same quasi order ⪯ and skew confluent using ⪯ and S←⪯ . Then

𝑎 𝑏

𝑐 𝑑

R∪S
R∪S

R∪S

R∪S
⪯

⪯

Proof. By induction on the size of the left edge of the diagram.

Base case This diagram clearly holds by letting the bottom edge be the same as the top edge:

𝑎 𝑏

𝑐 𝑑

≡
R∪S

≡

R∪S
⪯

⪯

and it implies this diagram:

𝑎 𝑏

𝑐 𝑑

(R∪S)0
R∪S

R∪S

R∪S
⪯

⪯

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:72 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Inductive case Assume the diagram holds for left edges of all sizes up to 𝑛. Then this diagram:

𝑎 𝑏

𝑐 𝑑

(R∪S)𝑛+1
R∪S

R∪S

R∪S
⪯

⪯

follows from this diagram:

𝑎 𝑏

𝑐 𝑑

𝑒 𝑓

(R∪S)𝑛
R∪S

R∪S

R∪S
⪯

⪯

R∪S R∪S

R∪S
⪯

𝐷.12

where the top half is the inductive hypothesis and the bottom half follows from Lemma D.12.

□

Lemma D.14. Let relation R be monotonic in quasi order ⪯ and skew confluent using ⪯ and R←⪯ ;
similarly let S be monotonic in the same quasi order ⪯ and skew confluent using ⪯ and S←⪯ . If R
commutes with S, then T = R ∪ S is monotonic in ⪯ and skew confluent using ⪯ and T←⪯ .

Proof. □

D.8 Proof thatVC Is Skew Confluent

[This is just a brief proof sketch.]

First prove that the modifiedU is skew confluent. (In doing so we will defineU←⩽𝜔
VC

.)

Then use existing proofs to demonstrate thatA ∪N ∪ G ∪ C is confluent. Because they are also

monotonic, they are therefore skew confluent, and (A ∪ N ∪ G ∪ C)←⩽𝜔
VC

is trivial.

Prove that A ∪N ∪ G ∪ C commutes withU←⩽𝜔
VC

.

Then apply Lemma D.14 to show thatU ∪ (A ∪N ∪ G ∪ C) is skew confluent.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:73

Domains

𝑊 = Z + ⟨𝑊 ⟩ + (𝑊 →𝑊 ∗)
⟨𝑊 ⟩ = a finite tuple of values𝑊

𝐸𝑛𝑣 = 𝐼𝑑𝑒𝑛𝑡 →𝑊

Semantics of expressions and values

EJeK : 𝐸𝑛𝑣 →𝑊 ∗

EJvK 𝜌 = unit (VJ𝑣K 𝜌)
EJfailK 𝜌 = empty

EJe
1

e
2
K 𝜌 = EJe

1
K 𝜌 ⋓ EJe

2
K 𝜌

EJe
1
= e

2
K 𝜌 = EJe

1
K 𝜌 ⋒ EJe

2
K 𝜌

EJe
1
; e

2
K 𝜌 = EJe

1
K 𝜌 # EJe

2
K 𝜌

EJv
1

v
2
K 𝜌 = apply(VJv

1
K 𝜌, VJv

2
K 𝜌)

EJ∃x . eK 𝜌 =
⋃

𝑤∈𝑊 EJ𝑒K (𝜌 [𝑥 ↦→ 𝑤])
EJone{e}K 𝜌 = one(EJ𝑒K 𝜌)
EJall{e}K 𝜌 = unit (all(EJ𝑒K 𝜌))

VJvK : 𝐸𝑛𝑣 →𝑊

VJxK 𝜌 = 𝜌 (𝑥)
VJkK 𝜌 = 𝑘

VJ𝑜𝑝K 𝜌 = OJ𝑜𝑝K
VJ_x . eK 𝜌 = _𝑤.EJ𝑒K (𝜌 [𝑥 ↦→ 𝑤])

VJ⟨v
1
, ···, v

n
⟩K 𝜌 = ⟨VJ𝑣

1
K 𝜌, ···,VJ𝑣𝑛K 𝜌⟩

OJopK : 𝑊

OJaddK = _𝑤. if (𝑤 = ⟨k
1
, k

2
⟩) then unit (𝑘

1
+ 𝑘

2
) elseWRONG

OJgtK = _𝑤. if (𝑤 = ⟨k
1
, k

2
⟩ ∧ 𝑘

1
> 𝑘

2
) then unit (𝑘

1
) else empty

OJintK = _𝑤. if (𝑤 = 𝑘) then unit (𝑘) else empty

𝑎𝑝𝑝𝑙𝑦 : (𝑊 ×𝑊) →𝑊 ∗

𝑎𝑝𝑝𝑙𝑦 (𝑘,𝑤) = WRONG 𝑘 ∈ Z
𝑎𝑝𝑝𝑙𝑦 (⟨𝑣

0
, ···, 𝑣𝑛⟩, 𝑘) = unit (𝑣𝑘) 0 ⩽ 𝑘 ⩽ 𝑛

= empty otherwise

𝑎𝑝𝑝𝑙𝑦 (𝑓 ,𝑤) = 𝑓 (𝑤) 𝑓 ∈𝑊 →𝑊 ∗

Fig. 19. Expression semantics

E A DENOTATIONAL SEMANTICS FORVC
It is highly desirable to have a denotational semantics for VC. A denotational semantics says

directly what an expression means rather than how it behaves, and that meaning can be very

perspicuous. Equipped with a denotational semantics we can, for example, prove that the left hand

side and right hand side of each rewrite rule have the same denotation; that is, the rewrites are

meaning-preserving.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:74 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Domains

𝑊 ∗ = (WRONG + P(𝑊))⊥
Operations

Empty empty : 𝑊 ∗

empty = { }
Unit unit : 𝑊 →𝑊 ∗

unit (𝑤) = {𝑤}
Union ⋓ : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠
1
⋓ 𝑠

2
= 𝑠

1
∪ 𝑠

2

Intersection ⋒ : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠
1
⋒ 𝑠

2
= 𝑠

1
∩ 𝑠

2

Sequencing # : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠
1
𝑠

2
= 𝑠

2
if 𝑠

1
is non-empty

= { } otherwise

One one : 𝑊 ∗ →𝑊 ∗ The result is either empty or a singleton

one(𝑠) = ???

All all : 𝑊 ∗ → ⟨𝑊 ⟩
all(𝑠) = ???

All operations over𝑊 ∗ implicitly propagate ⊥ and WRONG. E.g.

𝑠
1
⋓ 𝑠

2
= ⊥ if 𝑠

1
= ⊥ or 𝑠

2
= ⊥

= WRONG if (𝑠
1
= WRONG and 𝑠

2
≠ ⊥) or (𝑠

2
= WRONG and 𝑠

1
≠ ⊥)

= 𝑠
1
∪ 𝑠

2
otherwise

Fig. 20. Set semantics for𝑊 ∗

But a denotational semantics for a functional logic language is tricky. Typically one writes a

denotation function something like

EJeK : 𝐸𝑛𝑣 →𝑊

where 𝐸𝑛𝑣 = 𝐼𝑑𝑒𝑛𝑡 →𝑊 . So E takes an expression e and an environment 𝜌 : 𝐸𝑛𝑣 and returns the

value, or denotation, of the expression. The environment binds each free variable of e to its value.

But what is the semantics of ∃x . e? We need to extend 𝜌 with a binding for x, but what is x bound

to? In a functional logic language x is given its value by various equalities scattered throughout e.

This section sketches our approach to this challenge. It is not finished work, and does not count

as a contribution of our paper. We offer it because we have found it an illuminating alternative way

to understandVC, one that complements the rewrite rules that are the substance of the paper.

E.1 A first attempt at a denotational semantics
Our denotational semantics forVC is given in Fig. 19.

• We have one semantic function (here E andV) for each syntactic non terminal (here 𝑒 and 𝑣

respectively.)

• Each function has one equation for each form of the construct.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:75

• Both functions take an environment 𝜌 that maps in-scope identifiers to a single value; see

the definition 𝐸𝑛𝑣 = 𝐼𝑑𝑒𝑛𝑡 →𝑊 .

• The value functionV returns a single value𝑊 , while the expression function E returns a

collection of values𝑊 ∗ (Appendix E.1).

The semantics is parameterized over the meaning of a “collection of values 𝑊 ∗”. To a first

approximation, think of𝑊 ∗ a (possibly infinite) set of values𝑊 , with union, intersection etc having

their ordinary meaning.

Our first interpretation, given in Figure 20, is a little more refined:𝑊 ∗ includes⊥ andWRONG as

well as a set of values. Our second interpretation is given in Figure 21, and discussed in Appendix E.4.

The equations themselves, in Fig. 19 are beautifully simple and compositional, as a denotational

semantics should be.

The equations forV are mostly self-explanatory, but an equation likeVJkK 𝜌 = 𝑘 needs some

explanation: the 𝑘 on the left hand side (e.g. “3”) is a piece of syntax, but the 𝑘 on the right is

the corresponding element of the semantic world of values𝑊 (e.g. 3). As is conventional, albeit

a bit confusing, we use the same 𝑘 for both. Same for 𝑜𝑝 , where the semantic equivalent is the

corresponding mathematical function.

The equations for E are more interesting.

• Values EJvK 𝜌 : compute the single value for v, and return a singleton sequence of results.

The auxiliary function unit is defined at the bottom of Fig. 19.

• In particular, values include lambdas. The semantics says that a lambda evaluates to a singleton

collection, whose only element is a function value. But that function value has type𝑊 →𝑊 ∗;
that is, it is a function that takes a single value and returns a collection of values.

• Function application EJv
1

v
2
K 𝜌 is easy, because V returns a single value: just apply the

meaning of the function to the meaning of the argument. The apply function is defined in

Figure 19.

• Choice EJe
1

e
2
K 𝜌 : take the union (written ⋓) of the values returned by e

1
and e

2
respectively.

For bags this union operator is just bag union (Figure 20).

• Unification EJe
1

e
2
K 𝜌 : take the intersection of the values returned by e

1
and e

2
respectively.

For bags, this “intersection” operator ⋒ is defined in Fig. 20. In this definition, the equality is

mathematical equality of functions; which we can’t implement for functions; see Appendix E.1.

• Sequencing EJe
1
; e

2
K 𝜌 . Again we use an auxiliary function # to combine the meanings of

e
1
and e

2
. For bags, the function # (Fig. 20 again) uses a bag comprehension. Again it does a

cartesian product, but without the equality constraint of ⋒.
• The semantics of (one{e}) simply applies the semantic function one : 𝑊 ∗ → 𝑊 ∗ to the

collection of values returned by e. If e returns no values, so does (one{e}); but if e returns one

or more values, (one{e}) returns the first. Of course that begs the question of what “the first”

means – for bags it would be non-deterministic. We will fix this problem in Appendix E.4,

but for now we simply ignore it.

• The semantics of (all{e}) is similar, but it always returns a singleton collection (hence the

unit in the semantics of all) whose element is a (possibly-empty) tuple that contains all the

values in the collection returned by e.

The fact that unification “=” maps onto intersection, and choice “ ” onto union, is very satisfying.

The big excitement is the treatment of ∃. We must extend 𝜌 , but what should we bind x to?

(Compare the equation forVJ_x . eK , where we have a value𝑤 to hand.) Our answer is simple: try

all possible values, and union the results:

EJ∃x . eK 𝜌 =
⋃
𝑤∈𝑊

EJ𝑒K (𝜌 [𝑥 ↦→ 𝑤])

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:76 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

That

⋃
𝑤∈𝑊 means: enumerate all values in𝑤 ∈𝑊 , in some arbitrary order, and for each: bind 𝑥 to

𝑤 , find the semantics of 𝑒 for that value of 𝑥 , namely EJ𝑒K (𝜌 [𝑥 ↦→ 𝑤]), and take the union (in the

sense of ⋓) of the results.
Of course we can’t possibly implement it like this, but it makes a great specification. For example

∃x . x = 3 tries all possible values for x, but only one of them succeeds, namely 3, so the semantics

is a singleton sequence [3].

E.2 The denotational semantics is un-implementable
This semantics is nice and simple, but we definitely can’t implement it! Consider

∃x . (x2 − x − 6) = 0; x

The semantics will iterate over all possible values for x, returning all those that satisfy the equality;

including 3, for example. But unless our implementation can guarantee to solve quadratic equations,

we can’t expect it to return 3. Instead it’ll get stuck.

Another way in which the implementation might get stuck is through unifying functions:

(_x . x + x) = (_y. y ∗ 2) or even (_x . x + 1) = (_y. y + 1)
But not all unification-over-functions is ruled out. We do expect the implementation to succeed

with

∃f . ((_x . x + 1) = f); f 3

Here the ∃ will “iterate” over all values of f , and the equality will pick out the (unique) iteration in

which f is bound to the incrementing function.

So our touchstone must be:

• If the implementation returns a value at all, it must be the value given by the semantics.

• Ideally, the verifier will guarantee that the implementation does not get stuck, or goWRONG.

E.3 Getting WRONG right
Getting WRONG right is a bit tricky.

• What is the value of (3 = ⟨⟩)? The intersection semantics would say empty, the empty

collection of results, but we might want to say WRONG.

• ShouldWRONG be an element of𝑊 or of𝑊 ∗? We probably want (one{3 wrong} to return
a unit (3) rather thenWRONG?

• What about fst (⟨3,wrong⟩)? Is that wrong or 3?
There is probably more than one possible choice here.

E.4 An order-sensitive denotational semantics
There is a Big Problem with this approach. Consider ∃x . x = (4 3). The existential enumerates

all possible values of x in some arbitrary order, and takes the union (i.e., “concatentation”) of the

results from each of these bindings. Suppose that ∃ enumerates 3 before 4; then the semantics of

this expression is the sequence [3, 4], and not [4, 3] as it should be. And yet returning a sequence

(not a set nor a bag) is a key design choice in Verse. What can we do?

Figure 21 give a new denotational semantics that does account for order. The key idea (due to

Joachim Breitner) is this: return a sequence of labelled values; and then sort that sequence (in one

and all) into canonical order before exposing it to the programmer.

We do not change the equations for E, V , and O at all; they remain precisely as they are in

Figure 19. However the semantics of a collection of values, 𝑊 ∗, does change, and is given in

Figure 21:

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:77

Domains

𝑊 ∗ = (WRONG + P(𝐿𝑊))⊥
𝑊 ? = {𝑊 } Set with 0 or 1 elements

𝐿𝑊 = [𝐿] ×𝑊 Sequence of 𝐿 and a value

𝐿 = L + R

Operations

Empty empty : 𝑊 ∗

empty = ∅
Singleton unit : 𝑊 →𝑊 ∗

unit (𝑤) = {([],𝑤)}
Union ⋓ : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠
1
⋓ 𝑠

2
= {(L : 𝑙,𝑤) | (𝑙,𝑤) ∈ 𝑠

1
} ∪ {(R : 𝑙,𝑤) | (𝑙,𝑤) ∈ 𝑠

2
}

Intersection ⋒ : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠
1
⋒ 𝑠

2
= {(𝑙

1
⊲⊳ 𝑙

2
,𝑤

1
) | (𝑙

1
,𝑤

1
) ∈ 𝑠

1
, (𝑙

2
,𝑤

2
) ∈ 𝑠

2
,𝑤

1
= 𝑤

2
}

Sequencing # : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠
1
𝑠

2
= {(𝑙

1
⊲⊳ 𝑙

2
,𝑤

2
) | (𝑙

1
,𝑤

1
) ∈ 𝑠

1
, (𝑙

2
,𝑤

2
) ∈ 𝑠

2
}

One one : 𝑊 ∗ →𝑊 ∗

one(𝑠) = head (sort (𝑠))
All all : 𝑊 ∗ →𝑊 ∗

all(𝑠) = tuple(sort (𝑠))
Head head : ([𝑊] +WRONG) →𝑊 ∗

head (WRONG) = WRONG

head [] = 𝑒𝑚𝑝𝑡𝑦

head (𝑤 : 𝑠) = unit (𝑤)
To tuple tuple : ([𝑊] +WRONG) → ⟨𝑊 ⟩

tuple(WRONG) = WRONG

tuple[𝑤
1
, ···,𝑤𝑛] = ⟨𝑤

1
, ···,𝑤𝑛⟩

Sort sort : 𝐿𝑊 ∗ → ([𝑊] +WRONG)⊥
sort (𝑠) = [] if 𝑠 is empty

= WRONG if𝑤𝑠 has more than one element

= 𝑤𝑠 otherwise

⊲⊳ sort{(𝑙,𝑤) | (L : 𝑙,𝑤) ∈ 𝑠}
⊲⊳ sort{(𝑙,𝑤) | (R : 𝑙,𝑤) ∈ 𝑠}

where𝑤𝑠 = [𝑤 | ([],𝑤) ∈ 𝑠]

Fig. 21. Labelled set semantics for𝑊 ∗

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:78 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

• A collection of values𝑊 ∗ is now ⊥ or WRONG (as before), or a set of labelled values, each of

type 𝐿𝑊 .

• A labelled value (of type 𝐿𝑊) is just a pair ([𝐿] ×𝑊) of a label and a value.

• A label is a sequence of tags 𝐿, where a tag is just L or R, similar to Section 5.2.

• The union (or concatentation) operation ⋓, defined in Fig. 21, adds a L tag to the labels of the

values in the left branch of the choice, and a R tag to those coming from the right. So the

labels specify where in the tree the value comes from.

• Sequencing # and ⋒ both concatenate the labels from the values they combine.

• Finally sort puts everything in the “right” order: first the values with an empty label, then the

values whose label starts with L (notice the recursive sort of the trimmed-down sequence),

and then those that start with R. Notice that sort removes all the labels, leaving just a bare

sequence of values𝑊 ∗.
• Note that if sort encounters a set with more than one unlabelled element then this considered

WRONG. This makes ambiguous expressions, like one{∃x . x}, WRONG.

Let us look at our troublesome example ∃x . x = (4 3), and assume that ∃ binds x to 3 and then 4.

The meaning of this expression will be

EJ∃x . x = (4 3)K 𝜖 = [(R, 3), (L, 4)]
Now if we take all of that expression we will get a singleton sequence containing ⟨4, 3⟩, because
all does a sort, stripping off all the tags.

EJall{∃x . x = (4 3)}K 𝜖 = [([], ⟨4, 3⟩)]

E.5 Related work
[Christiansen et al. 2011] gives another approach to a denotational semantics for a functional logic

language. We are keen to learn of others.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version) 203:79

F UPDATEABLE REFERENCES
The full Verse language has updatable references (à la ML). There are three new primitive operations,

alloc, read, and write. The alloc creates a new reference with an initial value, read extracts the

value from a reference, and write sets the value of a referene.

Modifying these references is transactional in the sense that if a computation fails, then any

updates will not be visible outside the construct that handles the failures. E.g.,

r B alloc(0); (if (write⟨r, 1⟩; fail) then 1 else 2); read(r)
will have the value 0, because the write is part of an expression that fails, and so its effect is not

visible.

To add updateable references we extend the system with syntax and rules from figure 22. The

store h in {e} indicates that e should be reduced using the heap h. A heap is simply a mapping from

references to values (one mapping being r ↦→v). A reference is some opaque type that supports

equality (unification) and creation of a new reference.

The interaction of the new primitives with the store can be seen from the axioms. The alloc(v)
operation creates a new reference and adds a binding with v to the store. The read(r) operation
retrieves the value for reference r from the store, and write⟨r, v⟩ updates the reference r with v in

the store. All of these operations use the context S which ensures that there are no store operations

to the left of the hole, i.e., a store operation in the hole is the next one that should execute.

The interesting rules involve choice and split because store operations are transactional in the

sense that when an expressions fails, none of its store operations will happen.

When reducing split{e}⟨f , g⟩ in an S hole, rule st-split-dup, the store is duplicated. Any store

operations inside the split will happen in this local copy of the store. Note the two occurrences

of h in the right hand side of st-split-dup. If the reduction of e results in fail then rule fail-elim

is used, and the store from the failing computation is simply thrown away. If the reduction of e

results in a value (with or without more alternatives) then rule st-split is used. This rule replaces

the outer store with the inner store, since we know the inner computation has succeeded.

Similarly, the reduction of e
1

e
2
will duplicate the store into the first branch, st-choice-dup. Here

e
1
must not contain any store operation nor be a value. And again, similarly, st-choice commits the

new store and throws away the old.

The use of oe in the rules is to ensure that the rules cannot get stuck in a loop. Using e instead of

oe would mean that failing or committing would make the expression match the duplication rule

again. It also prevents the duplication rule from repeatedly duplicating the store.

Note that store is part of the 𝑋 context, which means that the store can float inside existentials.

This is necessary for the store rules to fire since the S context does not allow going under existentials.

The semantics of for(d) do e with respect to store effects is somewhat intricate. The expression

d is possibly multi-valued; any effects that happens when computing the first value of d will be

visible the first time e is computed. Both these effects are then visible when computing the second

value of d, and so on. If any iteration of d fails, then the effects of that computation are not visible

outside d. This means that the desugaring of for into split needs to be more elaborate.

for(∃x
1
···x

n
. d) do e

means

f ⟨⟩ B ⟨⟩;
g(v) (r) B (v = ⟨x

1
, ···, x

n
⟩; cons⟨e, split{r ⟨⟩}⟨f , g⟩⟩;

split{∃x
1
··· x

n
. d; ⟨x

1
, ···, x

n
⟩}⟨f , g⟩

To support limited store operations (e.g., read, but not write) we can equip the store with a set

of currently allowed operations. We also need some extra primitives that modify this set.

Received 2023-03-01; accepted 2023-06-27

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

203:80 Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Syntax extension

References 𝑟

Expressions 𝑒 ::= · · · | store h in {e}
Primops 𝑜𝑝 ::= · · · | alloc | read | write

Head values ℎ𝑛𝑓 ::= · · · | 𝑟
Execution contexts 𝑋 ::= · · · | store h in {𝑋 }
Scope contexts 𝑆𝐶 ::= · · · | store h in {SC}
Heap ℎ ::= 𝜖 | r ↦→v, h

Heap context 𝐻 ::= □, h | r ↦→v,H

Store contexts 𝑆 ::= □ | v = S | S; e | 𝑠𝑒 ; S | ∃x . S

Store-op free exprs 𝑠𝑒 ::= v | 𝑠𝑒
1
= 𝑠𝑒

2
| 𝑠𝑒

1
; 𝑠𝑒

2
| ∃x . 𝑠𝑒 | sp(v)

Results 𝑤 ::= v | v e

Non-store primops 𝑠𝑝 ::= any, except alloc, read,write

Non-store expression 𝑜𝑒 ::= like e, but not w, store, or fail

Axiom extensions

Normalization change

exi-float 𝑋 [∃x . e] −→ ∃x . 𝑋 [e] if 𝑋 ≠ □, 𝑥 ∉ fvs(𝑋), use 𝛼
if there is store in 𝑋 then e ∈ ce

Reference ops

ref-alloc store h in {S[alloc(v)]} −→ store r ↦→v, h in {S[r]}
fvs(v)#bvs(S), r fresh

ref-read store H [r ↦→v] in {S[read(r)]} −→ store H [r ↦→v] in {S[v]}
fvs(v)#bvs(S), use 𝛼

ref-write store H [r ↦→v
1
] in {S[write⟨r, v

2
⟩]} −→ store H [r ↦→v

2
] in {S[⟨⟩]}

fvs(v
2
)#bvs(S)

Store duplication

st-split-dup store h in {S[split{oe}⟨f , g⟩]} −→ store h in {S[split{store h in {oe}}⟨f , g⟩]}
fvs(h)#bvs(S), use 𝛼

st-choice-dup store h in {oe e} −→ store h in {store h in {oe} e}

Store commit

st-split store h
1
in {S[split{store h

2
in {w}}⟨f , g⟩]} −→ store h

2
in {S[split{w}⟨f , g⟩]}

fvs(h
2
)#bvs(S)

st-choice store h
1
in {S[(store h

2
in {w}) e]} −→ store h

2
in {S[w e]}

fvs(h
2
)#bvs(S)

Unification

Extension with the obvious axioms making equal references unify, and anything else fail.

Top level

Start top level reduction of e with store 𝜖 in {e}.

Fig. 22. The Verse calculus: store axioms

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 203. Publication date: August 2023.

	Abstract
	1 Introduction
	2 The Verse calculus, informally
	2.1 Logical Variables and Equations
	2.2 Choice
	2.3 Mixing Choice and Equations
	2.4 Pattern Matching and Narrowing
	2.5 Conditionals and ``one''
	2.6 Tuples and ``all''
	2.7 Programming in Verse
	2.8 For Loops

	3 Rewrite rules
	3.1 Functions and Function Application Rules
	3.2 Unification Rules
	3.3 Swapping and Binding Order
	3.4 Elimination and Normalization Rules
	3.5 Rules for Choice
	3.6 The Verse Calculus is Lenient
	3.7 Evaluation Strategy
	3.8 Logical Completeness
	3.9 Developing and Debugging Rules

	4 Metatheory
	4.1 Two Challenges to Confluence
	4.2 Proof of Confluence
	4.3 Overview of Skew Confluence

	5 Variations and choices
	5.1 Simplifying the Rules
	5.2 Ordering and Choices
	5.3 Generalizing ``one'' and ``all''

	6 The Verse calculus in context: reflections and related work
	6.1 Choice and Non-determinism
	6.2 One and all
	6.3 The semantics of logical variables
	6.4 Flat vs. Higher Order
	6.5 Intermediate Language
	6.6 Comparison with Various Functional Language Extensions to Datalog
	6.7 Comparison with Icon

	7 Looking back, looking forward
	Acknowledgments
	References
	A Example
	B Confluence: Preliminaries
	B.1 Reduction relations
	B.2 Confluence
	B.3 Commutativity
	B.4 *-Commutativity
	B.5 Commutativity and Confluence
	B.6 Confluent Kernels

	C Confluence of the Verse calculus: Proof
	C.1 Disjointness, Reduction under, and the Diamond property
	C.2 Lemmas for Reductions-Under
	C.3 Lemmas for Substitution and Unification
	C.4 Unification is Confluent
	C.5 Normalization is Confluent
	C.6 Unification + Normalization is Confluent
	C.7 U and N Commute With A and G and C
	C.8 Application
	C.9 Garbage Collection
	C.10 Choice

	D Skew Confluence
	D.1 Free Variables
	D.2 Substitution
	D.3 Modified grammar and rewrite rules
	D.4 Unwrapping of Fixpoints is Confluent but not Noetherian
	D.5 Information Content
	D.6 Preliminaries about Skew Confluence
	D.7 New Lemmas about Skew Confluence
	D.8 Proof that VC Is Skew Confluent

	E A denotational semantics for VC
	E.1 A first attempt at a denotational semantics
	E.2 The denotational semantics is un-implementable
	E.3 Getting ``wrong'' right
	E.4 An order-sensitive denotational semantics
	E.5 Related work

	F Updateable references

