
Deriving Probability Density Functions
from Probabilistic Functional Programs

Sooraj Bhat1, Johannes Borgström2, Andrew D. Gordon3,4, and Claudio Russo3

1 Georgia Institute of Technology
2 Uppsala University
3 Microsoft Research

4 University of Edinburgh

Abstract. The probability density function of a probability distribution is a fun-
damental concept in probability theory and a key ingredient in various widely
used machine learning methods. However, the necessary framework for compil-
ing probabilistic functional programs to density functions has only recently been
developed. In this work, we present a density compiler for a probabilistic lan-
guage with discrete and continuous distributions, and discrete observations, and
provide a proof of its soundness. The compiler greatly reduces the development
effort of domain experts, which we demonstrate by solving inference problems
from various scientific applications, such as modelling the global carbon cycle,
using a standard Markov chain Monte Carlo framework.

1 Introduction

Probabilistic programming promises to arm data scientists with declarative languages
for specifying their probabilistic models, while leaving the details of how to translate
those models to efficient sampling or inference algorithms to a compiler. Many widely
used machine learning techniques that might be employed by such a compiler use as
input the probability density function (PDF) of the model. Such techniques include max-
imum likelihood or maximum a posteriori estimation, L2 estimation, importance sam-
pling, and Markov chain Monte Carlo (MCMC) methods.

Despite their utility, density functions have been largely absent from the literature
on probabilistic functional programming. This is because the relationship between pro-
grams and their density functions is not straightforward: for a given program, the PDF
may not exist or may be non-trivial to calculate. Such programs are not merely infre-
quent pathological curiosities but in fact arise in many ordinary scenarios. In this paper,
we define, prove correct, and implement an algorithm for automatically computing PDFs
for a large class of programs written in a rich probabilistic programming language.

Probability density functions. We now explain what a probability density function is,
where it arises, and what we use it for in this paper. Consider a probabilistic program
that generates outcomes from a set Ω . The probability distribution P of the program
characterizes its behavior by assigning probabilities to different subsets (events) of Ω ,
denoting the proportion of runs that generate an outcome in that subset.

It turns out to be more productive to work with a function on the elements of Ω

instead of the subsets of Ω , which characterizes the distribution. There is always such
a function when Ω is countable, known as the probability mass function. It is defined
f (x) , P({x}) and enjoys the property P(A) = ∑x∈A f (x) for all subsets A of Ω . Un-
fortunately, this construction does not work in the continuous case. Consider a simple
mixture of Gaussians, here written in Fun (Borgström et al. 2011), a probabilistic func-
tional language embedded within F# (Syme et al. 2007).

let w = {mA = 0.0; mB = 4.0} in
if flip 0.7 then random(Gaussian(w.mA, 1.0)) else random(Gaussian(w.mB, 1.0))

This specifies a distribution on the real line (i.e. Ω =R) and corresponds to a generative
process where one draws a number from a Gaussian distribution with precision 1.0, and
with mean either 0.0 or 4.0 depending on the result of flipping a biased coin. We use
a record w with fields mA and mB to hold each mean. Repeating the construction from
the discrete case yields the function g(x) = P({x}), which is zero everywhere. Instead
we look for a function f such that P(A) =

∫
A f (x) dx, known as the probability density

function (PDF) of the distribution. In other words, f is a function where the area under
its curve on an interval gives the probability of generating an outcome falling in that
interval. The PDF of this program is given by the function

f (x) = 0.7 ·pdf Gaussian(0.0, 1.0, x)+0.3 ·pdf Gaussian(4.0, 1.0, x)

where pdf Gaussian is the PDF of the Gaussian distribution, the famous “bell curve”
from statistics. The function, pictured below, takes higher values where the generative
process described above is more likely to generate an outcome.

−2 0 2 4 6

0
.0

0
0
.1

0
0
.2

0
0
.3

0

Densities functions and MCMC. In the example above, the means and variances of the
Gaussians, as well as the bias between the two, were known. In this case, the PDF gives
a measure of how likely a particular output is. The more common and interesting case
in applications is where the parameters are unknown, but we have a sample from the
process in question. In that case, evaluating the PDF at the sample gives the likelihood
of the parameters: a measure of how well a given setting of the parameters matches the
sample. We are often interested in properties of the function that maps parameters to
their likelihood, e.g., its maximum.

In Bayesian modelling, we use a prior distribution representing our prior beliefs on
what the parameters are. Incidentally, this distribution also involves Gaussians, but with
a low precision (high variance). To illustrate this, we modify our example as follows:

let prior () =
{ mA = random(Gaussian(0.0, 0.001)); mB = random(Gaussian(0.0, 0.001)) }

let moG w =
if flip 0.7 then random(Gaussian(w.mA, 1.0)) else random(Gaussian(w.mB, 1.0))

let gen w = [| for i in 1 .. 1000→moG w |]
This model generates an array of independent, identically distributed (i.i.d.) points, de-
fined in terms of the single-point model. This lets us capture the idea of seeing many
samples generated from the same process.

Markov chain Monte Carlo (MCMC) methods, which generate samples from the
posterior distribution, are commonly used for probabilistic inference. The idea of MCMC
is to construct a Markov chain in the parameter space of the model, whose equilibrium
distribution is the posterior distribution over model parameters. Neal (1993) gives an
excellent review of MCMC methods. We here use Filzbach (Purves and Lyutsarev 2012),
an adaptive MCMC sampler based on the Metropolis-Hastings algorithm. All that is
required for such algorithms is the ability to calculate the posterior density given a set
of parameters. The posterior does not need to be from a mathematically convenient
family of distributions. Samples from the posterior can then serve as its representation,
or be used to calculate marginal distributions of parameters or other integrals under the
posterior distribution.

The posterior density is a function of the PDFs of the various pieces of the model,
so to perform inference using MCMC, we also need functions to compute the PDFs:

let pdf prior () w = pdf Gaussian(0.0, 0.001, w.mA) ∗ pdf Gaussian(0.0, 0.001, w.mB)
let pdf moG w x = 0.7 ∗ pdf Gaussian(w.mA, 1.0, x) + 0.3 ∗ pdf Gaussian(w.mB, 1.0, x)
let pdf gen w xs = product [| for x in xs→pdf moG w x |]
Filzbach and other MCMC libraries require users to write these three functions, in ad-
dition to the probabilistic generative functions prior and gen, which are used for model
validation. The goal of this paper is to instead compile these density functions from the
generative code. This relieves domain experts from having to write the density code in
the first place, as well as from the error-prone task of manually keeping their model
code and their density code in synch. Instead, both the PDF and synthetic data are de-
rived from the same declarative specification of the model.

Contributions of this paper. This work defines and applies automated techniques for
computing densities to actual inference problems from various scientific applications.
The primary technical contribution is a density compiler that is correct, useful, and
relatively simple and efficient. Specifically:

– We provide the first implementation of a density compiler based on the specification
by Bhat et al. (2012). We compile programs in the probabilistic language Infer.NET
Fun (described in Section 2) to their corresponding density functions (Section 3).

– We prove that the compilation algorithm is sound (Theorem 1). This is the first such
proof for any variant of this compiler.

– We show that the compiler greatly reduces the development effort of domain ex-
perts by freeing them from writing densities and that the produced code is compa-
rable in performance to functions hand-coded by experts. We show this on textbook
examples and on problems from ecology (Section 4).

2 Fun: Probabilistic Expressions (Review)

We use a version of the core calculus Fun (Borgström et al. 2011) with discrete ob-
servations only (implemented using a fail construct (Kiselyov and Shan 2009)). Fun is
a first-order functional language without recursion that extends the language of Ram-
sey and Pfeffer (2002), and has a natural semantics in the sub-probability monad. Our
implementation efficiently supports a richer language with arrays and array comprehen-
sions, which can be given a semantics in this core.

We use base types int, double and unit, product types (denoting pairs) and sum
types (denoting disjoint unions). We let c range over constant data of base type, n over
integers and r over real numbers. We write ty(c) = t to mean that constant c has type t.

Types of Fun:

t,u ::= int | double | unit | (t1 ∗ t2) | (t1 + t2)

We take bool , unit+unit. We assume a collection of total deterministic functions
on these types, including arithmetic and logical operators. For totality, we devine divi-
son by zero to yield zero, i.e. r/0.0 , 0.0. Each operation f of arity n has a signature
of the form val f : t1 ∗ · · · ∗ tn → tn+1. We also assume standard families of primitive
probability distributions of type PDist〈t〉, including the following.

Distributions: Dist : (x1 : t1 ∗ · · · ∗ xn : tn)→ PDist〈t〉
Bernoulli : (bias : double)→ PDist〈bool〉
Poisson : (rate : double)→ PDist〈int〉
Gaussian : (mean : double∗prec : double)→ PDist〈double〉
Beta : (a : double∗b : double)→ PDist〈double〉
Gamma : (shape : double∗ scale : double)→ PDist〈double〉

A Bernoulli distribution corresponds to a biased coin flip. The Poisson distribution de-
scribes the number of occurrences of independent events that occur at a given average
rate. We parameterize the Gaussian distribution by mean and precision. The standard
deviation σ follows from the identity σ2 = 1/prec. The Beta distribution is a suitable
prior for the parameter of Bernoulli distributions; similarly the Gamma distribution is a
suitable prior for the parameter of Poisson and the prec parameter of Gaussian.

Expressions of Fun:

V ::= x | c | (V,V) | inluV | inrtV value
M,N ::= expression

x | c | inlu M | inrt M | (M,N) value constructors
fst M | snd M left/right projection from pair
f (M) primitive operation (deterministic)
let x = M in N let (scope of x is N)
match M with inl x1→ N1 | inr x2→ N2 matching (scope of xi is Ni)
random(Dist(M)) primitive distribution
failt failure

To ensure that a program has at most one type in a given typing environment, inl and
inr are annotated with a type (see (FUN INL) below). The expression fail is annotated
with the type it is used at. We omit these types where they are not used. When X is a
term (possibly with binders), we write x1, . . . ,xn] X if none of the xi appear free in X .
We let op(M) range over f (M), fst M, snd M, inl M and inr M; () is the unit constant.

We write observe M for if M then () else fail and Uniform for Beta(1.0,1.0). When M
has sum type, we write if M then N1 else N2 for match M with inl → N1 | inr → N2.

We write Γ `M : t to mean that in type environment Γ = x1 : t1, . . . ,xn : tn (xi dis-
tinct) expression M has type t. Apart from the following, the typing rules are standard.
In (FUN INL), (FUN INR) (not shown) and (FUN FAIL), type annotations are used in
order to obtain a unique type. In (FUN RANDOM), a random variable drawn from a
distribution of type (x1 : t1 ∗ · · · ∗ xn : tn)→ PDist〈t〉 has type t.

Selected Typing Rules: Γ `M : t

(FUN INL)
Γ `M : t

Γ ` inlu M : t +u

(FUN FAIL)

Γ ` failt : t

(FUN RANDOM)
Dist : (x1 : t1 ∗ · · · ∗ xn : tn)→ PDist〈t〉

Γ `M : (t1 ∗ · · · ∗ tn)

Γ ` random(Dist(M)) : t

Semantics As usual, for precision concerning probabilities over uncountable sets, we
turn to measure theory. The interpretation of a type t is the set Vt of closed values of
type t (real numbers, integers etc.). Below we consider only Lebesgue-measurable sets
of values, defined using the standard (Euclidian) metric, and ranged over by A,B.

A measure µ over t is a function, from (measurable) subsets of Vt to the non-
negative real numbers extended with ∞, that is σ -additive, that is, µ(∅) = 0.0 and
µ(∪iAi) = Σiµ(Ai) if A1,A2, . . . are pair-wise disjoint. The measure µ is called a prob-
ability measure if µ(Vt) = 1.0, and a sub-probability measure if µ(Vt)≤ 1.0.

We associate a default or stock measure to each type, inductively defined as the
counting measure on Z and {()}, the Lebesgue measure on R, and the Lebesgue-
completion of the product and disjoint sum, respectively, of the two measures for t ∗ u
and t + u. If f is a non-negative (measurable) function t → double, we let

∫
f be the

Lebesgue integral of f with respect to the stock measure on t, if the integral is de-
fined. This integral coincides with Σx∈Vt f (x) for discrete types t, and with the standard
Riemann integral (if it is defined) on t = double. We write

∫
f (x) dx for

∫
λx. f (x),

and
∫

f (x) dµ(x) for Lebesgue integration with respect to the measure µ on t. The
Iverson brackets [p] are 1.0 if predicate p is true, and 0.0 otherwise. We write

∫
A f

for
∫

λx.[x ∈ A] · f (x). Let g be a density of µ (with respect to the stock measure) if∫
A 1dµ(x) =

∫
A g for all A. If µ is a (sub-)probability measure, then we say that g as

above is its PDF.
The semantics of a closed Fun expression M is a sub-probability measure PM over

its return type. Open fail-free Fun expressions have a straightforward semantics (Ram-
sey and Pfeffer 2002) in the probability monad (Giry 1982). In order to treat the fail
primitive, our extension (Gordon et al. 2013) of Ramsey and Pfeffer’s semantics uses

a richer monad: the sub-probability monad (Panangaden 1999)5. In the sub-probability
monad, bind and return are defined in the same way as the probability monad; it is only
the set of admissible measures µ that is extended to admit |µ| ≤ 1. The semantics of an
expression M is a sub-probability measure. Below, σ is a substitution, that gives values
to the free variables of M.

Monadic Semantics of Fun with fail, P[[M]] σ : assuming z] N,N1,x,x1,x2,σ

(µ >>= f) A ,
∫

f (x)(A)dµ(x) Monadic bind
(returnV) A , 1 if V ∈ A, else 0 Monadic return
zero A , 0 Monadic zero

P[[x]] σ , return (xσ)
P[[c]] σ , return c
P[[op(M)]] σ , P[[M]] σ >>= return◦op
P[[(M,N)]] σ , P[[M]] σ >>= λ z.P[[N]] σ >>= λw.return (z,w)
P[[let x = M in N]] σ , P[[M]] σ >>= λ z.P[[N]] (σ ,x 7→ z)

P[[match M with inl x1→ N1 | inr x2→ N2]] σ ,
P[[M]] σ >>= either (λ z.P[[N1]] (σ ,x1 7→ z)) (λ z.P[[N2]] (σ ,x2 7→ z))

P[[random(Dist(M))]] σ , P[[M]] σ >>= λ z.µDist(z)
P[[fail]] σ , zero

Here either f g (inl V), f V and either f g (inr V), g V . We let the semantics of
a closed expression M be PM , P[[M]] ε , where ε denotes the empty substitution.

3 The Density Compiler

We compute the PDF of a Fun program by compilation into a deterministic language,
that features integration as a primitive operation. In our implementation, we call out to a
numeric integration library to compute the value of integrals. Our compilation is based
on that of Bhat et al. (2012), with modifications to treat fail statements, deterministic
let bindings, match (and general if) statements, and integer arithmetic.

3.1 Target Language for Density Computations

For our target language, we choose a standard deterministic functional language, aug-
mented with stock integration.

Expressions of the Target Language: E,F

T,U ::= int | double | unit | T →U | T +U | T ∗U target types

E,F ::= target expression
x | c | inlU E | inrT E | (E,F) value constructors

5 Sub-probabilities are also useful to reason about our compilation of match (and if) statements,
where the probability that we have entered a particular branch may be less than 1.

fst E | snd E | f (E) deterministic operations
let x = E in F let (scope of x is F)
match E with inl x1→ F1 | inr x2→ F2 matching (scope of xi is Fi)
λ (x1, ...,xn). E lambda abstraction
E F application∫

E stock integration
⊥T failure

The typing rules for integration and failure are as follows (the other typing rules are
standard):

Selected Typing Rules: Γ ` E : T

(TARGET INT)
Γ ` E : T → double T is a first-order type

Γ `
∫

E : double

(TARGET FAIL)

Γ ` ⊥T : T

Small-step CBV-evaluation→ of well-typed expressions is standard, except for short-
circuiting multiplication: 0.0 ·E→ 0.0, avoiding failures in E. Evaluation can fail either
explicitly (⊥) or by evaluating an undefined integral, e.g.

∫
λx.sinx→⊥double.

3.2 Relational Specification of the Compiler

The translation is based on the let-structure of the expression. Variables that are let-
bound in outer lets are referred to as parameters, and a context gathers random and
deterministic inner lets.

Probability Context:

ϒ ::= probability context
ε empty context
ϒ ,x random variable
ϒ ,x = E deterministic variable

A probabilistic context ϒ is often used together with a density expression (E below),
which is an open term that expresses the joint probability density of the random vari-
ables in the context and the constraints that have been collected when choosing branches
in match statements. The main judgment is ϒ ;E ` dens(M)⇒ F , which computes a
function F from return values of M to densities, where parameters may occur free in
F . The marginal judgment ϒ ;E `marg(x1, . . . ,xk)⇒ F yields the joint PDF of its argu-
ment, marginalizing out all other random variables in ϒ .

Inductively Defined Judgments of the Compiler:

ϒ ;E ` dens(M)⇒ F in ϒ ;E expression F gives the PDF of M
ϒ ;E `marg(x1, . . . ,xk)⇒ F in ϒ ;E expression F gives the PDF of (x1, . . . ,xk)

For a probability context to be well-formed, it has to be well-scoped and well-typed.

Well-formed probability context: Γ `ϒ wf

(ENV EMPTY)

Γ ` ε wf

(ENV VAR)
Γ `ϒ wf Γ ` x : t x]ϒ

Γ `ϒ ,x wf

(ENV CONST)
Γ `ϒ wf Γ ` x : t

x]ϒ Γ ` E : t

Γ `ϒ ,x = E wf

Given a well-formed context ϒ , we can extract the random variables rands(ϒ), and an
idempotent substitution σϒ that describes the deterministic variables.

Random variables rands(ϒ) and values of deterministic variables σϒ

rands(ε) , ε σε , []

rands(ϒ ,x) , rands(ϒ),x σϒ ,x , σϒ

rands(ϒ ,x = E) , rands(ϒ) σϒ ,x=E , [x 7→ Eσϒ]σϒ

We define “M det” to hold iff M does not contain any occurrence of random or fail. If
M det holds, then M is also an expression in the target language syntax, and we silently
treat it as such (in rules (LET DET) and (MATCH DET), for example). If M det and
rands(ϒ)] (Mσϒ), then M is constant under ϒ .

The marg judgment yields the joint marginal PDF of the random variables in its ar-
gument. To compute the PDF, we first substitute in the deterministic let-bound variables,
and then integrate out the remaining random variables. Except for rule (DISCRETE) be-
low, marg(x1, ...,xk) is used with k ∈ {0,1,2}; the case k = 0 is used to compute the
probability of being in the current branch of the program.

Marginal Density: ϒ ;E `marg(x1, ...,xk)⇒ F

(MARGINAL)
{x1, ...,xk}∪{y1, ...,yn}= rands(ϒ) x1, ...,xk,y1, ...,yn distinct

ϒ ;E `marg(x1, ...,xk)⇒ λ (x1, ...,xk).
∫

λ (y1, ...,yn). Eσϒ

The dens judgment gives the density F of M in the current context ϒ , where E is the
accumulated body of the density function so far. We introduce fresh lambda-bound
variables in the result F ; below we assume that z,w]ϒ ,E,M.

Density Compiler, base cases: ϒ ;E ` dens(M)⇒ F

(VAR DET)
(x = E ′) ∈ϒ ϒ ;E ` dens(E ′)⇒ F

ϒ ;E ` dens(x)⇒ F

(VAR RND)
x ∈ rands(ϒ) ϒ ;E `marg(x)⇒ F

ϒ ;E ` dens(x)⇒ F

(CONSTANT)
ty(c) countable ϒ ;E `marg(ε)⇒ F

ϒ ;E ` dens(c)⇒ λ z. [z = c] · (F ())

(FAIL)

ϒ ;E ` dens(fail)⇒ λ z. 0.0

For a deterministic variable, (VAR DET) recurses into its definition. The rule (VAR
RND) computes the marginal density of a random variable using the marg judgment.
The (CONSTANT) rule states that the probability density of a discrete constant c (built
from sums and products of integers and units) is the probability of being in the current
branch at c, and 0 elsewhere. The (FAIL) rule gives that the density of fail is zero.

Density Compiler, sums and tuples: ϒ ;E ` dens(M)⇒ F

(SUM CON L)
ϒ ;E ` dens(M)⇒ F

ϒ ;E ` dens(inl M)⇒ either F (λ .0)

(FROML)
ϒ ;E ` dens(M)⇒ F

ϒ ;E ` dens(fromL(M))⇒ λ z.(F (inl z))

(TUPLE VAR)
ϒ ;E `marg(x,y)⇒ F

ϒ ;E ` dens((x,y))⇒ F

(TUPLE PROJ L)
ϒ ;E ` dens(M)⇒ F

ϒ ;E ` dens(fst M)⇒ λ z.
∫

λw. F (z,w)

Symmetric versions of (SUM CON L), (TUPLE PROJ L) and (FROML) are omitted
above. (SUM CON L) states that the density of inl M is the density of M in the left
branch of a sum, and 0 in the right. Its dual is (FROML). The rule (TUPLE VAR) com-
putes the joint marginal density of two random variables. (This syntactic restriction can
be lifted by considering dependency information for the expressions in the tuple (Bhat
et al. 2012).) (TUPLE PROJ L) marginalizes out the left dimension of a pair.

Density Compiler, let and match: ϒ ;E ` dens(let x = M in N)⇒ F

(LET DET)
M det

ϒ ,x = M;E ` dens(N)⇒ F

ϒ ;E ` dens(let x = M in N)⇒ F

(LET RND)
¬(M det) ε;1 ` dens(M)⇒ F1

ϒ ,x;E · (F1 x) ` dens(N)⇒ F2

ϒ ;E ` dens(let x = M in N)⇒ F2

The rule (LET DET) simply adds a deterministic let-binding to the context. In (LET
RND), we compute the density of the let-bound variable in an empty context, and mul-
tiply it into the current accumulated density when computing the density of the body.

Below, we let isL := λx.if x then 1.0 else 0.0 be the indicator function for the left
branch, and dually for isR. We also use a deterministic operation fromL : t +u→ t such
that fromL(M)→match M with inl x→ x | inr y→ ⊥t , and its dual fromR.

Density Compiler, rules for match: ϒ ;E ` dens(match M with . . .)⇒ F

(MATCH DET)
M det ϒ ,y1 = fromL(M);E · (isL Mσϒ) ` dens(N1)⇒ F1

ϒ ,y2 = fromR(M);E · (isR Mσϒ) ` dens(N2)⇒ F2

ϒ ;E ` dens(match M with inl y1→ N1 | inr y2→ N2)⇒ λ z. (F1 z)+(F2 z)

(MATCH RND)
¬(M det) ϒ ,y1;E · (F (inl y1)) ` dens(N1)⇒ F1

ε;1 ` dens(M)⇒ F ϒ ,y2;E · (F (inr y2)) ` dens(N2)⇒ F2

ϒ ;E ` dens(match M with inl y1→ N1 | inr y2→ N2)⇒ λ z. (F1 z)+(F2 z)

(MATCH DET) is based on (LET DET), and we multiply the constraint that we are in the
correct branch (isL Mσϒ or isR Mσϒ) with the joint density expression. We also employ
deterministic functions fromL and fromR to avoid recursive calls to (MATCH DET) when
computing the density of the match-bound variable. The (MATCH RND) rule is based
on (LET RND), and we again multiply in the constraint that we are in the left (or right)
branch of the match.

Density Compiler, random variables : ϒ ;E ` dens(M)⇒ F

(RANDOM CONST)
M det rands(ϒ)] (Mσϒ) ϒ ;E `marg(ε)⇒ F

ϒ ;E ` dens(random(Dist(M)))⇒ λ z. (pdfDist(Mσϒ) z) · (F ())

(RANDOM RND)
¬(M det∧ rands(ϒ)] (Mσϒ)) ϒ ;E ` dens(M)⇒ F

ϒ ;E ` dens(random(Dist(M)))⇒ λ z.
∫

λw.(pdfDist(w) z) · (F w)

In (RANDOM CONST), a random variable drawn from a primitive distribution with a
constant argument has the expected PDF (multiplied with the probability that we are in
the current branch). (RANDOM RND) treats calls to random with a random argument
by marginalizing over the argument to the distribution.

In if statements, the branching expression is of type bool = unit+unit, so we can
make a straightforward case distinction.

Derived rule for if statements

(IF DET)
M det ϒ ;E · [Mσϒ = true] ` dens(N1)⇒ F1 ϒ ;E · [Mσϒ = false] ` dens(N2)⇒ F2

ϒ ;E ` dens(if M then N1 else N2)⇒ λ z. (F1 z)+(F2 z)

For numeric operations on real numbers we mimic the change of variable rule of in-
tegration (often summarized as “dx = dx

dy dy”), multiplying the density of the argument
with the derivative of the inverse operation. This is exemplified by the following rules.

Density compiler, numeric operations on reals : ϒ ;E ` dens(f (M))⇒ F

(NEG)
ϒ ;E ` dens(M)⇒ F

ϒ ;E ` dens(−M)⇒ λ z. F (−z)

(INVERSE)
ϒ ;E ` dens(M)⇒ F

ϒ ;E ` dens(1/M)⇒ λ z. (F 1/z) · (1/z2)

(EXP)
ϒ ;E ` dens(M)⇒ F

ϒ ;E ` dens(exp(M))⇒ λ z. if z > 0.0 then(F log(z)) · (1/z) else 0.0

(TRANSLATE)
N det rands(ϒ)] (Nσϒ) ϒ ;E ` dens(M)⇒ F

ϒ ;E ` dens(M+N)⇒ λ z. F (z−Nσϒ)

(PLUS)
ϒ ;E ` dens((M,N))⇒ F

ϒ ;E ` dens(M+N)⇒ λ z.
∫

λw. F (w,z−w)

The (DISCRETE) rule for discrete operations such as logical and comparison operations
and integer arithmetic computes the expectation of an indicator function over the joint
distribution of the random variables occurring in the expression.

Density compiler, discrete operations : ϒ ;E ` dens(f (M))⇒ F

(DISCRETE)
f : t→ u u discrete M det y = rands(ϒ)∩ fv(Mσϒ) ϒ ;E `marg(y)⇒ F

ϒ ;E ` dens(f (M))⇒ λ z.
∫

λy. [z = f (Mσϒ)] · (F y)

These derived judgments relate the types of the various terms occurring in the marg and
dens judgments.

Lemma 1 (Derived Judgments).
If Γ ,Γϒ `ϒ wf and dom(Γϒ) = rands(ϒ)∪dom(σϒ) and Γ ,Γϒ ` E : double then

(1) If ϒ ;E `marg(x1, . . . ,xn)⇒ F and Γϒ ` (x1, . . . ,xn) : (t1 ∗ · · · ∗ tn)
then Γ ` F : (t1 ∗ · · · ∗ tn)→ double.

(2) If ϒ ;E ` dens(M)⇒ F and Γ ,Γϒ `M : t then Γ ` F : t→ double.

The soundness theorem asserts that, for all closed expressions M, the density func-
tion given by the density compiler indeed characterizes (via stock integration) the dis-
tribution of M given by the monadic semantics:

Theorem 1 (Soundness). If ε;1 ` dens(M)⇒ F and ε `M : t then

(P[[M]] ε) A =
∫

A
F

Proof: By joint induction on the derivations of dens(M) and M : t, using the follow-
ing induction hypothesis: if Γ ,Γϒ `ϒ wf and ϒ ;E ` dens(M)⇒ F and Γ ,Γϒ ` M : t
and Γ ,Γϒ ` E : double and Γ ` ρ and dom(Γϒ) = rands(ϒ)∪ dom(σϒ) and |µ| ≤ 1
and µ(B) =

∫
B λ (rands(ϒ)).Eρ , and (∀x ∈ dom(σϒ)∀ρ ′. Γϒ ` ρ ′ and σϒ (x)ρρ ′→∗ ⊥

implies that Eρρ ′→∗ 0.0) then

(µ >>= (λ (rands(ϒ)).(P[[M]] (σϒ ρ)))) A =
∫

A
Fρ

where Γ ` ρ is defined as ε ` ε , and Γ ,x : t ` ρ[x 7→V] when ε `V : t and Γ ` ρ .

The induction hypothesis on evaluation of σϒ (x)ρρ ′ above is used when attempting
to evaluate match-bound variables for valuations that give the other branch. For such
valuations the density becomes zero, because of the short-circuiting property of multi-
plication by 0.0.

As an example of compilation, the if statement in the program

let p = random(Uniform) in let b = random(Bernoulli(p)) in if b then p+1.0 else p

is handled by (IF DET), yielding a density function that is β -equivalent to

λ z.
∫

λb.[0≤ z−1≤ 1] · (if b then z−1 else 2− z) · [b = true]

+
∫

λb.[0≤ z≤ 1] · (if b then z else 1− z) · [b = false]

which simplifies to the (V-shaped) function λ z.[1≤ z≤ 2] ·(z−1)+[0≤ z≤ 1] ·(1−z).

4 Evaluation

We evaluate the compiler on several synthetic textbook examples and several real exam-
ples from scientific applications. We wish to validate that the density compiler handles
these examples, and understand how much the compiler reduces the developer burden,
and its performance impact.

Implementation. Since Fun is a sublanguage of F#, we implement our models as F#
programs, and use the quotation mechanism of F# to capture their syntax trees. Running
the F# program corresponds to sampling data from the model. To compute the PDF, the
compiler takes the syntax tree (of F# type Expr) of the model and produces another
Expr corresponding to a deterministic F# program as output. We then use run-time code
generation to compile the generated Expr to MSIL bytecode, which is just-in-time com-
piled to executable machine code when called, just as for statically compiled F# code.
Our implementation supports arrays and records, which are both translated using adap-
tations of the corresponding rules for tuples. For efficiency, the implementation must
avoid introducing redundant computations, translating the use of substitution in the for-
mal rules to more efficient let-bindings that share the values of expressions that would
otherwise be re-computed. As is common practice, our implemenation and Filzbach
both work with the logarithm of the density, which avoids products of densities in favor
of sums of log-densities where possible, to avoid numerical underflow.

Metrics. We consider scientific models with existing implementations for MCMC-based
inference, written by domain experts. We are interested in how the modelling and in-
ference experience would change, in terms of developer effort and performance impact,
when adopting the Fun-based solution.

We assess the reduction in developer burden by measuring the code sizes (in lines-
of-code (LOC)) of the original implementations of model and density code, and of the
corresponding Fun model. For the synthetic examples, we have written both the model
and the density code. The original implementations of the scientific models contain
helper code such as I/O code for reading and writing data files in an application-specific
format. Our LOC counts do not consider such helper code, but only count the code
for generating synthetic data from the model, code for computing the logarithm of the
posterior density of the model, and model-related code for setting up and interacting

Example orig LOC, orig LOC, Fun time (s), orig time (s), Fun
mixture of Gaussians F# 32 20 0.63x 1.77 4.78 2.7x
linear regression F# 27 18 0.67x 0.63 2.08 3.3x
species distribution C# 173 37 0.21x 79 189 2.4x
net primary productivity C# 82 39 0.48x 11 23 2.1x
global carbon cycle C# 1532 402 0.26x n/a 764 n/a

Table 1. Lines-of-code and running time comparisons of synthetic and scientific models.

with Filzbach itself. We also compare the running times of the original implementations
versus the Fun versions for MCMC-based inference using Filzbach, not including data
manipulation before and after running inference.

4.1 Examples

Synthetic examples. Our synthetic examples are models for two classic problems in
statistics and machine learning: the supervised learning task linear regression, and
the unsupervised learning task mixture of Gaussians. The latter can be thought of as
a probabilistic version of k-means clustering. In linear regression, inference is trying
to determine the coefficients of the line. In mixture of Gaussians, inference is trying
to determine the unknown mixing bias and the means and variances of the Gaussian
components.

Species distribution. The species distribution problem is to give the probability that
certain species will be present at a given site, based on climate factors. It is a problem of
long-standing interest in ecology and has taken on new relevance in light of the issue of
climate change. The particular model that we consider is designed to mitigate regression
dilution arising from uncertainty in the predictor variables, for example, measurement
error in temperature data (McInerny and Purves 2011). Inference tries to determine
various features of the species and the environment, such as the optimal temperature
preferred by a species, or the true temperature at a site.

Global carbon cycle. The dynamics of the Earth’s climate are intertwined with the
terrestrial carbon cycle, and better carbon models (modelling how carbon in the air
gets converted to biomass) enable better constrained projections about these systems.
We consider a fully data-constrained terrestrial carbon model by Smith et al. (2012).
It is a composition of various submodels for smaller processes such as net primary
productivity, the fine root mortality rate or the fraction of trees that are evergreen versus
deciduous. Inference tries to determine the different parameters of these submodels.

Discussion. Table 1 reports the metrics for each example. The LOC numbers show sig-
nificant reduction in code size, with more significant savings as the size of the model
grows. The larger models (where the Fun versions are≈ 25% of the size of the original)
are more indicative of the savings in developer and maintenance effort, since smaller

models have a larger fraction of boiler-plate code. We find the running times encourag-
ing: we have made little attempt to optimize the generated code, and preliminary testing
indicates that much of the performance slow-down is due to constant factors.

The global carbon cycle model is composed of submodels, each with their own
dataset. Unfortunately, it is unclear from the original source code how this composi-
tion translates to a run of inference, making it difficult to know what constitutes a fair
comparison. Thus, we do not report a running time for the full model. However, we can
measure the running time of individual submodels, such as net primary productivity,
where the data and control flow are simpler.

5 Related Work

The most closely related work to this paper is recent work by Bhat et al. (2012) who
develop a theoretical framework for computing PDFs, but describe no implementation
nor correctness proof. The density compiler of Section 3 has a simpler presentation,
with two judgments compared to five, and has rules for deterministic lets and operations
on integers. Our paper also uses a richer language (Fun), which adds fail, match and
general if (and for performance reasons, deterministic let).

Gordon et al. (2013) describe a naive density calculation routine for Fun without
random lets; this sublanguage does not cover many useful classes of models such as
hierarchical and mixture models.

The BUGS system computes densities from declaratively specified models to per-
form Gibbs sampling (Gilks et al. 1994). However, the models are not compositional
as in this work, and only the joint density over all variables is possible. The AutoBayes
system also computes densities for deriving maximum likelihood and Bayesian estima-
tors for a significant class of statistical models (Schumann et al. 2008). It is not formally
specified and does not appear to be compositional. Neither system addresses the non-
existence of PDFs, presumably restricting expressivity in order to avoid the issue.

Inference for the Church language also uses MCMC, but works with distributions
over the runs of a program instead of over its return value (Wingate et al. 2011).

6 Conclusions and Future Work

We have described a compiler for automatically computing probability density func-
tions for programs from a rich Bayesian probabilistic programming language, proven
the algorithm correct, and shown its applicability to real-world scientific models.

The inclusion of fail in the language appears highly useful for scientific models,
giving a simple facility to exclude branches that are scientifically impossible from con-
sideration. However, more investigation is needed to settle this claim.

Techniques from automatic differentiation (Griewank and Walther 2008) may be
useful to treat higher-dimensional primitive probability distributions.

A drawback of the compiler is that terms of composite type are required either to
have a PDF or to be deterministic, ruling out terms such as (0.0, random(Uniform)). One
possibility for future work would be to refine the types of expressions with determinacy
information, and make use of this additional information in the compiler.

Bibliography

S. Bhat, A. Agarwal, R. W. Vuduc, and A. G. Gray. A type theory for probability density
functions. In J. Field and M. Hicks, editors, POPL, pages 545–556. ACM, 2012.

J. Borgström, A. D. Gordon, M. Greenberg, J. Margetson, and J. Van Gael. Mea-
sure transformer semantics for Bayesian machine learning. In European Symposium
on Programming (ESOP’11), volume 6602 of LNCS, pages 77–96. Springer, 2011.
Download available at http://research.microsoft.com/fun.

W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. A language and program for complex
Bayesian modelling. The Statistician, 43:169–178, 1994.

M. Giry. A categorical approach to probability theory. In B. Banaschewski, editor, Cat-
egorical Aspects of Topology and Analysis, volume 915 of Lecture Notes in Mathe-
matics, pages 68–85. Springer Berlin / Heidelberg, 1982.

A. D. Gordon, M. Aizatulin, J. Borgström, G. Claret, T. Graepel, A. Nori, S. Rajamani,
and C. Russo. A model-learner pattern for Bayesian reasoning. In POPL, 2013.

A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. SIAM, 2nd edition, 2008.

O. Kiselyov and C. Shan. Embedded probabilistic programming. In Domain-Specific
Languages, pages 360–384, 2009.

G. McInerny and D. Purves. Fine-scale environmental variation in species distribution
modelling: regression dilution, latent variables and neighbourly advice. Methods in
Ecology and Evolution, 2(3):248–257, 2011.

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Tech-
nical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto,
September 1993.

P. Panangaden. The category of Markov kernels. Electronic Notes in Theoretical Com-
puter Science, 22:171–187, 1999.

D. Purves and V. Lyutsarev. Filzbach User Guide, 2012. Available at
http://research.microsoft.com/en-us/um/cambridge/groups/science/

tools/filzbach/filzbach.htm.
N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of probability dis-

tributions. In POPL, pages 154–165, 2002.
J. Schumann, T. Pressburger, E. Denney, W. Buntine, and B. Fischer. AutoBayes pro-

gram synthesis system users manual. Technical Report NASA/TM–2008–215366,
NASA Ames Research Center, 2008.

M. J. Smith, M. C. Vanderwel, V. Lyutsarev, S. Emmott, and D. W. Purves. The cli-
mate dependence of the terrestrial carbon cycle; including parameter and structural
uncertainties. Biogeosciences Discussions, 9:13439–13496, 2012.

D. Syme, A. Granicz, and A. Cisternino. Expert F#. Apress, 2007.
D. Wingate, A. Stuhlmueller, and N. Goodman. Lightweight implementations of prob-

abilistic programming languages via transformational compilation. In Proceedings
of the 14th Intl. Conf. on Artificial Intelligence and Statistics, page 131, 2011.

