
In Search of Types

Stephen Kell
Computer Laboratory, University of Cambridge

15 JJ Thomson Avenue
Cambridge CB3 0FD

United Kingdom
firstname.lastname@cl.cam.ac.uk

Abstract
The concept of “type” has been used without a consistent,
precise definition in discussions about programming lan-
guages for 60 years.1 In this essay I explore various concepts
lurking behind distinct uses of this word, highlighting two
traditions in which the word came into use largely indepen-
dently: engineering traditions on the one hand, and those of
symbolic logic on the other. These traditions are founded on
differing attitudes to the nature and purpose of abstraction,
but their distinct uses of “type” have never been explicitly
unified. One result is that discourse across these traditions
often finds itself at cross purposes, such as overapplying one
sense of “type” where another is appropriate, and occasion-
ally proceeding to draw wrong conclusions. I illustrate this
with examples from well-known and justly well-regarded lit-
erature, and argue that ongoing developments in both the
theory and practice of programming make now a good time
to resolve these problems.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]; K.2 [History of Computing]

Keywords data types, abstraction, type system, type disci-
pline, information hiding

1. Introduction
I feel uneasy when I hear the word “type”. Most of us use it
rather a lot, and most of us are aware that it can mean several
different things. For lack of a better-established alternative,

1 Any similarity to the opening of a paper by Parnas et al. [1976] is entirely
intentional.

This is the author’s version of the work. The definitive version was published in
Onward! ’14.
, .
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3210-1/14/10. . . $15.00.
http://dx.doi.org/10.1145/2661136.2661154

we muddle through. We can usually tell what each other are
talking about. But this is, at the very least, philosophically
unsatisfying. Where did “types” come from? What are they?
What are they useful for?

The word “type” crops up repeatedly in literature about
everyday programming practice, and also in some of the
most deeply theoretical work on programming languages. It
is therefore tempting to believe that there is a deep connec-
tion between apparently distinct uses of the word, such as
“data types” (abstractions of information as it is manipulated
during program execution) and “types” of expression (logi-
cal predicates over expressions, used to reason about code
before execution). Such a deep connection would justify the
Humpty Dumptyish2 attitude that many take, my sometime
self included, of believing that we can be liberal in our use of
“type” because it always means what we intend it to mean.
But over time, from reading and talking to other researchers,
I have slowly come to believe that the connection is much
flimsier than I had previously thought. It seems more as
though a convenient pun—the sharing of the word “type”
between logic, everyday English, and programming—has al-
lowed us to avoid articulating exactly what we mean.

The last 40 years have seen an impressive confluence of
theory and practice in programming language design, with
the interesting side-effect of taking the sense of “types” orig-
inating in symbolic logic and implanting it into engineering
traditions. This has overloaded what was already an ambigu-
ous term, and opened up more subtle kinds of confusion aris-
ing from the fact that logicians and engineers hold differing
latent assumptions about what is fundamental versus what
is incidental. This includes attitudes to cost and guarantees,
to abstraction generally, and to types specifically as they re-
late to all this. On the surface, it seems everybody is writing
about “types”, but as we will see, a careful reading reveals
how these different attitudes are responsible for various ap-
parent disagreements about in what ways types are useful,
essential, harmful or irrelevant.

2 In Lewis Carroll’s Through the Looking-Glass, Humpty Dumpty addresses
the question of what words mean in the following way. “When I use a word,
it means just what I choose it to mean—neither more nor less.”

In outline, my argument will proceed as follows.
Firstly, I will survey the crowded field of distinct notions

of “type” and their underlying purposes in language design.
It will be necessary to consider what the essence of a “data
type” is (§2), what we mean by “abstraction” (§3), includ-
ing in what senses abstractions may be protected or violated
(§4), and how the concept of “types” from logic relates to
these (§5). Most readers will be comfortable with many of
the distinctions that I highlight, but I hope that by enumerat-
ing them as fully as I can, there will be something of surprise
or novelty to most readers.

Secondly, I will show that this overcrowding leads to
overapplication: we consider one sense of “type” and mis-
takenly attribute to it some properties that actually derive
from another, or from something that does not really concern
“types” in any sense. I will review some instances of this in
well-known literature (deliberately choosing examples that
are justly well-regarded—§6, §7), another in an informal yet
influential context (§8), and a collection of smaller observa-
tions (§9).

Thirdly, I will survey the history of the word “type” in
programming through the last 60 years (§10) and its earlier
origins in logic. As I will show, even within computer sci-
ence, the discourse can be divided into two clear threads,
which I call (for want of better terms) the engineering tra-
dition and the logic tradition. The surprising finding of this
survey, at least to its author, is that the issue of unifying the
various meanings of “type” is rarely tackled, and, in particu-
lar, the sense of the logic tradition appears never to have been
explicitly reconciled with that of the engineering tradition.

We begin with a question in the sphere of programming
(and not, for now, of logic): what, essentially, is a data type?

2. The essence of “data types”
Most practitioners use “type” interchangeably with “data
type”. In this section I search for an essential property behind
this notion, and consider how it has been extended to various
practical ends in the sphere of programming.

Information theory gives us a model of communication
as transmitting symbols drawn from an alphabet. The selec-
tion of a specific symbol, from among the multiple possibil-
ities defined by the alphabet, conveys information [Shannon
and Weaver 1949]. Programming fits this model too, since
the process of evaluating a program consists of flows of
information—often called operations, transitions or reduc-
tion steps. In this context, we prefer to call symbols values
and alphabets data types. (That is not to deny that, as we will
see, a data type may be defined in terms more abstract than
an alphabet of symbols.)

At least two languages which most computer scientists
have heard of, and which have seen considerable use, have
no notion of data types, whether built-in or user-defined.
These are the Unix shell [Bourne 1978] and BCPL [Richards

1969].3 In both languages, a single alphabet implicitly per-
vades all programs; all values are instances of a single data
type. In the Unix shell, this is the character string. In BCPL,
it is the machine word. Both languages consequently lack
four distinct features, each identifiable as a role of “data
types”.

1. Named interpretations—some languages offer a lin-
guistic mechanism for referring to different sets of mean-
ings that a value might have. For example, some language
construct might afford the opportunity to say “integer”
in one instance and “real” in another. All languages that
feature data types have one or more such construct, but
neither BCPL nor the shell has any. In languages that
do, the role of “integer” and “real” is to identify explic-
itly, within the program, different higher-level meanings,
or interpretations, of some symbols. (The inverse of in-
terpretation is representation: a symbol represents some
higher-level meaning.) “Integer” and “real” may be prim-
itives, or may be defined explicitly within the language,
but they necessarily give an explicit identity to an inter-
pretation. I call this kind of language feature “named in-
terpretations”. Note that this isn’t intended to exclude ap-
parently nameless ways of doing the same job. One lan-
guage might denote a pair of integers by pair<int>, an-
other by (,); I will say both expressions “name” the same
interpretation.

2. Storage contracts—some languages allow declaring
particular storage (say, a variable) as holding values ad-
mitting a particular interpretation.4 We might want to do
so, to signify that only symbols (bit-patterns) represent-
ing integers will be stored there, and that consequently its
contents can be meaningfully interpreted as an integer. I
call this kind of quid pro quo a storage contract. Storage
contracts include any facility under which values can be
declared as, or tagged with, or otherwise restricted to a
named interpretation which bounds what it may (contrac-
tually) represent; we then often say the value is “typed”.5

Neither BCPL nor the shell supports this; we can’t de-
clare a variable “as” an integer, say. Such facilities are
precluded in BCPL and the Unix shell because the lan-
guage does not fill role 1: we can’t name the integer
interpretation.

3. Operational well-definedness over storage—in some
languages, an operation generates a run-time error6 if its
input values are governed by inappropriate storage con-

3 We could also include assembly languages, since they share all the relevant
properties of BCPL.
4 If “storage” seems too low-level, we could instead say “bound values”.
5 Note that contracts have only the property that if they are upheld consis-
tently, then some good outcomes result. The extent to which they are upheld
or enforced varies considerably. We revisit this in §4.
6 Here “run-time error” includes untrapped errors, like “undefined be-
haviour” in C, which cause future execution to behave arbitrarily.

tracts. This can be called a “type error”. By contrast, nei-
ther BCPL nor the Unix shell defines such error condi-
tions, since they have no storage contracts. Note, con-
versely, that BCPL and the shell (like all languages) fea-
ture operations whose definedness is predicated on other
properties of their input values, besides storage contracts.
For example, integer division is defined only for a non-
zero divisor, while memory deallocation is defined only
for a previously allocated address. In such cases, the asso-
ciated error conditions are not considered “type errors”.

4. Semantic well-formedness—in some languages an ex-
pression may be considered ill-formed (creating an error
before execution) according to an analysis of what values
it might compute. Neither BCPL nor the shell includes
any such analysis. A popular use of such analyses is to
ensure the absence of run-time type errors (as defined
in the previous paragraph), by including a proof system
in the language and requiring that well-formed programs
embody checkable proofs of this absence. The properties
proved are of a single form: that a computed value al-
ways satisfies a given contract, stated as a data type. So
it makes sense to call the proof-checking “type check-
ing”. (Recall that at the start of this section, we assumed
a context where type and data type are equivalent. “Type
checking” must therefore check properties to do with data
types. But in other contexts, such as if we were using
“type” in the sense from logic, other properties would be
in scope; we return to this in §5.)

What are the relationships between the four roles we just
identified? Most importantly, each builds on its predecessor.
Note also that all roles can be filled to greater or lesser
extents. Role 1 might be satisfied by offering an expressive
language of data types, or by just a handful of built-ins. Role
2 might be satisfied by very fine-grained storage contracts
(like C++, where the structure of objects is fixed at allocation
time), or by just in a few places (like Python, where the
only kind of contract is an object’s class, and there are no
restrictions on what fields or local variables may refer to).
Role 3 might rule out many operations (as with Pascal) or
only a few (as with C). Role 4 might demand proof of the
absence of all run-time type errors (like ML), most (like Java
with generics) or a limited selection (like pre-generics Java).

Instead of saying that a language is “typed”, perhaps with
a qualifier such as “strongly” or “weakly”, it is more mean-
ingful to characterise it along all four dimensions. How ex-
pressive is it regarding data types? What kind of storage con-
tracts it can express? How strict or permissive are its opera-
tional well-definedness rules (and are any error cases trapped
or untrapped)? How completely do its well-formedness cri-
teria prove the absence of errors under these rules? The
phrase “type system” is frequently used to refer to the lan-
guage design details supplying answers to any and all of
these questions. But they are all clearly separate, and merit

careful distinction. I will therefore avoid saying “type sys-
tem” (but return to the phrase itself in §5).

The popular labels “statically typed” and “dynamically
typed” fall out of the third and fourth roles, as specific re-
gions in the design space. Under a “dynamically typed” lan-
guage, no well-formedness criteria of this kind are imposed
(role 4), but all run-time errors are trapped (role 3). By con-
trast, “statically typed” languages necessarily impose a non-
empty set of well-formedness criteria, but may choose to trap
remaining erroneous operations (as with “safe” languages
like Java) or neglect to do so (as in C).7 These two labels
are unsatisfying: they are clearly not opposites, and imply a
dichotomy where at least two distinct continuums are appar-
ent (in how strong the criteria are, and separately, how com-
pletely the remaining errors are trapped). Moreover, as we
will see, it is conceivable for a language to be neither stati-
cally nor dynamically typed, yet still to feature data types.

In the rest of this section I argue that the first role is the
essence of data types—the one without which we couldn’t
claim a language to feature data types at all. To do so, we will
consider an (imaginary) extension to BCPL which fills this
role, and only this role, finding that it is useful in isolation.

There is a latent idea of data types in all computation,
since in any language we can distinguish between values,
hence carve out distinct subsets of an alphabet. We can use
composition of multiple values to create more complex al-
phabets, like tuples or lists. To do these things in BCPL
we would write procedures that distinguish different inte-
gers, combine multiple integers, and hence create and ma-
nipulate encodings of these more complex concepts. These
even include functions (noting that their alphabet is sim-
ply that of lists of encoded instructions).8 But in BCPL or
the shell, these encodings are described only implicitly in
procedures, not in an explicit definition. Languages support-
ing “data types” make these definitions explicit, and conse-
quently enable some selection of benefits in return.

BCPL is an ancestor of C, and a spiritual descendent of
Algol. Suppose we want to compute the Manhattan distance9

between two points in the (x, y) plane. A BCPL procedure
for doing so is the following. We assume our points’ coordi-
nates are restricted to non-negative integers.
LET manhattan (x1, y1, x2, y2) = VALOF
$(

RESULTIS abs(x1 − x2) + abs(y1 − y2)
$)

Let’s devise a simple extension of BCPL, and call it
“BCPL with data types”. To mark the change, we also switch
to a (more familiar) C-like syntax. But our language will
be very different from C! We will fill role 1, but not roles

7 We use “safe” in the sense of [Krishnamurthi and Felleisen 1999], sum-
marised as “unsafe programs don’t signal errors; safe programs do”.
8 The fact that many interesting relations on functions are not computable,
such as behavioural equivalence, does not detract from this point.
9 This is the sum of distances in the x and y directions—the distance one
would walk in a grid pattern of streets.

2, 3 or 4 (noting that C exhibits all of these, to varying
extents). In particular, like BCPL, we will allow variables
to be introduced only as uninterpreted words of memory.
Unlike BCPL, we will be allowed to name different inter-
pretations that can be made of bit-patterns in the language,
like int, float, pointer, etc.. We may as well go a little fur-
ther and also allow the user to define their own data types
(structs, unions, enums, distinct kinds of function, etc.).
But we maintain the key restriction that data types never at-
tach to stored (bound) values, nor to expressions. We may
only refer to data types when specifying operations.

What use are data types in such a language? Like before,
let us define a Manhattan distance function in terms of three
other operations: +, − and abs. Unlike before, we may de-
fine a data type to abstract two-dimensional points; call it
point2d. To keep things simple, we ensure that every value
is one 64-bit word in size, including instances of point2d.
It should then be obvious that, like in BCPL, a compiler
needn’t reason about data types to generate code—each in-
termediate result is a single word in size.

// point is a word, decomposed into two fields of 32 bits
struct point2d { x:32; y:32; };

manhattan(p1, p2)
{

return abs(((point2d) p1).x − ((point2d) p2).x)
+ abs(((point2d) p1).y − ((point2d) p2).y);

}

Our member selection operator, “.”, projects out the bits
corresponding to the named field and right-shifts them to the
least significant position. This operator gives us an abbre-
viated way to say “select the {low, high} 32 bits” from a
word representing a point, using its left-hand subexpression
to name a data type, here point2d.

What if we wanted a version that worked for floating-
point coordinates? In BCPL10 every arithmetic operator is
duplicated: those for integer bit-patterns use the usual sym-
bol, and those for floating-point bit patterns are prefixed with
#. Assuming that floating-point operations work at single
precision, on the lower 32 bits of a word, we write the fol-
lowing.

struct point2df { x:32; y:32; };

manhattan_float(p1, p2)
{

return #abs(((point2df) p1).x #− ((point2df) p2).x)
#+ #abs(((point2df) p1).y #− ((point2df) p2).y);

}

Note that we did not strictly have to define a new data type
for points. Our old point2d would suffice, since its fields
can contain any 32-bit pattern. However, it was helpful to
do so, since the added redundancy serves as documentation:
the new name point2df reminds the reader that floating-

10 The core BCPL language has no floating-point arithmetic; we follow the
conventions used by the “extended” xbcpl and certain other variants.

point coordinates are being used. Similarly, we could have
mentioned data types int and float when declaring fields x
and y; we avoid this (to avoid inventing extra syntax).

At this point, our language is starting to creak a little.
The ad-hoc distinction between floating-point (#-prefixed)
and integer (unprefixed) operators is inadequately extensi-
ble, since our language now includes many data types. We
can solve this by generalising from the “#” syntax to one
which references data types by name. We might end up with
code like the following, in a language we’ll call BCPL++.

struct point2d { x:32; y:32; };
manhattan<int>(p1, p2)
{

return abs<int>(((point2d) p1).x −<int> ((point2d) p2).x)
+<int> abs<int>(((point2d) p1).y −<int> ((point2d) p2).y);

}
manhattan<float>(p1, p2)
{

return abs<float>(((point2d) p1).x −<float> ((point2d) p2).x)
+<float> abs<float>(((point2d) p1).y −<float> ((point2d) p2).y);

}

Like in ordinary BCPL, we are still in charge of managing
data representations across data movements, such as param-
eter passing or assignment. We can pass a float bit-pattern
where an integer is wanted; conversions are the program-
mer’s responsibility. In plain BCPL, these are the fix oper-
ator and its inverse float. In BCPL++ we can do better by
grouping such functions in a family convert<from_t, to_t>,
encompassing sign extension (a.k.a. width conversion on
signed integers), other arithmetic conversions (like between
integer and floating-point), and so on.

The addition of explicitly named (and, in our exam-
ples, user-defined) data types to BCPL has clearly helped
us somehow. A large part of this help has been in a docu-
mentary role: by talking about data types, we can explicitly
group related things together (like our different manhat-
tan functions), and distinguish distinct things in our code
(like our point2df versus point2d example). We have also
abbreviated the code’s expression of certain details, e.g. by
avoiding the need to repeat which bits were allocated to our
point’s x and y fields (though not without adding some syn-
tactic overhead in other places). Note that the program is
operationally identical to what we would write in BCPL;
there are no more error cases (especially not “type errors”).
It defines no storage contracts, so cannot use them to de-
fine operational well-definedness criteria. Nor does it define
any semantic well-formedness criteria on the basis of what
values an expression computes.

Unsurprisingly, the language retains several weaknesses
of the original BCPL. It is needlessly hamstrung by the con-
straint that each operation yield a single word (which had
already forced our rather improbable choice of 64-bit words
but 32-bit floating point). It is needlessly explicit: we select
operations explicitly (like abs<int>), size storage explicitly,
and handle conversions explicitly during data movement,
when much of this could clearly be automated. It is con-

sequently needlessly repetitive “in the small”: in our man-
hattan function we repeat int many times, to select within
the same related family of operations. It is needlessly error-
prone: we can easily select the wrong operation, or omit to
insert a conversion, and hence obtain meaningless output—
whereas we might rather have the program enter a self-
explaining error state, or to be rejected before execution. It
is needlessly repetitive “in the large”—our two manhattan
functions turned out to be almost identical!

BCPL++ brings a small cost of some added syntactic
overhead, since our angle-bracket syntax was a bit more ver-
bose than the original # syntax. However, it also brings sev-
eral benefits. Being more verbose has made it more readable.
Naming data types helps document code. Also, named def-
initions within data types themselves improve on numbered
byte- and bit-ranges, as with our point2d and its named
fields x and y, since the space of names is more cogni-
tively agreeable, and also simply larger, than the space of
bit-ranges. It therefore conveys more information to the pro-
grammer; it is useful even though this information is irrele-
vant to execution (so is discarded by the compiler).

Adding data types has also made various solutions to
BCPL’s remaining problems much more apparent (indeed,
so apparent that no language like BCPL++ has ever existed).

By constraining each expression to yield a value of fixed
data type and fixed size, we allow the compiler to auto-
mate tasks that previously fell to the programmer, such as
selecting arithmetic operators and conversion operators. Al-
ternatively, we can automate a different way: by omitting
this constraint, but looking up these routines dynamically,
using tags which represent instantiated data types within a
run-time system.11

By somehow constraining how we program, we could
possibly enforce the property that when a bit-pattern repre-
senting an instance of some data type is created, it can (prov-
ably) only ever be consumed by code which interprets it un-
der that same data type. Alternatively, we could avoid this
constraint, and apply dynamic checks that use tags to check
this property (albeit during rather than before execution).

By exploiting latent similarity, e.g. between our two
manhattan functions, we could find ways of programming
with greater generality, such that only one such function
need be defined—perhaps by generating code for each kind
of data item that manhattan is well-defined over, or perhaps
by generating one version of code that can bind dynamically
to any such data.

From the foregoing, it should be apparent that the act
of naming has provided independent value, both in docu-

11 Tags may denote only “concrete” data types, since giving values a single
tag necessarily partitions them into non-overlapping equivalence classes.
These correspond to instantiable data types like “integer”, “string”, “circle”
etc.. In other contexts than instantiation, we might want to refer to interpre-
tations which overlap, such as “ordinal”, “shape”, etc., which can be seen as
predicates, need not induce a partitioning, and are a notable expressiveness
threshold in a language’s support for role 1.

menting and (in some sense) abbreviating our programs.
Meanwhile, run-time versus compile-time implementation
choices are pervasive, yet are clearly orthogonal to the goal
being pursued, modulo the essential difference of earli-
ness (ahead of execution) versus lateness (during execu-
tion).12 Furthermore, automation, generality and checking
are all distinct goals—notwithstanding that a design synthe-
sis might allow a given language to elegantly tackle more
than one at once.

Philosophically, the act of naming is often called “denot-
ing” or “reference”. The essence of data types is as named
interpretations to which we can refer. In this sense data
types resemble Plato’s Forms: they are concepts which re-
cur across multiple places in our program, existing outside
the context of any one execution or any one operation.

At this point it is fitting to reveal that BCPL—a self-
identifying “typeless” language—should nevertheless be de-
fined in a report which states the following.

An Rvalue may represent an object of one of the following
[nine] types: integer, logical, Boolean, function, routine, label,
string, vector, and Lvalue.

In other words, the need to talk or write about data
types, and hence their existence as named interpretations,
has proved necessary, albeit only in the meta-language of
its documentation, not in the object language. Some more
modern languages, like JavaScript or Self, are like BCPL in
this regard: they include few or no named data types in the
language, but are hard to explain to another human without
inventing data types in the meta-language.

So far we have limited ourselves to talking about data
types as sets of symbols, which seems overly concrete.
Meanwhile, many of the concerns we have just mentioned,
such as abbreviation, checking and generality, are bound up
in the term “abstraction”, which we consider next.

3. The twin essences of abstraction
Parnas et al. [1976] state that “an abstraction is a concept
that can have more than one possible realization”, adding
that “the power of abstraction, in mathematics as well as in
programming, comes from the fact that by solving a problem
in terms of the abstraction one can solve many problems at
once”. We will call this view “abstraction as generality”.

However, we often talk informally about abstractions as
a repertoire of things that we can refer to. We might praise a
system that “exposes the right abstractions”; we might say an
improvement “raises the level of abstraction”. This doesn’t
contradict “abstraction as generality”, because each of these
abstractions may indeed admit more than one realisation.
But the feature we are highlighting is really the fact that no
realisation need be stated explicitly; it may simply be re-
ferred to. If a system provides abstractions, it means we do
not have to define them ourselves in terms of more concrete
12 Of course, there are corresponding effects on time and memory consump-
tion at compile time versus run time.

things. In turn, this abbreviates our systems, both syntacti-
cally and in the cognitive effort required to express them. It
is often this property, not generality per se, that is meant by
“abstraction”. We can call this viewpoint “abstraction as ref-
erence”. Data types in BCPL++ clearly have this property.

Generality and reference are distinct, but they are not
completely orthogonal. Reference tends to create general-
ity, because when we refer to a thing, we only refer to cer-
tain properties of it at any time. For example, suppose we
are using an instance of a Complex data type implement-
ing complex numbers. At any point, we only invoke certain
properties of it—some operation that it supports (invoked
explicitly) and its expected behaviour (embodied implicitly
our code). With regard to any other property of Complex,
we could say our code is abstract. This is the essence of
abstraction: abstraction always has to do with leaving some-
thing out. In the case of “abstraction as reference”, we leave
out details which would otherwise be repeated across multi-
ple uses of the same definition. In the case of “abstraction as
generality”, we leave out details that are different from one
instance to another of the same generalisation.

Therefore, even if only abbreviation is our intention, us-
ing reference means that we are likely to achieve some gen-
erality in a happy accident. This is not guaranteed, though—
we might, by chance, end up depending on all the properties
that define Complex, down to all the operations it supports
and all details of its representation. In that case, no general-
ity remains in our code. Although we’re unlikely to depend
on every detail of a data type, it’s easy to unintentionally de-
pend on something we’d rather not. We might therefore pre-
fer a system that protects a particular degree of generality by
forbidding us from writing certain code in certain contexts.

A key insight of Parnas [1972] was that we can turn
these two related concepts—reference and generality—to
our best advantage only once we know with respect to what
properties we wish our code to be general. He argued that
change-proneness was an overriding criterion for such prop-
erties, since changes to software account for much of its
cost. To enforce that most code be kept general with respect
to change-prone details, we localise them (the code that
embodies them) inside a construct called a module, where
they are hidden. Hiding means that we forbid external code
from referring to the change-prone details within the mod-
ule. The module must also define a less change-prone set
of definitions, which we now call an interface, around the
change-prone internals. Generality with respect to the iden-
tified change-prone properties is the intention of information
hiding. Abbreviation of client code may or may not follow;
if it does, it is a happy accident. Sometimes, the abstraction
inherent in interfaces naturally abbreviates programs. Other
times, operations are convoluted by information hiding. For
example, if we knew the representation of a mutable stack,
we might empty it by clearing its head pointer, whereas oth-
erwise we might be forced to iteratively pop each element.

In summary, we can observe two non-orthogonal kinds of
abstraction: generality and reference. Any device for refer-
ence, including data types, introduces both of these. Gener-
ality is both fragile and valuable, such that we might want
it to be protected. Information hiding mechanisms provide
such protection, and are motivated by the fact that changes
to software are costly.

4. Abstraction and data types
Let’s return to thinking about data types. Alphabets of sym-
bols are one way to define data types—but they are not the
only way. The essence of data abstraction is the generalisa-
tion away from “data” as manifest, stored symbols, to data as
(recursively) data-accepting and data-yielding behaviours:
patterns of information flow, instead of mere symbols. These
behaviours include reads and writes of stored values (the
base case), but can also be themselves realised by compu-
tations (the recursive case). Data abstraction is therefore re-
cursion on the concept of a computation, applied at the gran-
ularity of symbols in a naïve “concrete” computing machine
like Turing’s.13

Abstract data types can be realised using information hid-
ing, as with CLU [Liskov and Zilles 1974] and many more
recent languages. Recall that information hiding is done in
conjunction with some policy that selects modularisation de-
cisions according to some expectations about the cost of
software development. CLU fixes a particular information
hiding policy: hide the representation of an abstract data
type. In other words, it is assumed that representations are
an important class of change-prone decision, and that gen-
erality with respect to representation is the generality that
is sought. (As we will see, this particular criterion is one
that was adopted by the burgeoning confluence of mathe-
matical logic and programming language design from the
mid-1970s.)

In CLU, this property is not a subject merely to guid-
ance; it is guaranteed, in that information hiding is enforced
by the language. No exceptions can be made, nor alternative
modularisations selected, on cost/benefit grounds. One could
summarise this philosophy as follows: there is a hierarchi-
cal structure to abstraction; code should target the highest
possible level of abstraction (although no higher).

We see this hierarchical view of abstraction implicit in
phrases such as “levels of abstraction”. Indeed, Reynolds
[1983] would later write that “type structure is a syntactic
discipline for enforcing levels of abstraction” (a definition
we return to in §5 and §10). The relation between each
(abstract) data type and the data type(s) of its representation
forms a partial order that is well-known and unique.14

13 This phrase is chosen with intentional similarity to the description by
Kay [1996] of Smalltalk objects as a “recursion on the notion of a computer
itself”.
14 Equating “partial order” with “hierarchy” is committing something of an
abuse, although I follow Parnas [1972] in doing so.

This “fixed policy” contrasts with the writing of Parnas,
in which information hiding can be applied to any design
decision. Representation is merely one design decision that
can be hidden; there is no blanket rule. Instead, one must
be guided by cost. On hiding representations, Parnas et al.
[1976] wrote the following.

The same program could calculate distance from origin for a
point in two-dimensional cartesian space and the magnitude of a
complex number whose representation is in terms of real and imag-
inary parts. However nice the aesthetic properties of a language
may be, if it forces users to write duplicate programs or forces
the code generated to be larger than otherwise necessary, the lan-
guage will have difficulty gaining acceptance by organizations with
strong cost, time and memory constraints. Under pressure, the users
of such a language will resort to the dirtiest of dirty tricks to meet
their time and space constraints.. . . A user should [therefore] be
able to. . . define a set of operations. . . in terms of [a] representation.
The decision to have a representation-dependent program should
[however] be an explicit one and the points at which representation
dependence is introduced should be easily recognized.

Again, the overriding criterion is one of cost. If con-
straints demand that writing representation-dependent code
delivers the lowest net cost, a language should not prevent it.
Indeed, Parnas [1978] had expressed distaste for the phrase
“levels of abstraction” for exactly this reason.

I have not found a relation, ‘more abstract than’, that would
allow me to define an abstraction hierarchy. Although I myself am
guilty of using it, in most cases the phrase ‘levels of abstraction’ is
an abuse of language.

In contrast to the hierarchical view, in which abstractions
are ordered relative to one another, this is a heterarchical
view: many abstractions are possible, and no one ordering
is universally applicable. We can paraphrase this philosophy
as follows: there is a heterarchical structure to abstraction;
code should target an abstraction that minimises cost.

One example of code illustrating Parnas’s point is the
infamous inverse square root code [Eberly 2010].

float InvSqrt (float x)
{

float xhalf = 0.5f*x;
int i = *(int*)&x;
i = 0x5f3759df − (i >> 1); // This line hides a LOT of math!
x = *(float*)&i ;
x = x*(1.5 f − xhalf*x*x); // repeat for a better approximation
return x;

}

This code is clearly dependent on the particular bit-pattern
format of floating-point values, and also that of integer val-
ues. Note that int is not even float’s representation—the two
are formally unrelated data types. It would not be express-
ible in a representation-hiding language. We can express it in
C because although C offers multiple and user-defined data
types as abstractions, it does not require that abstractions are
protected: we can find a way to violate them, here by rein-
terpreting the floating-point value’s representation. As this
code demonstrates, it is possible to have such abstraction-
violating operations yield meaningful results (a good ap-
proximation of the reciprocal of its input’s square root, in

this case). Respect for abstractions is only a proxy, albeit a
useful one, for meaningfulness. This code is, by its nature, an
extreme example, and has the disadvantage that it is fragile
with respect to change in the two bit-pattern formats. Nev-
ertheless, despite its representation-dependence, it is not a
travesty. The value of having a fast approximate reciprocal
square root function was evidently very great to the originat-
ing project (at least worth the investment of “a lot of math”).
Since bit-level representations of integers and floating-point
values are not particularly change-prone, it is very plausible
that the benefit would justify the cost.

A more hierarchically minded viewpoint, in the style of
CLU-like languages, would be that this code can still be
written, but only inside the compiler or floating-point library.
But this is unsatisfactory. Clearly, the authors of those com-
ponents had not anticipated the need for this code. It is also
far from clear that integrating such code would be a cost-
optimal decision. While maintaining the code externally in-
curs some expense to its creators, the cost of integrating it to
the library might well be greater overall. Suppose that many
approximations existed, each suitable for a different applica-
tion; integrating each one would likely be too burdensome.
So, at least in some cases, such code will continue to exist
outside the privileged modules.

Even though C lets us violate the abstraction of floats
where we choose to, it would be wrong to claim that it
doesn’t offer the abstraction of floats. This seems to be
a controversial point, in that when asking my fellow re-
searchers about “types”, it is a popular position that if we
have not protected our abstractions, we have not really ab-
stracted. But we have definitely done something. It is pos-
sible to define abstraction as requiring protection, but doing
so would conflate two distinct concepts. Most programmers
would recognise floats in C as an abstraction, just as our
data types in BCPL++ are abstractions—even if they are not
protected. That is not to say that protecting abstractions isn’t
a valuable thing to do. Generality is fragile: just as entropy
tends to destroy order unless work is put in, so the tendency
is for generality to be eroded unless special measures are
taken. In this sense our two kinds of abstraction are far from
symmetric.

Talking about what abstractions may or must be pro-
tected, and by what mechanism, gives us a more precise way
to talk about what many people call type safety. As with
most terms involving “types”, it has many different mean-
ings; saying protection of abstractions allows us to be more
precise. For example, many people would say that C and
BCPL++ are both “type-unsafe” languages. However, some-
thing clearly distinguishes C from BCPL++ in this regard.
Unlike BCPL++, a C compiler will force us to use an out-
of-the-ordinary language feature—a pointer cast—to access
the representation. We can’t just apply the floating-point op-
erations as we normally would. Although it doesn’t forbid us
from violating the abstraction, it offers something I will call

guidance. With guidance-protected abstractions, you can’t
write abstraction-violating code the same way, syntactically,
as you can write “normal”, non-abstraction-violating code.
(This is exactly Parnas’s “easily recognized” property, from
the first extract quoted above.) The other approach is en-
forced protection: you can’t write abstraction-violating code
at all. We can no doubt attribute some of the continued pop-
ularity of C to the fact that it allows us to write abstraction-
violating code in the occasional cases where this is justi-
fied.15

We can also note that within the same language, differ-
ent abstractions are offered different kinds of protection. In
Python, the basic abstraction of objects as dictionaries has
enforced protection, in that it is not possible to write code
which reinterprets the bits of a dictionary. However, user-
defined classes are only offered “guidance”-style protection,
in that we can instantiate a class but then delete fields or
methods from the created objects. The guidance arises in
how doing this deletion requires unusual-looking code: ac-
cess to the __dict__ field or use of del, say.

5. The essence of type discipline
Most computer scientists of theoretical training use “type” in
the sense of Russell or Church, as a property that classifies
expressions in a language.

In the previous sections, we talked about “data types” as
synonymous with “types”. We will require a slightly differ-
ent definition of “type” in this section. Unlike “data type”
in programming, the origin of “type” in logic is well docu-
mented. Russell [1908] introduced the simple theory of types
as a way of restricting quantification in propositions, hence
avoiding various paradoxes. Church [1940] integrated this
theory into his λ-calculus and showed that it could derive
theorems of primitive recursive systems, including a sub-
set of Peano’s arithmetic postulates, with the guarantee that
well-typed expressions would always terminate.16

All this work occurs firmly in the context of logic, not
computation. Church introduces the reduction sequence of
formulae as a proof, not a program, and notes that “a com-
plete incorporation of the calculus of λ-conversion into the
theory of types is impossible” effectively since many partial
recursive functions are not well-typed under this calculus.17

15 This property of C—that even when data has been abstracted, its rep-
resentation is pervasively available—has been described as amounting to
“two type systems” [Krishnamurthi 2003, chapter 28]: one in which state
is bytes, and manipulated by selecting lvalue types much like in BCPL++,
and the other more conventional approach. Since these “type systems” are
not particularly comparable, and and noting the ambiguity we previously
highlighted in this phrase (§2), I do not follow this view.
16 Infinite recursion in Church’s calculus is analogous to the divergent
nature of paradoxes, such as Russell’s: both concern infinite progress-free
chains of reduction or deduction.
17 Of course, types in a type discipline can be considered propositions
in some logic—a meta-logic, not the object logic!—such that programs
are constructive proofs of those propositions (the Curry–Howard isomor-
phism). This has no bearing on the arguments this essay.

Until the 1980s, computer science literature in this area
typically talked about a doctrine of types or, later, a type
discipline. Nowadays, type system has supplanted these, but
I prefer “discipline” since it appropriately connotes a quid
pro quo: in return for obeying certain rules, certain benefits
emerge. I also use it in this essay because it is unambiguous:
it always refers to a proof system. By contrast, as we noted
(§2) in popular usage, “type system” is often used informally
to refer to various properties of a programming language
design filling any of our four identified roles, and particularly
to the language of data types that can be expressed (role 1).
This is clearly not a type discipline, nor, by itself, a “type
system” in the sense of Pierce [2002].

Russell wrote that “a type is defined as the range of sig-
nificance of a propositional function, i.e., as the collection
of functions for which the said function has values”. Types
are ordered, starting at the “type of individuals”, then induc-
tively generated by the rule that “whatever [proposition] con-
tains an apparent variable must be of a different type from
the possible values of that variable; we will say that it is of
a higher type”. Types exist to restrict quantification within
propositions. It is significant that Russell does not develop a
notation for types themselves. Instead, he refers to them in-
directly using phrases like “the next higher type than that of
x”. One type or another is uninteresting; the utility of types
comes from their ordering, since it allows the expression of
rules which detect meaningless (paradoxical) propositions.

This is very different from our notion of data types. Data
types are always something that we could refer to explicitly.
Russell’s types are embodied implicitly in a rule (concern-
ing the appearance of variables, and how they may be inter-
preted). Although Church did introduce a notation for types,
types in his system fulfil the same role.

What role do type disciplines have in the context of pro-
gramming? As in logic, they have something to do with for-
bidding erroneous constructions, i.e. forbidding programs
with certain errors. However, they need not concern data
types at all. To demonstrate this, let’s imagine adding a type
discipline to the Unix shell without adding data types. Sup-
pose that our type discipline concerns itself with the empti-
ness of strings, and the checker checks that uppercased shell
variables never hold empty strings.18

MYVAR=a # ok
MYVAR=a${yourvar} # ok
yourvar=${MYVAR} # ok
MYVAR=${yourvar} # not well-typed

The first three assignment expressions are well-typed but
the fourth is not, because we cannot allow lowercased vari-
able names to be assigned to uppercased (nonempty) without
appending a character. We could fairly easily write down a

18 For the unfamiliar: expression evaluation in the shell consists of repeated
substitution of substrings according to special “expansion” constructs, such
as ${MYVAR} which expands to the (string) value of variable MYVAR.
Empty expansions of variables can often cause a shell program to “get
stuck” by expanding the expression into an invalid state.

formal rule to capture this. This would be a type discipline
in the sense of Russell (and of Church), but also in the sense
of much literature concerned with programming. However,
it would be a stretch too far to claim that the shell now has
any more data types than the unique string data type it started
with. We have not even named the set of empty strings and
the set of nonempty strings; we have just applied some rules
that embody these concepts implicitly.

Russell was concerned with restricting how sets could
be built from other sets, to avoid quantification that would
create paradoxes. Logicians say that the resulting system
is sound. We have just used the same idea to restrict how
strings can be built from other strings, to avoid expansions
that might get stuck. We have done so at a price: some cor-
rect programs, which never construct empty strings, never-
theless are not well-typed. Our language is still “complete”
so long as we can always refactor a program until it falls
within the discipline. In the following code the assignment
is not well-typed, although if we substituted the definition of
choose we would quickly obtain a well-typed program.
choose () {
if [-z "$1"]; then echo $1; else echo $2; fi

}
MYVAR=$(choose a "${yourvar}") # type error!

This price was of no concern to Russell, since a convo-
luted construction of some set is no less valuable than a sim-
ple one. It only matters that all meaningful sets can be con-
structed somehow. But of course, this price is of concern to
programmers: to say a language is (Turing-) complete says
little about its usefulness.

What, then, is the defining feature of type disciplines?
The most coherent position is that they are metalinguistic
reasoning devices that interpret the object language syntacti-
cally. Russell’s type discipline is defined only in terms of the
form of propositions or expressions in a language. In the case
of type disciplines in programming languages, we might ob-
serve that these expression are usually classified in terms of
data types—named interpretations of values or behaviours—
but this is secondary. All type disciplines, however, reason
over some kind of inductive structure which we characterise
as the syntax of a language. Program syntax, like proposition
syntax, is invariably such an inductive structure.

Of course, most programming languages which feature
type disciplines do use explicitly named interpretations, be-
cause they repurpose data type definitions as “types” in the
sense of the type discipline. This is a design synthesis, as
we anticipated when introducing data types: type disciplines
are a popular tool for defining “semantic well-formedness”
criteria which, as we noted earlier (§2), are naturally ap-
plied to establishing operational well-definedness with re-
spect to data types. Two popular approaches in this space
are summarised by the famous dictums of Milner [1978]
and Reynolds [1983]. Milner’s statement that “well-typed
programs cannot ‘go wrong”’ emphasises the use of type
disciplines directly to prove operational well-definedness.

Reynolds’s statement that “type structure is a syntactic dis-
cipline for enforcing levels of abstraction” emphasises the
use of type disciplines to embody information-hiding rules
and hence prove that interpretations (modelled as abstract
data types) are used without knowledge of their representa-
tions (more concrete data types). and therefore that code will
withstand changes to the latter.19

6. On understanding “On understanding. . . ”
William Cook’s essay [Cook 2009] on data abstraction is a
wonderful work that I never hesitate to recommend to any-
body. It makes a subtle yet essential point: that objects per-
form data abstraction using a different mechanism than do
abstract data types (ADTs). The former use procedural ab-
straction, gaining flexibility, whereas the latter use relatively
syntactic information-hiding rules, gaining tractability.

Nevertheless it contains a wrong statement about exactly
how ADTs may and may not work. The misstatement can be
blamed on an overapplication of the word “type”. In section
4.1, Cook writes the following.

Abstract data types depend upon a static type system to enforce
type abstraction. . . [whereas] objects can be used to define data
abstractions in a dynamically typed language.

However, this is not true. The exact kind of abstraction
offered by abstract data types can be provided and enforced
in a language with no static type checker, like our BCPL++.
Indeed, the way it is enforced in C (covered by Cook earlier
in his essay), where file separation is used to hide the rep-
resentation, makes no use whatsoever of C’s type checker.
One could even imagine abstract data types in a language
with no compiler and only dynamic binding. This could be
useful in systems using reflection or run-time code genera-
tion against ADTs: when attempting to access details private
to the ADT’s representation, we might enforce information
hiding dynamically, at the time of code generation or other
reflective access, defining the check in terms of the call stack
(“who’s calling?”). It could conceivably be useful to do so,
for example to ensure that the generated code did not embed
details of that representation, which would prevent it from
running in the context of a different definition of the same
ADT.

The problem seems to be use of the phrase “type abstrac-
tion” to refer to the separation of an abstract data type’s name
from its representation. It’s difficult to see what this kind of
abstraction has to do with “type” per se. It’s actually an-
other instance of the same abstraction device we called ref-
erence in §3: separation of a named definition from uses of
that definition. The extra trick it uses, above ordinary refer-
ence, is to forbid certain references. Again, this is informa-

19 This use is arguably a fifth role of “types”, since the consideration of
code’s amenability to change is somewhat “higher-order” relative to Milner-
style criteria concerned merely with error-free operation. However, it can
also be considered primarily operational in nature, in the sense that pro-
grams found to be ill-formed would be prone to errors at run time—if not
immediately, then upon changes to hidden representation details.

tion hiding, as described earlier (§4). Although it is possible
to use type disciplines for enforcing information hiding, that
is only one way to do so. A possible rejoinder would be to
squint and call any mechanism for enforcing such referen-
tial constraints a “type system”, even if enforcement is en-
tirely dynamic. But doing so is clearly not Cook’s intention,
and would degrade the phrase beyond even the low level of
agreed meaning than it currently enjoys.

Cook’s use of “type” here can be considered a kind of
metonymy, in which the more specific phenomenon “type”
is named in place of the more general phenomenon “refer-
ence”. We humans have an easily observed tendency to in-
troduce metonymy—a special case of metaphor—into our
use of language, and to do so unconsciously. We will see
examples later of various other metonymies using the word
“type” that have made their way into print.

Of course, saying all this does not undermine Cook’s
point in any way: that the two kinds of abstraction are very
different. Whereas procedural abstraction is necessarily ca-
pable of expressing arbitrary computations, by contrast, “ab-
straction by reference” is limited to some set of rules about
what identifier resolves to what referent in what context. It is
interesting to note that there is a continuum here nonetheless.
Rules can be viewed as a logic or a machine, can be bound
early or late; and their expressiveness varies somewhat.20

A theme in our discussion of abstraction was the con-
trast between guarantees and guidance, and the distinction
of a priori fixed policies (like representation hiding) from
policies informed by cost. We can trace these two issues in
Cook’s discussion of the relationship between abstract data
types and formal models. Cook writes in section 2.5 that
“formal models of abstract data types are based on exis-
tential types” (citing Mitchell and Plotkin [1988]) and that
“abstract data types have a fundamental model based on ex-
istential types. . . [which is] a solid connection to mathemat-
ics”. Such type-theoretic models are based on calculi, mean-
ing languages designed with the goal of discarding as many
details as possible beyond those affecting whatever prop-
erties are considered relevant a priori. The usual goal of
analysing a calculus is to prove that some property holds
of all programs expressible in that calculus. If the prop-
erty proved is type-correctness, the calculus is called “type-
sound”. More generally, the properties considered over cal-
culi invariably apply abstractions that are characteristic of
mathematical logic, and concern guarantees: considering
expressiveness only as a boolean (whether something can
be expressed, rather than how succinctly), complexity only

20 In philosophy of language, theories of naming are judged by their ability
to attach meaning to complex denoting expressions arising in natural lan-
guage. The theory of Russell [1905] was criticised by Kripke [1980] for its
inability to capture the invariant intension of names recurring across dif-
ferent modalities—such as statements about a world where Aristotle had
been raised by wolves. Kripke’s refinement was in effect a context-sensitive
model of names, as mappings from worlds to extensions, analogous to ex-
tending a computational interpreter with state, context or scoping.

in the asymptotic case (e.g. big-O notation), decidability
only as a boolean (existence of a computable total function),
and so on. By contrast, the differences that Cook empha-
sises most heavily about ADTs versus objects are practical
ones: whether or not different implementations can interop-
erate; which approaches are more amenable to what wider
language designs; how tractable it is to reason about them
ahead of time. To me it seems these are more concerned
with cost than guarantee. Note that even tractability, here, is
a practical property, since practical work in software verifi-
cation often finds, for example, that exponential cases tend to
be polynomial in common practice [Milner 1978; Järvisalo
et al. 2012]; that generally undecidable problems turn out to
be efficiently decidable in many common cases [Cook et al.
2011]; and so on.

As it happens, we can talk much more directly about what
abstract data types are doing by focusing on the device of
reference, not on type theory. Ironically, although Russell
would become the founder of type theory, he had already
elucidated the necessary properties of reference in an earlier
article [Russell 1905] that concerns the philosophy of lan-
guage (and has nothing to do with types). He elaborates ref-
erential statements of the form “the King of France is bald”
into existentially quantified statements: “there exists an indi-
vidual x such that x is bald and x is the King of France”. Ab-
stract data types apply this exact elaboration on client code,
combined with information hiding restrictions on what prop-
erties can be listed after “such that” (restricted to those listed
in the specification, and, in particular, excluding any proper-
ties of the representation). The connection between existen-
tial statements and abstract data types owes to the funda-
mental device of reference, and can be explained outside the
context of type theory.

7. “Types” and programming languages
Benjamin Pierce’s Types and Programming Lan-
guages [Pierce 2002] is a wonderful textbook. Very
early on, it acknowledges the difficulty of defining such
things as “types” or “type systems”, but proposes the
following definition as a “plausible” starting point.

A type system is a tractable syntactic method for proving the
absence of certain program behaviours by classifying phrases ac-
cording to the kinds of values they compute.

Indeed, the systems which are covered by the substance
of the book conform strongly to this definition. However, the
same introductory chapter later makes the following remark
on the history of “type systems”.

The first type systems in computer science, beginning in the
1950s in languages such as Fortran, were introduced to improve
the efficiency of numerical calculations by distinguishing between
integer-valued arithmetic expressions and real-valued ones; this
allowed the compiler to use different representations and generate
appropriate machine instructions for primitive operations.

This statement is true, but it demands an exceptionally
careful reading. In particular, it would be false to infer from

it that a type system (in Pierce’s own sense) is necessary in
order to “distinguish between integer-valued arithmetic ex-
pressions and real-valued ones”. Our examples in §2 have
already established that this is not true: BCPL expresses this
distinction in an ad-hoc form, and our BCPL++ expresses
it in a general form by including an explicit notion of data
types which can be used to index operations. Pierce correctly
limits the scope of “type system” to “distinguishing between
integer-valued arithmetic expressions. . . [in] the compiler”,
where the emphasis I have added is crucial. We must also
read “efficiency” very carefully: there is nothing to prevent
a BCPL program from generating equally efficient code as
that generated from Fortran, so we must include the human
cost, meaning the efficiency of programming as a process.
By assigning types to variables, the compiler can relieve the
programmer from managing temporary storage and insert-
ing conversion routines (as discussed in §2), both of which
would be necessary in BCPL, hence adding to the opportu-
nity for error. Early Fortran has no non-numeric data—even
conditional branching was defined arithmetically—so there
is little opportunity for semantically ill-formed expressions.
The compile-time analysis does not exist to prove the ab-
sence of any particular class of errors, but rather to take a
somewhat error-prone task away from the programmer.

My point here, again, is that “type system” and “types”
are overapplied terms. Although we can find arguments that
Fortran’s system belongs alongside the others in the book,
this is only by overlooking a host of distinctions. There is
a significant difference between how “types” are used in
Fortran (as data types, employed so as to take work away
from the programmer; roles 1 and 2 from §2) and how they
are used in the systems which Pierce’s book is about (as
types in a type discipline, to guarantee absences of certain
errors; roles 3 and 4).

8. Wikipedia
Can we crowdsource a definition of “types”? Wikipedia’s
article on “data type”, as retrieved on 2014/4/10, begins as
follows.

In computer science and computer programming, a data type or
simply type is a classification identifying one of various types of
data, such as real, integer or Boolean, that determines the possible
values for that type; the operations that can be done on values of
that type; the meaning of the data; and the way values of that type
can be stored.

This opening is very general, and makes it clear that the
issue of “data types” mixes a number of concerns: values,
operations, “meaning” and storage. When reading related
Wikipedia pages, such as that for “Type system” (retrieved
on the same date), one notices how much alternation (use
of “or”) there is in the text. To make correct statements
about the meaning of “type”, it becomes necessary to take
the union of a large variety of possible meanings. Popular
discourse suffers from the weight of these possible mean-
ings, which are confusing for a newcomer and a minefield

even for experts. Meanwhile, in the very next paragraph, we
read the following.

Data types are used within type systems, which offer various
ways of defining, implementing and using them. Different type
systems ensure varying degrees of type safety. Formally, a type can
be defined as “any property of a program we can determine without
executing the program”.

The nested quotation—“any property of a program we
can determine without executing the program”—is by Kr-
ishnamurthi [2003]. This is no longer talking about data
types as introduced in the first paragraph—it is about types
in the sense of type disciplines. Recall how we saw in §5 that
type disciplines can state and prove properties over programs
without introducing new data types. This transition, from the
very general earlier definition to a materially different con-
cept, occurs in the article with no acknowledgement that a
change has occurred. In so doing, the Wikipedia article has
overapplied the notion of data types to the distinct notion of
types from logic.21

Krishnamurthi’s definition is interesting because it de-
fines types as a specification device—they are properties that
we wish to be determined—but doesn’t require that a type
discipline is the method used to establish these properties.
This reflects a use of “type” that I consider an overappli-
cation: its use to denote any specification mechanism for de-
cidable properties. Type disciplines are one of a host of ways
by which we can establish properties of programs. Specifi-
cally, they are those methods which perform proofs over the
inductive structure of program syntax. But we can interpret
programs in radically non-syntactic ways, for example as
transition systems, hence exposing other structural dimen-
sions than that of syntax. None of these is the universally
“right” decomposition. Type disciplines owe their tractabil-
ity but also their limitations to the very fact that they do not
transcend syntax. Although we could squint and, consistent
with calling any property a type, also call any method for
proving such properties a type system, as before this would
erase useful distinctions and degrade these terms yet further.

9. A voracious appetite
We have started to observe a theme: metonymous uses of the
word “type”. This turns out to be extremely common. It is
almost as if “type” is a word which is hungry to acquire new
meanings (which we are all too eager to give it). It appears
in a large number of phrases which, on reflection, are not
directly to do with types in any of the senses we have seen. I
briefly survey some of these here.

21 Fittingly, since writing this section in early April 2014, this quotation has
been removed (as of 2014/4/15), for effectively the reason that I identify
here. The presence of this confusion, corrected or otherwise, is still worthy
of note. Meanwhile, the second edition of Krishnamurthi’s book does not
contain the quoted sentence. My comments are directed at the Wikipedia
article’s inclusion of the quotation without any qualifying context, rather
than the book itself, whose second edition is admirably clear and consistent
in its use of “type”.

Memory safety as “type safety” It is easy to find examples
in the literature of “type safety” when what is really being
referenced is one or both of two memory safety properties:
pointers stay within the bounds of the object they started
pointing into (spatial memory safety), and that an object is
only reclaimed once no live pointers into it remain in cir-
culation (temporal memory safety). The former is typically
achieved using dynamic checks (bounds checks, checked
downcasts), and the latter using garbage collection. These
properties are a cornerstone of how many languages protect
their abstractions, including Lisp, Smalltalk and Java. The
most obvious links to “types” are that type disciplines can
also be used to eliminate certain dynamic checks, and that
memory safety is necessary (but not sufficient) to protect
abstractions, including data types (since a wild pointer can
cause damage arbitrary damage). It is checking properties
over memory, not over types, that is essential here.

Late binding as “duck typing” Dynamic language users
often refer to “duck typing”, but this turns out to be no more
than dynamic binding (from named fields and methods to
their definition on a target object). This is perceived as a
form of “typing” because of an absence of the restrictions,
stated in terms of data types, which many other languages
impose. For example, in Java one might receive a generic ob-
ject and know that it has a twiddle() method, but one must
nevertheless downcast it to a specific twiddle()-specifying
class before this method can be used. By contrast, so-called
“duck typing” means that a value’s data type is irrelevant
to whether an operation can proceed; the precondition is in-
stead that the methods the client requires can be resolved dy-
namically at the point of invocation. (Interestingly, variants
of the same behaviour which require the client to specify an
operand’s structural signature, such as that of Go, appear not
to attract the label “duck typing”—even though they other-
wise remain late-bound and avoid nominal matching against
an operand’s data type.)

Values as “types” It is fairly easy to find phrases like
“passing a value type” to mean “passing a [non-reference]
value”. This is trivial, but is a common instance of
metonymy. Less trivially, the phrase “typestate” [Strom and
Yemini 1986] is metonymous because it actually refers to
the state of an object, i.e. a mutable value, not the state of
a type.22 The word “type” creeps in because it is convenient
to package these state-based specifications within data type
definitions. This is not an essential property, however; we
could imagine languages which separate these constructs.

“Types” as units of code Smalltalk popularised the struc-
turing of programs into classes. A class is a data type, so this
promoted the view of software as structured foremost around
data types rather than procedures. Meanwhile, the use of

22 Of course, that does not preclude the use of these state abstractions within
type disciplines. This has been a focus of various more recent work on
typestate.

Reynolds-style type disciplines to enforce information hid-
ing has led to a similar phenomenon in functional languages,
most notably the ML module system [MacQueen 1984], in
which module interfaces have “types” in the sense of a type
discipline, and may or may not be encapsulating something
recognisable as an abstract data type. Again, these two are
distinct uses of “type” which have converged somewhat co-
incidentally.

Explicitly-structuredness as “typed”-ness Typed often
refers to the descriptive properties of data types. Data types
localise details about representations (symbols)—perhaps
concretely (a structure with a described set of fields) or per-
haps abstractly (a set of behaviours). In his 2010 SPLASH
keynote, Don Syme presented type providers in the F# lan-
guage, a compile-time metaprogramming feature in which
a collection of abstract data types can be generated on de-
mand for interfacing with some external data source, such as
a third-party web service or database [Syme et al. 2012]. He
attributed a key advantage of this system to its being “typed”,
noting how it helps enable various useful kinds of tooling,
such as autocompletion in an editor. “Type providers” could
conceivably be called “code providers”, where the “code”
defines abstract data types, exposes operations primarily at a
storage level (reading and writing of constituent elements),
and the provision of code occurs at or before compile time.
(This contrasts with run-time loading systems, such as net-
worked class loaders in Java.) What sense of “typed” was
intended? Clearly, this includes the essential sense (§2) of
[data] types as abstractions. It also includes the abstract part
of abstract data types, meaning representation hiding (§4).
Meanwhile F# is also a typed language in the logical sense
(§5)—but it would be wrong to attribute tooling features
like autocompletion, or the benefits of “type providers” gen-
erally, to this sense of “typed”. Autocompletion and other
query-style tool support is certainly more prevalent among
such languages, since type disciplines naturally cut down
the space of exhaustively-enumerated well-formed results
to a tractably small number. But exhaustive search is only
one possible implementation of that functionality. (Consider
that Google does a creditable job of autocompleting search
terms, but natural languages lack type disciplines.) To at-
tribute the benefits of “type providers” to “typed”-ness in the
sense of the F# language’s type discipline would therefore be
metonymous.

10. The missing link—still missing
I have yet to see any work that reconciles the notion of “data
type”, arising in programming, and that of “type” arising
in logic. It’s easy to find papers that talk about them as if
they are the same thing, but finding one that deals with the
question explicitly has so far defeated me. In this section I
review some literature that I have uncovered in my search,
and which hints towards an answer.

As we noted earlier, the origins of “type” in logic are well
known. The origin of “data type” in programming, or just
“type” in that context, are less clear. We begin by looking
for these origins. Wilkes et al. [1951], in arguably the first
book about programming stored-program computers, do not
mention “data types”, nor use “types” except in its everyday
sense. Regarding data, they write about “forms in which
numbers and orders are represented within the machine”.

Fortran and COBOL both emerged during the 1950s.
Neither of their initial definition documents [Backus 1954;
Anonymous 1960] uses the word “type” outside its everyday
sense. Fortran IV was released in 1962, and its manual does
talk about data types.23 Algol 60 was also brewing during
the late 1950s. Perlis was among Chipps et al. [1956], who
state that “variables are of three types: scalars, vectors and
matrices. . . Two kinds of each variable are required since the
computer arithmetic functions in both the fixed and floating
point modes”—but they instead use “kind” in other contexts,
suggesting only everyday English usage. However, the Algol
58 Preliminary Report does mention “type” (and “arithmetic
type”, although not “data type”), and the Algol 60 report
uses “type” in its familiar sense of “data type”. Strachey and
Wilkes [1961] use “type” in this same sense without any ex-
planation or qualification. So it seems that the synonymous
uses of “type” and “data type” gained common usage in the
very early 1960s through the influence of Algol and Fortran.

Around the same time, many of those working in logic—
a tradition which already had a well-established notion of
type—were concerned with mechanisation of logic, natu-
rally using computers. Influential work from this period
included that of Robinson [1965] (at the Argonne Na-
tional Lab, also contemporaneously with Reynolds) and
Pietrzykowski and Jensen [1972]. Through this strand of
work, “type” is used in the sense of logic.

Scott [1970] does talk about “data types” in a mathemat-
ical context, defining them as partially ordered sets. How-
ever, this definition has strong and very specific goals: a
“mathematical” (we would now say “denotational”) basis
for study of programs. Even calculi such as that of Church
are insufficiently mathematical, because they lack full ab-
straction. Instead, Scott & Strachey’s work pursued domain-
theoretic models of programs, which have (to my knowl-
edge) yet to successfully model large fragments of real pro-
gramming languages. Meanwhile, other mathematical devel-
opments have embarked from the observation that data types
correspond to set-theoretic constructs—most notably, those
of Hoare [1972] and Martin-Löf [1985]—but still retaining
the Church-style view of types as an instrument for syntax-
directed reasoning over programs, with no clear link to the
other roles which [data] types fill in programming languages.

The late 1970s brought the landmark of ML, a successful
programming language based on the lambda calculus. ML
achieves an astonishing synthesis in its treatment of types.

23 . . . at least from the earliest revision I found, which was dated 1974.

It starts with the premise of avoiding the need for run-time
tags, entailing that the compiler decide, when generating
code, how a given stored representation may be manipulated.
This quickly leads to the constraint that the set of data types
be equal to that of (logical) types in the type discipline. In
other words, it is a consequence of ML’s design synthesis
that its data types and type-discipline types must be unified.
This remains a remarkable result: the discovery of a lan-
guage allowing erasability of run-time tags, inferability of
typings for most code, while providing a type discipline that
accounts even for polymorphic functions while remaining
remarkably usable in practice. ML and its descendents re-
main rightly described as a “sweet spot” [Minsky et al. 2013,
p. xv]. But that very phrase tells us that a wider space exists
outside of this specific design synthesis. ML cannot easily
encode structures in which the selection of data types is de-
pendent on program input, such as heterogeneous lists, or
other patterns associated with “subtyping” in object-oriented
languages. Rather, doing so requires means that that effec-
tively reintroduce run-time tags (e.g. using an “any value”
algebraic data type). At the other extreme, Bracha [2004] ac-
tively advocated type-disciplined programming accommo-
dating divergence between the language of data types and
the language of logical types.

Reynolds [1974] talks about “type structure” but always
in the sense of a type discipline, stating as a goal that “the
meaning of a syntactically valid program in a ‘type-correct’
language should never depend upon the particular represen-
tations used to implements its primitive types”. We note im-
mediately that the absoluteness of this statement (“never”)
and the emphasis on representation-independence puts it
at odds with the writing of Parnas et al. [1976]. Indeed,
Reynolds [1983] later provided a more general statement of
the same idea: “type structure is a syntactic discipline for en-
forcing levels of abstraction”. This bears out several distinc-
tions we have observed: the essential syntactic nature of type
disciplines (§5), the emphasis on enforcement and on hierar-
chical “levels of abstraction” (§4), in contrast with Parnas’s
heterarchical view.

It is a testament to the disconnectedness of the engineer-
ing community from that of logic that during the 1970s, very
few citations cross between the logic-oriented community
and the engineering community. Another testament to this
disconnectedness is how the phrase “high-order languages”
[Brosgol 1976; Dijkstra 1975] was in use among engineers
to describe, essentially, languages with expressive data ab-
stractions. Meanwhile, in logic, “higher-order” had long im-
plied a concern for first-class functions. As an omission in
the other direction, Morris [1973] wrote about a pair of dis-
tinct purposes of “types”, one he called “authentication” and
another “secrecy”; two years earlier, Parnas had given the
name “information hiding” to secrecy.

The divide between logical mindsets and engineering
ones remained alive and well after the end of the 1970s.

Cardelli and Wegner [1985] embark on a survey of “types,
data abstraction and polymorphism” but move quickly to
talking about enforcing correctness and hiding representa-
tions. They write that unenforced “type-like” abstractions,
by virtue of being prone to occasional violation, are “an
illusion”—hence, implicitly, valueless. They talk of “poten-
tially disastrous” and “arbitrary” consequences of such vio-
lations as, implicitly, facts that render such a system unac-
ceptable. To a logician, this is understandable. If a system
admits the arbitrary, it is called inconsistent, and is of no
value. To an engineer though, the idea of cost is paramount.
Any undesirable eventuality occurs only with a certain prob-
ability and incurring a certain cost; any means for preventing
such eventualities also has a cost (such as a proof burden).

Recent literature has seen some reflection on these dif-
ferences. Ostermann et al. [2011] argue convincingly that
the emphasis on monotonicity of reasoning, while inevitable
from classical logic, continues to be a poor fit for the men-
tal processes of engineering practice. We can immediately
connect this with the “hierarchical” versus “heterarchical”
distinction from earlier, since monotonic reasoning proceeds
along an ordered structure. Having said that, I disagree with
the implication that Parnas-style information hiding requires
monotonic reasoning, since, as covered in §4, Parnas’s writ-
ing embraces a heterarchical approach.

It would be nice to rewind history and choose some other
word than “type” for some or all of the various meanings
it enjoys today. Perhaps we can at least take greater care to
qualify our usage—perhaps saying “expression type” when
talking about type disciplines, and more consistently includ-
ing the “data” in “data type”. I have begun doing the latter
in my writing, ever since I began feeling the unease I men-
tioned at the start of this essay.

Meanwhile, historically the ingress of ideas from sym-
bolic logic into programming language research has coin-
cided with the egress of cooperation with “systems” re-
search. Gabriel [2012] noted a personal feeling that “in the
1990s it seemed to me that scientists in the programming
community pulled back the welcome mat from engineers”,
and also noted that “before 1990, a person interested in pro-
gramming could work comfortably both in programming
languages and in programming systems, but not so easily af-
ter”. The bibliographies of the “engineering” papers cited in
this section show that programming systems and operating
systems research used to be close neighbours. It is unlikely
to be a coincidence that it is very hard to prove properties
about systems as large as real operating systems—or con-
versely, to build a functioning operating system that is nev-
ertheless small enough to reason about. Indeed, we have only
recently reached a point of being able to do so [Klein et al.
2009]. Perhaps that means the time is right to build a new
understanding between communities of logic and engineer-
ing. These are not as alien to each other as it might appear. If
we succeed in building such an understanding, it will mean

learning to share the word “type” in a way that is sensitive
to depth and diversity of the concepts lying under it.

Acknowledgments
I’m grateful to Stephen Dolan and Tomas Petricek for fruit-
ful discussions, to Dominic Orchard and Laurence Tratt for
comments on a draft, to the many people who’ve indulged
me when I’ve asked them about “types”, and to the library
at the Computer Laboratory for its well-organised collection
of older literature. This version has benefited from the com-
ments of Peter Sewell, Dominic Mulligan, Jean Pichon, Alan
Mycroft, Martin Richards, Jon Crowcroft, Nick Maclaren,
Helen Oliver, Benjamin Pierce, Shriram Krishnamurthi, Don
Syme, Jessica Leech and the anonymous reviewers. I was
supported by EPSRC grant EP/K008528/1, “Rigorous Engi-
neering for Mainstream Systems”.

References
Anonymous. COBOL—initial specifications for a COmmon Busi-

ness Oriented Language. Technical report, Short Range Task
Force for the Conference on Data Systems Languages, 1960.

J. Backus. Preliminary report, specifications for the IBM mathe-
matical FORmula TRANslating system, FORTRAN. Technical
report, Applied Science Division, IBM, 1954.

S. R. Bourne. UNIX time-sharing system: The UNIX shell. Bell
System Technical Journal, 57(6):1971–1990, 1978.

G. Bracha. Pluggable type systems, 2004. http://bracha.
org/pluggableTypesPosition.pdf. Presented at the OOPSLA
Workshop on the Revival of Dynamic Languages; retrieved on
2014/8/17.

B. M. Brosgol. Some issues in data types and type checking. In
J. H. Williams and D. A. Fisher, editors, Design and Implemen-
tation of Programming Languages, volume 54 of Lecture Notes
in Computer Science, pages 102–130. Springer, 1976.

L. Cardelli and P. Wegner. On understanding types, data abstrac-
tion, and polymorphism. ACM Comput. Surv., 17(4):471–523,
Dec. 1985.

J. Chipps, M. Koschmann, S. Orgel, A. Perlis, and J. Smith. A
mathematical language compiler. In Proceedings of the 1956
11th ACM National Meeting, ACM ’56, pages 114–117, New
York, NY, USA, 1956. ACM.

A. Church. A formulation of the simple theory of types. J. Symb.
Log., 5(2):56–68, 1940.

B. Cook, A. Podelski, and A. Rybalchenko. Proving program
termination. Commun. ACM, 54(5):88–98, May 2011.

W. R. Cook. On understanding data abstraction, revisited. In Pro-
ceedings of the 24th ACM SIGPLAN Conference on Object Ori-
ented Programming Systems Languages and Applications, OOP-
SLA ’09, pages 557–572, New York, NY, USA, 2009. ACM.

E. W. Dijkstra. On a language proposal for the Department of
Defense, 1975. EWD 514.

D. Eberly. Fast inverse square root (revisited). Web
note, 2010. http://www.geometrictools.com/Documentation/
FastInverseSqrt.pdf. Retrieved on 2014/3/15.

http://bracha.org/pluggableTypesPosition.pdf
http://bracha.org/pluggableTypesPosition.pdf
http://www.geometrictools.com/Documentation/FastInverseSqrt.pdf
http://www.geometrictools.com/Documentation/FastInverseSqrt.pdf

R. P. Gabriel. The structure of a programming language revolution.
In Proceedings of the ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! ’12, pages 195–214, New York, NY, USA,
2012. ACM.

C. A. R. Hoare. Notes on data structuring. In O. J. Dahl, E. W.
Dijkstra, and C. A. R. Hoare, editors, Structured Programming,
pages 83–174. Academic Press Ltd., 1972.

M. Järvisalo, A. Matsliah, J. Nordström, and S. Živný. Relating
proof complexity measures and practical hardness of SAT. In
M. Milano, editor, Principles and Practice of Constraint Pro-
gramming, Lecture Notes in Computer Science, pages 316–331.
Springer Berlin Heidelberg, 2012.

A. C. Kay. In T. J. Bergin, Jr. and R. G. Gibson, Jr., editors, History
of Programming languages—II, chapter The Early History of
Smalltalk, pages 511–598. ACM, New York, NY, USA, 1996.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood. seL4: Formal verifica-
tion of an OS kernel. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP ’09, pages
207–220, New York, NY, USA, 2009. ACM.

S. Kripke. Naming and Necessity. Blackwell, Oxford, 1980.

S. Krishnamurthi. Programming languages: application and
interpretation. e-book, 2003. http://www.cs.brown.edu/
%7esk/Publications/Books/ProgLangs/. As generated on
2007/4/26.

S. Krishnamurthi and M. Felleisen. Safety in programming lan-
guages. Technical Report TR 99-352, Rice University, 1999.

B. Liskov and S. Zilles. Programming with abstract data types. In
Proceedings of the ACM SIGPLAN Symposium on Very High
Level Languages, pages 50–59, New York, NY, USA, 1974.
ACM.

D. MacQueen. Modules for Standard ML. In Proceedings of the
1984 ACM Symposium on LISP and Functional Programming,
LFP ’84, pages 198–207. ACM, 1984.

P. Martin-Löf. Constructive mathematics and computer program-
ming. In Proc. of a Discussion Meeting of the Royal Society of
London on Mathematical Logic and Programming Languages,
pages 167–184. Prentice-Hall, Inc., 1985.

R. Milner. A theory of type polymorphism in programming. Jour-
nal of computer and system sciences, 17(3):348–375, 1978.

Y. Minsky, A. Madhavapeddy, and J. Hickey. Real World OCaml:
functional programming for the masses. O’Reilly, Nov 2013.

J. C. Mitchell and G. D. Plotkin. Abstract types have existential
type. ACM Trans. Program. Lang. Syst., 10(3):470–502, July
1988.

J. H. Morris, Jr. Types are not sets. In Proceedings of the 1st An-
nual ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL ’73, pages 120–124, New York,
NY, USA, 1973. ACM.

K. Ostermann, P. G. Giarrusso, C. Kästner, and T. Rendel. Revis-
iting information hiding: Reflections on classical and nonclassi-
cal modularity. In Proceedings of the 25th European Conference

on Object-oriented Programming, ECOOP’11, pages 155–178,
Berlin, Heidelberg, 2011. Springer-Verlag.

D. L. Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15:1053–1058,
1972.

D. L. Parnas. Designing software for ease of extension and contrac-
tion. In ICSE ’78: Proceedings of the 3rd international confer-
ence on software engineering, pages 264–277, Piscataway, NJ,
USA, 1978. IEEE Press.

D. L. Parnas, J. E. Shore, and D. Weiss. Abstract types defined
as classes of variables. In Proceedings of the 1976 Conference
on Data : Abstraction, Definition and Structure, pages 149–154,
New York, NY, USA, 1976. ACM.

B. Pierce. Types and programming languages. The MIT Press,
2002.

T. Pietrzykowski and D. C. Jensen. A complete mechanization
of (ω)-order type theory. In Proceedings of the ACM Annual
Conference, Volume 1, ACM ’72, pages 82–92, New York, NY,
USA, 1972. ACM.

J. C. Reynolds. Towards a theory of type structure. In Program-
ming Symposium, Proceedings Colloque Sur La Programma-
tion, pages 408–423, London, UK, 1974. Springer-Verlag.

J. C. Reynolds. Types, abstraction and parametric polymorphism.
In IFIP Congress, pages 513–523, 1983.

M. Richards. BCPL: A tool for compiler writing and system
programming. In Proceedings of the May 14-16, 1969, Spring
Joint Computer Conference, AFIPS ’69 (Spring), pages 557–
566, New York, NY, USA, 1969. ACM.

J. A. Robinson. A machine-oriented logic based on the resolution
principle. J. ACM, 12(1):23–41, Jan. 1965.

B. Russell. On denoting. Mind, 56(14):479–493, 1905.

B. Russell. Mathematical logic as based on the theory of types.
American Journal of Mathematics, 30:222–262, 1908. Elec-
tronic Edition.

D. Scott. Outline of a mathematical theory of computation. Techni-
cal Report PRG-2, Computing Laboratory, University of Oxford,
1970.

C. Shannon and W. Weaver. A Mathematical Theory of Communi-
cation. University of Illinois Press, 1949.

C. Strachey and M. V. Wilkes. Some proposals for improving the
efficiency of ALGOL 60. Commun. ACM, 4(11):488–491, Nov.
1961.

R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Trans. Softw.
Eng., 12:157–171, January 1986.

D. Syme, K. Battocchi, K. Takeda, D. Malayeri, J. Fisher, J. Hu,
T. Liu, B. McNamara, D. Quirk, M. Taveggia, W. Chae,
U. Matsveyeu, and T. Petricek. F# 3.0: Strongly-typed language
support for internet-scale information sources. Technical Report
MSR-TR-2012-101, Microsoft Research, September 2012.

M. V. Wilkes, D. J. Wheeler, and S. Gill. The preparation of
programs for an electronic digital computer. Addison Wesley,
1951.

http://www.cs.brown.edu/%7esk/Publications/Books/ProgLangs/
http://www.cs.brown.edu/%7esk/Publications/Books/ProgLangs/

	Introduction
	The essence of ``data types''
	The twin essences of abstraction
	Abstraction and data types
	The essence of type discipline
	On understanding ``On understanding…''
	``Types'' and programming languages
	Wikipedia
	A voracious appetite
	The missing link—still missing

