Postloading for Fun and Profit

S. C. Johnson

Stardent Computer Corp.
880 W. Maude Ave.
Sunnyvale, CA, 94086
uunet!ardent!scj

ABSTRACT

Postload processing, or postloading , is a technique of optimizing (or other-
wise processing) an executable program after it has been linked with Id. The
executable program is read, altered, and rewritten with optimizations or other
added features. Postloading, to be done reliably, needs changes to the a.out for-
mat that increase its size by a few percent. We_have found over a dozen
significant uses for postloading, including optimization, hardware workarounds,
profiling and execution counting, simulation, *code critics’ (programs that exam-
ine, and repair, common compiler and assembly code problems), and migration
to new hardware releases.

Introduction

Most code optimization techniques operate locally on an expression, loop, or function. Postload-
ing, as the name suggests, is an optimization technique that works after a program has been
bound into an a.out file.

As an example of a transformation that pays off on many RISC machines, consider accesses to
global data. In most RISC architectures, it takes two instructions to read or write a general 32-bit
address. In practice, most global accesses happen within a much smaller range, addressable in
one instruction as an offset from a *global pointer.” Assuming a register can be dedicated for use
as a global pointer, ld would compute offsets from the global pointer as one of its relocation
modes. The MIPS execution environment, for one, reserves a register for this purpose, and sup-
ports its use in the loader [CHOW86]. (Note that older architectures have similar optimization
potential [SZYM78], typically involving replacing longer forms of instructions by shorter forms

rather than two instructions by one.)

This optimization is awkward to reflect in the compiler, however. When a reference to a global
variable (such as errno) is seen, the compiler has to guess whether the variable will lie within the
*fast’ single instruction range or whether a ’slow’ but general two-instruction sequence must be
used. If the compiler always assumed such references were fast, a sufficently large program
would cause loading to fail totally, since there could be too many variables that must be refer-
enced with too few offset bits. Some form of user control over the scope of this optimization
seems necessary. However, it is even difficult for the user to know at compile time all the con-
texts where a program will be used (consider a large set of library functions, such as the X library,
for example). If the compiler is pessimistic, much of the benefit of the optimization can be lost.

USENIX - Winter "90

325

Postloading for Fun and Profit Johnson

We propose an alternative. Let the compiler be pessimistic, and produce a fully general, slow
sequence. When a program has been linked, then optimize the references in the a.out file, replac-
ing two-instruction sequences by a single instruction wherever the target can be so addressed.
This strategy allows arbitrarily large programs to be loaded, and for a given loading of the pro-
gram gives a nearly perfect application of the optimization. The costs are an extra loading step
and a few percent increase in the size of the a.out file; both of these costs are modest.

Prior Art

Postloading has been used on and off for over a decade, under a variety of names, but has rarely
been published. Dennis Ritchie wrote one of the first, if not the first, postloaders for the Interdata
8/32, which did optimization similar to those described in the introduction. There were other
such optimizers written, e.g. for the MC 68000 [RITC89]. Several commercial postloaders have
been written, usually to help customers upgrade from older to newer hardware or to provide emu-
lation of one kind of hardware on another. These programs are typically proprietary and have not
been reported in the technical literature.

One postload optimizer described in the literature was done by David Wall [WALL86]. Wall
assigns certain global variables to registers, and then rewrites modules to eliminate loads and
stores of these variables.

Ritchie’s and Wall’s postloaders both have access to full relocation information, so strictly speak-
ing they do not operate on a traditional a.out file. The size penalty of preserving this relocation
information can be significant (from 15% to over 50% on some systems). In our postloading
scheme, information to support postloading is included in the a.out file as a matter of course, and
typically costs only a couple of percent in space. This allows optimization and other transforma-
tions to be done days or weeks after the loading.

Technology and Implementation

The postloader technology consists of:
1. Modifications to the loader to put additional information into the a.out file.

2. A set of C programs that read and write a.out files, and support the addition, deletion, and
modification of instructions.

3. For each specific postloader, a control program. These programs range from a few hundred
to a few thousand lines, depending on the application.

There is one hard technical problem in postloading--mapping the old (pre-transformed) addresses
to new ones. In order to do this transformation, it is necessary to:

A. Findall %stmctions and data in the original program that refer to text region addresses.

B. Track these target addresses through the changes in the program text. Also, track any
instructions that refer to the program text.

C. After the transformations are completed, rewrite the instructions and data that refer to the
text region to reflect the new addresses.

There are engineering issues in each of these steps. Step A is surprisingly hard. In a traditional
UNIX environment, several things can conspire to make this problem undecidable. For example,
many systems allow or encourage putting data in the text region (lazy hacker’s read-only data).
In the a.out file, these data words can look like instructions, and these instructions can appear to
refer to text addresses; it is important to prevent the postloader from ’relocating’ these data
words. In the data region, the problem is reversed; it is necessary to identify pointers to functions

326 USENIX - Winter "90

Johnson Postloading for Fun and Profit

and other pointers to the text region (e.g., switch statement address tables) so they can be relo-
cated after the transformations. Any general (e.g., non-heuristic) postloader must be able to make
these identifications.

At Stardent, we dealt with this identification problem through a combination of restricting our
options and adding information to the a.out file; the tradeoffs and strategies for other machines
might well be different.

Note that the Id program knows about references to text addresses in the data region. We
extended the a.out format to include a new an information. Whenever ld
makes a relocation reference to the text region when relocating a data word, an entry is made in
the new postloading region that captures the address of this relocation. The current postload
region data is totally unoptimized; the region is just a list of addresses. Clearly, if a.out space
were a problem we could have found frequently used structures (e.g., for switch blocks) and
represented them more succinctly.

Because we committed to support postloading early in our development cycle, we simply banned
data in program space. This allows us to pick up the majority of instruction text references by a

~simple scan of the text region looking for branches and calls. Had we allowed data in the text
region, we still could have used the same strategy, but the postload information would have had
to identify data blocks.

There is one class of instruction text references that cannot be found by a simple scan; these are
'load address’ operations where a text address is being computed (e.g., a function pointer is gen-
erated to be passed into a subroutine). The problem is that the value generated may ambiguously
represent either a data value (e.g., 2 bit mask) or a text address. Once more, Id knows the differ-
ence, and we again use the postload region to record 'load address’ instructions that compute text
addresses. This is harder in a RISC machine than in earlier machines, since ’load address’
instructions are typically two instructions, and optimizations may separate these two instructions
quite a bit in the program. We have, in a couple of cases, rejected low-level optimizations
because they would have increased the complexity of postloading out of proportion to their
benefit in code quality.

After the target addresses and their references are identified, the particular postloader transforma- 0V w’ﬂl
tions are applied. Here again, we could have allowed a general set of editing commands (cut, amtor |
paste, block delete, etc.). Instead, we opted for a simpler scheme that was easy to understand and gy
allowed postloading to be performed quickly. We make a single pass through the text region, and mn%ﬁ
call a function, transform repeatedly with successive blocks of instructions. The first instruction

of this block is typically the target of a branch. No other instruction in the block is a branch tar-

get, but the block may contain branches out of the block. The transform program is required to

consider each instruction in turn; after possibly inserting new instructions before it, the instruc-

tion must either be explicitly deleted or explicitly copied. It is assumed that inserting instructions

at the head of a block, before copying or deleting the first instruction, puts the new instructions

after the label at the head of the block; to put instructions before a label, they must be inserted

after the last instruction of the previous block.

By limiting the transformations in this way, it is possible to keep rather simple data structures for
instructions and targets, and make simple changes in them as the transformations are done.
Because the entire text region can be examined at any time, some very sophisticated transforma-
tions can be done with this rather simple mechanism. We have not felt much pressure to extend
it.

USENIX - Winter "90 327

Postloading for Fun and Profit Johnson

The postloader technology is implemented by a set of routines that give a simple and fast inter-
face that supports reading and writing of a.out files. A single call opens an a.out file and reads
control information into a structure in memory, including the symbol table and the section
headers. Individual sections are read by additional calls that read the entire section into memory
and set up pointers and lengths in the main data structure. Postloading is supported by automatic
computation of the text targets and the data structures that support the transformations. Finally,
an extensive set of mactos allows instructions to be picked up and *cracked’; for example, macros

ros extract the source and destination registers if needed.
—_— T e

When the transformation is complete, a single call will update the addresses and write a new
a.out file. This file, in particular, contains all the information needed to postload it again if
desired.

There are several subtle issues that arise in the UNIX framework. Many a.out files contain
debugging information, and frequently this debugging information contains text addresses. In
some cases, the text addresses are pretty subtly hidden (e.g. , there are sometimes some wonder-
ful optimizations on line number tables). In order to debug the postloaded program, this informa-
tion must be transformed as part of the postloading process. At Stardent, we decided early on to
abandon the COFF debugger support and we use our own format; not surprisingly, we made it
€asy in this format to identify and transform text addresses. It is likely that with many systems
debugging support would be the most distasteful to program, difficult to debug, and error prone
part of the postloader.

A traditional UNIX strip (I) command would cripple postloading. We initially did not offer
strip. Soon, we were forced into provide a dummy version. Eventually, we did a 'real’ one that
simply maps all addresses in the symbol table to a single name: ’stripped’. This gives most of the
security benefits of strip and some of the space benefits, but still allows much postloading to be
done successfully.

Applications

We have been delighted at the many and diverse uses we have found for postloading, which go
far beyond optimization.

1. Profiling. The Stardent profiler is a postloader that adds counting and timing code to an
a.out file, without need for recompilation or relinking. No special profiling libraries need
be built and maintained. The symbol table is used to identify function entry points, and the
profiler inserts code to call one of several timers (wall clock, UNIX user time, or a hardware
tick counter). Optionally, timing counts for individual loop nests can be obtained if the pro-
gram was compiled with an appropriate option. The profiler writes a mon.out file, like stan-
dard UNIX profilers; another postloader reads either the original or the transformed a.out
and produces profiling statistics. The profiler also notices whether the loaded program is
capable of multiprocessor operation, and adjusts its counting algorithm appropriately to col-
lect statistics for each thread of the computation.

2. Operation Counts. A modification of the profiler counts floating point operations and col-
lects dynamic statistics about average vector length and stride, percentage of operations that
vectorize, etc.

3. Performance Statistics. We have written a number of postloaders to collect specific infor-

d

“tell whether an instruction is a branch, a floating point instruction, a load, a store, efc. Other mac-

mation related to architectural simulation, such as stack depth, cache and TLB behavior,

etc. This is nice because we don’t have to recompile and reload code to get these statistics.

4. Flaky Hardware. We have occasionally had to debug software with pre-production samples
of chips that had significant errors. For example, in one situation we found that the last

328

USENIX - Winter “90

e R
.

Johnson Postloading for Fun and Profit

instruction on a page could not be a load or a store. Using the postloader, we quickly added
a NOP in this case. Idon’t know of another technology that would have allowed us to make
progress in this situation. The big benefit here is that the main software (compilers, etc.)
can continue to target the production architecture; the transient difficulties are handled by a
postloader which can be quickly dumped when the hardware is corrected.

5. Flaky Software. RISC machines have some features (e.g., load and branch delays) that are
difficult to handle in all situations where they arise. Moreover, the Stardent machines are
multiprocessors, and synchronization instructions must be carefully managed to preserve
correctness and yet allow the full performance promise of multiprocessing to be realized.
We have written several postloaders that detect and/or correct common problems in
development versions of software; this allows significant programs to be run and tuned
while the compiler and libraries are being repaired, and also greatly aids in isolating com-
piler and library errors.

6. New Hardware Simulation. When moving to new hardware, we build a postloader that
rewrites new code so it will run on current systems. This ensures that the new code and
compiler are well debugged before entering the ring with the new hardware. Here again,
our major software target is, and remains, the new hardware, while the postloader adjusts to
reality.

7 New Hardware Transition. When shipping new hardware to our customers, a postloader
can be used to make old programs run better without recompilation. For example, a post-
loader shipped with Stardent’s Titan 111 product replaces calls to the square root subroutine
in Titan 11 programs with the new hardware square root instruction. In going from Titan 11
to Titan III we have been able to add signficant additional hardware functionality and
streamline a lot of old features; in particular, we have changed the calling sequence conven-
tions. Nevertheless, existing Titan 1l programs can still be run on Titan III after postload-
ing, making the transition to new hardware easy for our customers.

8. Optimization. Postloaders are pretty fast, and have a lot of information available to them.
We have experimented with a number of optimizers (including the one mentioned in the
introduction), and will probably make one available in a future product offering. Note that
there are some interesting optimizations possible with a postloader that are impossible prior
to the loading process. For example, we can find functions that are called from only one
place and streamline the calling sequence in this case. We can find functions that are never
called and eliminate them, making the program smaller and improving locality of reference.
This latter feature looks very interesting for languages such as C++ and Ada that tend to
have packages with numerous small functions, many of which are not used in any particular

application.

9. Miscellaneous. It is easy to write a new postloader (it frequently takes under an hour for a
simple one), so a variety of *one shot’ postloaders have been written. One checked for a
very obscure memory overwriting problem on every function call and return, and nailed the
culprit the first time it was run. Another turned all floating point opcodes into illegal
instructions, to find out where a particular program (that should have used integer only) was
using floating point.

Summary

We continue to think of new things to do with postloaders; it is very refreshing to have the a.out
file no longer be a ’black box’, but rather something that we can pick up and fondle. In fact, we
have found postloading to be a partial antidote to the lack of source code.

Postloading works best when it is incorporated as part of the standard a.out format. The payoff
for doing this is a much smoother transition to new hardware, and a simpler, more general imple-
mentation of such tools as profilers. The costs are modest, both in time and space.

USENIX - Winter "90

%m& Ve

329

B e e

Postloading for Fun and Profit Johnson

Acknowledgements

John Reiser, Bill Worley, Peter Eichenberger, John Wilkenson, and Mike McNamara were instru-
mental in inspiring, using, debugging, and encouraging this work.

References

[CHOWS6]
F. Chow, M. Himelstein, E. Killian, L. Weber, "Engineering a RISC Compiler System",
Proc IEEE Compcon, March 1986, San Francisco, 132-137.

[RITC89]
D. M. Ritchie, personal communication. None of the Bell Labs work on postloading has
ever been published.

[SZYM78]
T. G. Szymanski, "Assembling code for machines with span-dependent instructions",
CACM 21.4 (April 1978).

[WALLS6)
D. Wall, "Global Register Allocation at Link Time", SIGPLAN ’86 Compiler Construction
Conference Proceedings, pp. 264-275.

Stephen C. Johnson
Stardent

ey

Stephen C. Johnson has a PhD. in Mathematics,
but has spent his whole career in computing. He
has worked in computer music, psychometrics,
computer algebra, and VLSI design, but is prob-
ably best known for his contributions to UNIX,
including yacc, lint, at, spell, and pcc. He and
Dennis Ritchie did the first UNIX port. He has
been a manager at AT&T Summit and Bell Labs,
but left AT&T after nearly 20 years to join Star-
dent Computer, where he has held a variety of
positions including VP Software. He has also been
a member of the Usenix Board of Directors for
nearly six years, and Treasurer for the last four.
He is running for President of Usenix in 1990 and
respectfully solicits your vote!

330 USENIX - Winter “90

