
Automatic Code Stylizing
Steven P. Reiss

Department of Computer Science
Brown University

Providence, RI. 02912 USA
spr@cs.brown.edu

ABSTRACT
Coding style is an important aspect of software development. We

present a system that uses machine learning to deduce the coding

style from a corpus of code and then applies this knowledge to

convert arbitrary code to the learned style. We use a broad

definition of coding style that includes spacing, indentation,

naming, ordering, and equivalent programming constructs. The

result provides a more flexible and powerful approach to code

stylizing than current techniques.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques
— Pretty printers, program editors.

General Terms
Languages, Documentation

Keywords
Programming style, formatting, pretty-printing.

1. INTRODUCTION
All programmers have a coding style. The style defines how
they like their code to look and how they like their code to
read. It defines how they code and how they think about the
code they are working on. It affects how they organize their
programs and how they work on them.

Programmers are most comfortable working on code in their
own style. They find it difficult to work on code in other styles
and to force themselves to conform to other programming
styles. This is why people often don’t like to work on
automatically generated code and explains some of the
difficulty programmers have working with open source code.
Style conflicts also pose problems in team programming
projects.

The goal of our project was to convert arbitrary code to an
arbitrary style. This can mean converting code to the particular
style of a given programmer or converting a programmer’s

code to the style of a given project. While there are many
systems that do this today, they generally require significant
work on the part of the programmer to define a relatively large
number of parameters and even then they often do not capture
the full notion of programming style. We wanted a system that
required minimal effort on the part of the programmer and that
handled as much of what one would consider coding style as
possible.

2. EXAMPLE
Our system is designed so that the programmer provides a
sample corpus of code that is formatted in the appropriate
style. The system reads and analyzes this corpus, learning the
corresponding style. It is then able to apply this style to
arbitrary code, converting that code to the appropriate style.

If programmers want to use and modify some open source
code, they would have the system read a selection of their code
and then format the open source code in their style. Similarly,
if programmers wanted to contribute to an open source project,
they could develop the code using their own style and then use
the system to convert the result to the style used by the open
source project. Systems such as user interface builders
generate code for use by the programmer. Programmers
sometimes have difficulty modifying the resultant code
because it is in a foreign style. Our system would let such code
be automatically converted to the style designated by the
programmer.

As an example of what our approach can do, we took a simple,
unformatted file and used the system to format it according to
styles learned from different packages. The results are shown
in Figure 1. The first part of the figure shows the original,
unformatted code. The second part shows it formatted using
information from the Azureus open source project
(azureus.sourceforge.net). The third shows the file formatted
using Eclipse as a base. The fourth shows it formatted
according to the openjms open source project
(openjms.sourceforge.net). The final one shows it formatted
using Sun’s j2se model source.

In these examples one can see that the system is able to deal
with many aspects of coding style include renaming,
alternative programming constructs, breaking lines correctly,
indentation, and interline spacing. While the results might not
be perfect, they show that the approach can be used to handle a
wide variety of styles quite effectively.

3. CODING STYLE
Coding style affects the appearance of the code, how the code
is read, how things are found in the code, and how the
programming language is used. Our efforts have concentrated

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ASE'07, November 5-9, 2007, Atlanta, Georgia, USA.

Copyright 2007 ACM 978-1-59593-882-4/07/0011...$5.00.

74

package edu.brown.cs.wadi.hump;
import java.text.DateFormat;
import java.util.*;

public class sample { private int the_var; /* cmmt */ public static void main_prog(String[] args) { DateFormat m_format;
 Calendar m_calendar=Calendar.getInstance();
 Random r = new Random(); while (true) { if (r.nextDouble() > 0.5) break; }
 Date date = new Date(); }
}

package edu.brown.cs.wadi.hump;

import java.text.DateFormat;
import java.util.*;

public class sample {

 private int theVar;

 /* cmmt */
 public static void
 mainProg(String[] args) {
 DateFormat mFormat;
 Calendar mCalendar = Calendar.getInstance();

 Random r = new Random();
 for (;;) {
 if (r.nextDouble() > 0.5) break;}

 Date date = new Date();
 }
}

package edu.brown.cs.wadi.hump;

import java.text.DateFormat;
import java.util.*;

public class Sample {

 private int _theVar;
 /* cmmt */
 public static void mainProg(String[] args) {
 DateFormat mFormat;
 Calendar mCalendar = Calendar.getInstance();

 Random r = new Random();
 while (true) {
 if (r.nextDouble() > 0.5)break;
 }
 Date date = new Date();
 }

}

 package edu.brown.cs.wadi.hump;
import java.util.*;
import java.text.DateFormat;

public class Sample {
 private int theVar; /* cmmt */
 public static void mainProg(String[] args) {
 DateFormat mFormat;
 Calendar mCalendar = Calendar.getInstance();
 Random r = new Random();
 while (true) {
 if (r.nextDouble() > 0.5)
 break;
 }
 Date date = new Date();
 }

}

a) The original, unformatted program.

b) Formatted using Azureus (ui)

Figure 1. A sample program formatted using four different styles.

d) Formatted using openjms

c) Formatted using Eclipse (swt/views)

e) Formatted using j2se

package edu.brown.cs.wadi.hump;

import java.text.DateFormat;
import java.util.*;

public class Sample {

 private int theVar;
 /* cmmt */
 public static void mainProg(String[] args) {
 DateFormat mFormat;

 Calendar mCalendar = Calendar.getInstance();

 Random r = new Random();
 while(true) {
 if (r.nextDouble() > 0.5)break;
 }
 Date date = new Date();
 }
}

75

on four aspects of coding style: spacing, naming, ordering, and
programming constructs.

The appearance of the code is affected mainly by how white
space is incorporated. The principal such use is indentation,
where the block level of the code is made readily apparent to
the reader. Other uses include how and where potentially long
lines are divided, when and how many blank lines are included
to increase readability or separate concepts, when spaces are
used to separate tokens, and where comments are located
relative to the code.

Naming conventions are used to improve code readability,
mainly by allowing rapid differentiation between different
types of entities, for example constants, fields, methods, and
types. In addition, different sets of short names are often used
to identify different types of variables, for example i, j, k for
integers, e for exceptions, or it for iterators, with different
programmers using different conventions.

Where ordering is not semantic, for example, in defining the
fields and methods in a Java file, the order can be considered
part of the coding style. Programmers use order to organize
their code either to make it easier to find particular fields or
methods or to provide a logical order for reading the code. For
example, programmers will typically place all the fields of a
class either in the beginning or at the end of the class
definition.

Most programming languages provide several ways of
accomplishing the same task. For example, in Java, one can
use an empty for statement or a while(true) to indicate an
infinite loop. The choice of which of these is preferred depends
on the programmer and his programming style.

Our approach addresses the above aspects of style. Other
aspects could also be considered. For example, the existence of
Javadoc comments for different constructs varies according to
the coding style. Whether intermediate variables are used in
place of complex expressions is a stylistic choice. Similarly,
some programmers tend to prefer longer names while other
prefer shorter names. Some styles require block comments
before each method or routine. While we don’t currently
handle these, they all could be handled using techniques
similar to the ones described in this paper.

4. PRIOR WORK
Formatting code has a long history, although most of the
efforts have been on fixing spacing and in particular on
handling line breaks and indentation. This has been done based
on abstract syntax trees [3,7,12,13,15,17] as well as on purely
local information [6,14]. It has been integrated into most
programming environments and the subject of stand-alone
tools such as indent. Theses have been written on
understanding what is the best format for program
understanding [1]. Other aspects of coding style have received
lesser attention.

The state of the art here is exhibited in what is done in modern
programming environments such as Eclipse [5]. Eclipse
provides a very flexible code formatting scheme, requiring
about 124 parameter settings from the user. It also provides
support for suffixes and prefixes for some types of names,
support for ordering import declarations, and templates for
styling newly created code.

This approach has its drawbacks. It is painful to have to worry
about defining a large number of parameter settings and

attempting to get them correct. Moreover, even with the large
number that are there, it is unable to handle all formatting
options. For example, we prefer our right braces to be on a
separate line that is half indented and Eclipse provides no
option for the half indent; similarly, we want spaces around
operators in complex expressions, but not in simple ones.
Finally, this approach does not handle all aspects of coding
style including general orderings, more general naming
conventions, and alternative programming constructs.

There has also been significant work on programming (as
opposed to coding) style. This work concentrates on how to
best use the underlying programming language, pointing out
language features that shouldn’t be used and various
conventions that tend to yield better programs [8,11,16]. Our
initial goal was to concentrate on coding style since many of
the transformations needed to conform to a programming style
are not obvious or transparent to the programmer.

5. A LEARNING-BASED APPROACH
Rather than having the programmer define the style by
attempting to anticipate all possible styles and then
parameterizing the formatter, we wanted a system that could
look at sample code, learn the coding style of that code, and
then apply what it learned to reformat other files.

We wanted to address many of the different aspects of coding
style. However, the different aspects depend on different
properties of the code. Spacing depends on the underlying
structure and the local tokens; naming depends on the types of
names, how names are used, and specific names for specific
data types; ordering depends on the properties of the items
being ordered (for example, public versus private) as well as
alphabetic comparisons; programming construct alternatives
depend on structure matching. Moreover, ordering is
constrained in some contexts by usage in languages like C
where names must be declared before they are used; and
naming conventions may be constrained by external
conventions, such as when a Java class implements an
interface from some other library the names of the overridden
methods are otherwise constrained.

To accommodate these differences, we broke the task into
phases, with each phase handling learning and applying what
was learned to a particular aspect of coding style. The initial
set of phases includes dealing with spacing, handling naming
conventions, handling short names, handling orderings, and
handling programming constructs. For all but the last of these
we determined an appropriate feature set that defines the
context for formatting decisions and an appropriate output set
which defines the possible results of the decisions. We then
experimented with different learning algorithms and feature
set variations to determine what worked best for this particular
component. Finally, we used appropriate techniques to
reformat a resultant file based on the learning results.

6. FORMATTING
Spacing involves determining how much and what type of
white space to put between successive tokens in the program.
This implies decisions on when and where to split lines, how
much to indent, and where to place comments on a line.

Our approach to handling formatting is to determine for each
token what type of white space should precede that token. To
do this by learning we defined a set of sixty features that
characterize a token. These features capture the information

76

that might be relevant to spacing. They include the length and
type of the current token; whether the current token is a single
line comment; if the token was preceded by a blank line;
information about the previous token including where it
occurred on the line, its type, and its length; information about
the three preceding tokens including their type and, if they
occurred on the same line as the prior token, their spacing and
column positions; structure information derived from the
abstract syntax tree including the node type for this token, the
node types for the parent and grandparent of the token, the
depth of expressions and blocks; the types of the first three
tokens on the current line (assuming this token is part of the
same line) and the first three tokens on prior line; the starting
column of the last line and the last non-comment line; the
number of immediately prior comment tokens; the current
level of nesting of parenthesis, braces, and brackets; the
column location of the last open parenthesis, bracket, and
brace; the prefix on the last and current import; and the brace
level at the start of the last switch statement.

Most of these correspond to what the programmer uses
intuitively to determine spacing. The features based on the
abstract syntax tree are designed to capture the local structural
context, while those that characterize prior tokens in various
ways attempt to represent the current formatting context.
Others are more specialized and were added to avoid specific
problems that would otherwise arise, typically because of
semantic information. For example, the notion of the prior
import attempts to capture related import blocks which
programmers often space between, while the notion of blank
line preceding this line in the original file attempts to capture
the fact that the programmer thought this line might represent a
new thought and might need to be spaced accordingly.

From this set of features we wanted to learn what spacing to
put before the token. We considered several alternative
approaches here. The simplest approach was to learn the
number of blank lines and the number of spaces after those
lines and before the token. Here a single space would be
represented as 0 lines and 1 space, while a blank line followed
by an indent of 9 space would be represented as 2 lines and 9
spaces.

While this approach is simple, it does not capture the
programmer’s intuition of how spacing is done. To see if a
better model would result in better results, we considered
several alternatives. First we let the result reflect indentation
information by indicating lines with a plus or minus indent in
addition to lines that set a fixed indent for later use. We denote
this as I=I. Second, we did the same, but we ignored the
indentation of comment lines which are often skewed
differently (I=C). In parallel with these alternatives, we also
considered a mode based on column of tabs. Here the output
could indicate a specific column (S=C); a change in the
column position from the previous line (S=CL); a specific
number of tabs (S=T); or a change in the number of tabs
(S=TL). This gave us fifteen different alternatives, 3 ways of
handling indentation (none, with and without comments), cross
5 ways of handling columns.

Finally, we needed to interpret the output from the learner.
Typically the learning method yields a set of probabilities for
the different alternatives. The obvious choice is to just take
whatever alternative has the highest probability and use it.
While this works fairly well, there are cases where several
alternatives have roughly equal probabilities. In this case, we
looked at the spacing that was originally present in the

program and, if this was represented by one of the likely
outputs, we maintained that spacing. How much we rely on the
original spacing is dependent on a confidence level setting,
with a confidence level of one indicating that we ignore it and
higher confidence levels relying on it more.

We ran experiments that tested a variety of different learning
algorithms with these fifteen possible outcomes to determine
which learning algorithm worked best and which approach to
defining spacing gives the most accurate results. These
experiments were run by reading a corpus of about 26,000
lines of source written by a single author. The style of this
code was fairly consistent but not completely so as the code
was written over a period of years and style was not a primary
consideration. The spacing learned was then applied to 25 files
(about 12,000 lines of source and separate from the corpus) to
determine performance and effectiveness. These files were
preformatted by the same author as the original code corpus, so
that in theory there should be few if any style changes
required. Where changes were indicated, we assumed that the
learning methods were in error. Finally, one of these files in
particular was chosen for a manual evaluation because it was
reasonably large and exhibited a diversity of different styling
situations. This was used to determine the effectiveness of the
error metrics.

The results of these experiments are sampled in the various
tables. The first, Figure 2, shows the best result for each of the
learning methods. The output column denotes the output
technique that was used using the codes noted previously.

We used learning methods from three different packages. From
the Weka system [9,18] we used the J48 classifier (a C4.5
decision tree learner), the SMO classifier (a support vector
machine), the K* instance-based learner, and JRIP (a version
of the RIPPER rule learner). For each of these we tried it with
numeric or enumeration values and with all boolean values.
From the Mallet system [10] we used a naive Bayes learner, a
Maximum Entropy learner, and a C4.5 tree learner. We also
tried the maximum entropy learner from the OpenNLP project
[2]. Other methods were tried but they were not able to
complete the learning process using less than 24G of memory
or 1 week of CPU time.

For each method we report the accuracy in two ways. The first
is the raw percentage of spacing decisions that differed from
the “correct” file. Here any difference in white space was
considered an error. While this provides a good indication of
how well the method did, not all spacing decisions are equal.
For example, bad indentation decisions can be very annoying
to the programmer, while the difference between 4 and 5 blank
lines between methods is insignificant. To account for these
differences we analyzed the types of differences that were
detected and created a score that provides different weights to
the different decisions. For example, a bad indentation
decision has a weight of 8 for a token and 2 for a comment
while the difference in line spacing when the space is over 3 is
only penalized by 0.25. The result is reported in the score
column.

The remaining columns show the size of the model generated
by the learner and the CPU time in seconds taken to do the
learning and to do the formatting of the 25 files. The model
size is the size of the data file that is stored by the learning
method. Because different methods use different storage
formats (e.g. text, binary, compressed), these numbers should
be taken as approximate.

77

The second table, Figure 3, shows the different alternative
outcomes for the Mallet maximum entropy learning method
which did well on the overall approach. This shows how the
use of the current indentation information (the various I=
trials) significantly improves the result, while the effect of
recording tab and column positions is minor.

The third table, shown in Figure 4, shows the effect of varying
the confidence level for both the Mallet MaxEnt and the Weka
J48 Tree learning methods. The confidence level here varies
from 1 (ignore the current source) to 5 (if the probability of the
current spacing is within a factor of 5 of optimal, use the
current value). As expected, we get better scores as the
confidence level increases. There are two things to note here.
First, even with a low confidence level, both these methods did
quite well. Second, the confidence level has more effect on
learning methods that assign some probabilities to all scores
such as MaxEnt than it does on learning methods that
artificially restrict the set of outcomes using mechanisms such
as a decision tree.

From these results one can see it is possible to use various
algorithms to learn the complete program spacing style.
Several algorithms can be used effectively. Some, such as the
SMO classifiers, while very accurate, are probably too
expensive to be practical. Of the remainder, the Mallet
maximum entropy learner and the Weka J48 rule-based learner
seem to offer the best compromise between accuracy and
performance.

7. NAMING

The second aspect of style we addressed was naming. We did
this in two steps, first attempting to learn the naming
conventions used in the code and then attempting to learn if
there were standard short names for specific variables. Our
approach for both of these was to choose a set of features that
might influence naming, choose an appropriate output
representation and then to apply different learning algorithms
to see what worked and what worked best.

Figure 2. Results for different learning methods for learning code spacing.

Method Output
%

Difference
Score Model Size

Learning

Time

Format

Time

Weka J48 Tree I=I, S=T 3.0% 2.8% 348.7M 439.5 60.2

Weka J48 Tree Bool I=I, S=T 3.5% 3.5% 29.3M 37993.2 699.9

Weka SMO I=I, S=T 0.0% 0.0% 2412.7M 95861.8 9051.4

Weka SMO Bool I=I, S=C 0.0% 0.0% 2475.2M 0.0 38688.5

Weka K-Star I=C, S=TL 6.0% 9.0% 52.4M 546024.1 370374.5

Weka JRip Rules I=I 3.6% 4.0% 807.9M 36235.5 80.1

Mallet Naive Bayes I=C, S=TL 6.9% 9.1% 5.3M 1484.7 348.5

Mallet Max Ent I=I, S=T 2.1% 2.0% 4.7M 14800.0 55.6

Mallet Max Ent Bool I=I, S=T 2.0% 1.9% 4.8M 9002.6 109.9

Mallet C45 Tree S=C 3.8% 3.1% 453.0M 88806.6 45.0

Mallet C45 Tree Bool S=C 4.7% 3.5% 505.7M 125683.2 65.6

OpenNlp Max Ent I=C, S=TL 8.1% 8.6% 1.1M 679.6 24.9

Method Output
%

Difference
Score Model Size

Learning

Time

Format

Time

Mallet Max Ent I=I, S=T 2.1% 2.0% 4.7M 14800.0 55.6

Mallet Max Ent I=C, S=TL 2.1% 2.0% 5.4M 10085.0 102.1

Mallet Max Ent I=C, S=T 2.1% 2.1% 4.9M 10896.6 75.5

Mallet Max Ent I=I, S=TL 2.1% 2.1% 5.2M 11648.3 86.6

Mallet Max Ent I=I 2.1% 2.1% 5.3M 15580.9 74.2

Mallet Max Ent I=C 2.1% 2.1% 5.4M 11368.7 69.4

Mallet Max Ent S=C 2.4% 2.2% 5.0M 6924.4 66.5

Mallet Max Ent S=CL 2.4% 2.3% 7.7M 18353.2 148.8

Mallet Max Ent I=I, S=CL 2.1% 2.6% 7.0M 20579.1 72.0

Mallet Max Ent I=C, S=C 2.2% 2.6% 5.4M 19705.7 88.3

Mallet Max Ent I=C, S=CL 2.1% 2.6% 7.1M 14572.4 70.5

Mallet Max Ent I=I, S=C 2.1% 2.8% 5.0M 9443.6 65.6

Mallet Max Ent S=T 2.4% 4.1% 4.7M 10151.1 61.4

Mallet Max Ent 2.4% 4.2% 5.3M 10908.8 85.1

Mallet Max Ent S=TL 2.4% 4.2% 5.3M 10370.2 64.6

Figure 3. Differences based on output method.

78

The twenty-four features that we used describe both the
properties of the name and its context. The features describing
the name’s properties include the modifiers used in defining
the name (static, abstract, final, native, transient,
synchronized, volatile); the protection of the name (public,
private, protected, package protected); the kind of object being
named (interface, class, method, block, for variable, catch
variable, annotation, package, enumeration constant); if the
name represents a method, whether it is a getter or setter
method; and if the name represents a variable, its data type.
While it is impractical to represent all possible data types here,
we do identify primitive types, Java standard types such as
String and Object, and types that inherit from Error and
Exception. We also identify whether the name is short (3 or
fewer characters) and whether it is a special name required by
the underlying programming language such as
serialVersionUID.

The context of the name is provided by a separate set of
features. These include the kind of scope the name is defined
in (package, interface, class, method, for, catch, block,
enumeration), the protection level of the enclosing object, the
degree of nesting of loops, blocks, and classes or interfaces,
and whether the name is actually used somewhere in the code
or if it is just defined.

Representing naming conventions is a bit tricky. We attempt to
encode most of the different naming strategies that have been
proposed using a set of seven properties:

1. Whether the name is all upper case, all lower case, or mixed
case (new words start with an upper case letter).

2. Whether the first character is upper or lower case.
3. Whether words are separated with underscores or not.
4. The number of initial underscores (0-2).
5. The number of final underscores (0-2).
6. The number of underscores separating the first word from the

remainder (0-3).
7. Whether the name starts with a standard prefix (get, set, is, the,

f, my) or with the name of the current package or class.
Splitting names into words is approximated by using a
dictionary and by looking at clues from the code being
analyzed (such as the words or word fragments that occur in
names that are known to be split into words).

To identify short names, we use the same set of features. Here
the output representation is the set of short names (again 3 or
fewer characters) that appear in the sample corpus along with a
special symbol indicating that the name was not short.

Again, we took into account the probabilities when looking at
the result of name learning, using the original name if the
learning method says that it was a probable choice based on
the confidence level. This tended to occur far more often with
naming than with spacing because some aspects of the naming
style were not used consistently in the corpus. For example, in
the code that was being analyzed, get was not used consistently
for get methods, nor were package or type prefixes, nor were
short names in many circumstances.

The results from the different learning methods are shown in
Figure 5. There were about 2400 distinct name declarations
that were considered as potentials for change. The table shows
the results both for name style and for short names. The first
column indicates the learning method used; these are the same
as were used in learning spacing. The second column provides
the number of names where the computed style differed from
the actual style in the test file. The third and fourth columns
provide the size of the saved learning model and the time in
seconds required to compute it respectively. The remaining
columns show the differences for suggested short names and
the associated model size and time.

Most of the methods do quite well on computing the naming
style, choosing a naming style for each name that matches the
“correct” one. Most differences here were due to names
inherited from outside classes. Most of the methods also
detected no changes in short names. This was due mainly to
the fact that the corpus is not completely consistent in its use
of short names and the confidence level pushed ambiguous
names to their previous values.

8. ORDERING
The next part of coding style that we handle involves orderings
where the orderings do not have a semantic significance. In
particular, we consider import declarations, class definitions in
a compilation unit, declarations (fields, methods, and nested
types) in a class, interface or enumeration definition, and
modifiers for type, field and method definitions. We also note

Method Output Confidence
%

Difference
Score

Weka J48 Tree I=I, S=T 1.0 3.1% 3.0%

Weka J48 Tree I=I, S=T 2.0 2.9% 2.8%

Weka J48 Tree I=I, S=T 3.0 2.7% 2.7%

Weka J48 Tree I=I, S=T 4.0 2.6% 2.6%

Weka J48 Tree I=I, S=T 5.0 2.6% 2.5%

Method Output Confidence
%

Difference
Score

Mallet Max Ent I=I, S=T 1.0 3.1% 3.2%

Mallet Max Ent I=I, S=T 2.0 2.5% 2.4%

Mallet Max Ent I=I, S=T 3.0 2.1% 2.0%

Mallet Max Ent I=I, S=T 4.0 2.0% 1.8%

Mallet Max Ent I=I, S=T 5.0 1.8% 1.7%

Figure 4. The difference the confidence value makes for two learning methods.

79

that some semantic reorderings such as reordering parameters
for a method or declarations at the start of a block should also
be possible using Eclipse’s refactoring capabilities, but we
have not attempted to do so.

There are several approaches that can be taken to learning an
ordering. Our approach is to learn, for each potential pair of
elements in the order, which is likely to come first. This is
done by providing the learning method with all n2/2 pairs of
elements for each n element sequence along with the original
ordering. To determine how to reorder elements when we want
to apply a format, we look at all n2/2 pairings of elements that
can be reordered. For each, we use what was learned to
determine which should come first, using the given order if the
answer is not clear. We then add a score of -1 to the first and a
score of +1 to the second. Then we order the actual elements
by their total scores and assume that is the final ordering.

We again determined a set of features relevant for a particular
coding style to the ordering of modifiers and definitions. This
includes properties of each of the definitions and comparisons
between the two. The forty-one properties we consider include
modifiers, annotations, protection, whether a field is
initialized, whether a method is a getter or a setter, whether an

import is for a specific element or a whole package, and, the
name of the first part of an import.

For comparisons between two elements, we first note if one
precedes the other alphabetically both where case is
considered and where case is ignored. Next we note if either of
the definitions makes use of the other, i.e. if both are methods,
if the one calls the other, or if one is a field and the other is a
method, if the method accesses the field (or the field calls the
method in its initializer). Finally, if both are enumeration
constants, we note which has a lower associated value.

We again ran each of the learning methods for the sample
corpus and analyzed the result using our test corpus. This
resulted in about 25,000 different pairwise comparisons for
about 720 different sequences with an average length of 2.5.

The results are shown in Figure 6. For each learning method,
the first column reports where there were differences in
determining which of a pair of elements comes before the
other. The second column reports the percent of actual
orderings that differed after all comparisons of elements in that
ordering were taken into account. The next column reports the
average length of orderings that were different.

Method Style Diff Style Size Style Time Short Diff Short Size Short Time

Weka J48 Tree 0.3% 12.2M 28.3 0.0% 1.3M 5.9

Weka J48 Tree Bool 0.2% 6.1M 70.7 0.0% 1.1M 13.7

Weka SMO 0.0% 490.4M 477.4 0.0% 71.6M 2343.7

Weka SMO Bool 0.0% 490.2M 761.9 0.0% 71.4M 2580.2

Weka K-Star 0.2% 3.2M 1861.1 0.1% 3.1M 1859.3

Weka JRip Rules 1.0% 9.2M 52.8 0.0% 54.1M 157.1

Mallet Naive Bayes 4.8% 16.7K 111.0 0.0% 270.8K 53.0

Mallet Max Ent 0.2% 15.9K 12.5 0.0% 261.6K 68.8

Mallet Max Ent Bool 0.2% 16.1K 12.3 0.0% 261.8K 120.4

Mallet C45 Tree 0.2% 204.3K 17.9 0.0% 1.3M 7.5

Mallet C45 Tree Bool 0.1% 273.4K 19.6 0.0% 1.3M 9.2

OpenNlp Max Ent 0.1% 32.0K 4.9 0.0% 573.1K 34.2

Figure 5. Result of learning naming conventions and short names.

Method Check Diff
Sequence

Diff

Diff

Length

Ulam

Average
Ulam Diff Size Time

Weka J48 Tree 4.5% 2.6% 29.2 0.1 3.3 83.4K 110.5

Weka J48 Tree Bool 4.5% 2.1% 26.4 0.1 3.6 74.1K 242.5

Weka SMO 26.5% 15.9% 8.7 0.7 4.2 44.0M 9993.6

Weka SMO Bool 26.5% 15.9% 8.7 0.7 4.2 43.0M 9676.8

Weka K-Star 2.5% 2.3% 23.1 0.1 2.8 38.9M 294861.1

Weka JRip Rules 11.4% 1.3% 28.0 0.1 3.9 59.8M 691.6

Mallet Naive Bayes 3.0% 3.5% 20.6 0.1 3.2 4.9K 67.6

Mallet Max Ent 3.2% 9.0% 8.0 0.1 1.5 4.5K 64.8

Mallet Max Ent Bool 3.1% 9.0% 8.0 0.1 1.5 4.6K 39.2

Mallet C45 Tree 12.4% 1.9% 23.1 0.1 4.1 2.7M 77.1

Mallet C45 Tree Bool 13.9% 2.2% 25.3 0.1 3.2 2.7M 80.3

OpenNlp Max Ent 1.4% 1.0% 36.7 0.0 3.7 7.8K 17.3

Figure 6. Result of learning orderings of declarations and modifiers.

80

Just looking at differences here does not truly reflect how well
the methods do. Instead, one wants to consider how different
the outcome is to the original. To do this we compared the
output permutation with the input permutation using Ulam’s
distance metric [4]. This metric effectively provides the edit
distance between permutations and is a more accurate means
for comparison than the number of items that retain their order.
The next two columns show the average Ulam distance over all
cases and over those cases that actually differ. The final two
columns provide the size of the saved learning model and the
time in seconds to compute that model.

This table shows there are considerable differences among the
learning methods. This is probably due to the fact that the
corpus being used is not as consistent in terms of ordering as it
is in terms of naming or spacing and the sensitivity of the
various methods to exceptions differs. Overall, the Weka J48
tree learner tended to do quite well; the Mallet MaxEnt learner,
while it had a low difference in terms of checks, actually
resulted in more sequences that differed from the original
program. The small values for the Ulam difference compared
to the large average length of sequences that differed indicates
that the number of actual changes is quite small. Overall, the
results show that the algorithms can effectively learn ordering
styles.

9. PROGRAM CONSTRUCTS

The final aspect of coding style that we handle involves
equivalent programming constructs. Programming languages
often have multiple ways of saying the same thing, and the

choice of which alternative is preferable is often considered
part of ones coding style.

Rather than attempt to find such constructs automatically, we
created a file that let the user define any number of equivalent
patterns and then had the system check for these. The file is a
Java class with one method for each alternative. The contents
of each method contain two or more equivalent statements or
expressions, with special variable names being used to denote
arbitrary code elements of various types.

Examples from the file are shown in Figure 7. The first shows
the equivalence between two ways of expressing an infinite
loop. The second states a preference of whether a for loop with
a single statement should have that statement appear in a block
or not. The third does the same for while loops. The fourth
illustrates several statements that increment a variable. (Note
that these are defined as statements and not as expression
components.)

Our approach to learning programming constructs is simpler
than for the other style components. Here we first translate
each of the given patterns into an abstract syntax tree pattern.
Then we look through the sample corpus and count all
instances of each of the patterns in the corresponding code. We
then look at the count differentials between the different
instances of each of the equivalent patterns and use this as the
learning model.

The model size here is insignificant (under 1K), as is the time
to accumulate the pattern information. Figure 8 shows the
result of applying what was learned from the sample corpus to
the test corpus. As would be expected, there were few changes

void STATEMENT_forever() {
 switch (0) {
 case 1 :
 for (; ;) HUMP_STATEMENT_1();
 case 2 :
 while (true) HUMP_STATEMENT_1();
 }
}

void STATEMENT_forblock() {
 for (HUMP_EXPRESSION_1(); HUMP_BNULLEXPRESSION_2(); HUMP_EXPRESSION_3()) HUMP_NONBLOCK_4();
 for (HUMP_EXPRESSION_1(); HUMP_BNULLEXPRESSION_2(); HUMP_EXPRESSION_3()) { HUMP_NONBLOCK_4(); }
}

void STATEMENT_whileblock() {
 while (HUMP_BEXPRESSION_2()) HUMP_NONBLOCK_4();
 while (HUMP_BEXPRESSION_2()) { HUMP_NONBLOCK_4(); }
}

void STATEMENT_increment() {
 HUMP_IVARIABLE_1 += 1;
 HUMP_IVARIABLE_1++;
 ++HUMP_IVARIABLE_1;
}

Figure 7. Example equivalent construct definitions.

Node Type # Matches # Different

ExpressionStatement 50 1

ForStatement 52 0

MethodInvocation 14 0

WhileStatement 5 0

Figure 8. Results of finding common programming constructs.

81

required in the sample code, with the only difference being an
instance of an expression statement that was converted from
i++ to ++i.

Many other equivalent constructs could have been included by
extending the framework. For example, one style choice is
whether fields defined in an interface are explicitly declared
with static, final, and public. This would require that the
patterns be limited to a particular context which would require
an extension to the pattern language. Other choices, for
example when one compares a variable to a constant string
which is placed inside the Java call to equals, would require
semantic checks to ensure that the variable represented by the
string is not null. Other possibilities such as when generics are
used in Java might require whole program analysis to
determine the appropriate types.

10. APPLYING THE LEARNED STYLE

While each of the aspects of style can be learned
independently, applying them to a new source file is a bit more
complex. There are two inherent problems here. The first is
that the different aspects of code style are dependent on one
another. For example, spacing can depend on the length of
names and replacement programming constructs while
sequencing can depend on the exact names. The second
problem is that the features for spacing are computed for each
token are based on the computed spacing for previous tokens,
information that will change when the code is reformatted.

To handle all the different types of style changes we use the
Eclipse environment. Here we first create the abstract syntax
tree for the file being reformatted. Then we edit the tree to take
into account naming, ordering and programming constructs.
Finally, we output the tree using spacing information.

The first step in reformatting is to handle name changes. Here
we first compute all potential name changes. Next we use
Eclipse to detect if a potential name change is possible. Names
that are declared, for example, in interfaces outside the project
or the code being restyled, should not be changed since doing
so will result in an incorrect program. After we have
determined that a name can be safely changed, we then use
Eclipse’s refactoring capability to effect the change of the
definition and all uses of the given name.

Next we compute all ordering changes and modify the Eclipse
abstract syntax tree accordingly. After this we search the
abstract syntax tree for programming constructs.When we find
one, we check if other alternatives have a significantly higher
chance of occurring and, if so, we replace the original code
with the more prevalent equivalent.

The final step is to use spacing information to generate the
resultant program. We first convert the abstract syntax tree to
text and then convert the text to tokens. We process the
resultant token sequence as the input for spacing. At each
point, we compute the various features for spacing, using
information from the token and the abstract syntax tree. We
also maintain the position information for the previous tokens
and the previous lines so that the feature set reflects the code
as it is being formatted. The resultant feature set is passed to
the learning method for spacing to determine the resultant
spacing for the given token, this spacing and the token itself
are output, and the internal model is updated for the next
token.

11. CONCLUSIONS
This paper and the various experiments we have conducted
demonstrate that it is both possible and practical to learn many
aspects of coding style from a corpus and then to apply that
knowledge to reformat arbitrary code in the corresponding
style. This approach is much simpler and more comprehensive
than current approaches based on large numbers of user-
settable parameters.

The example shown in Section 2 demonstrates that the system
is capable both of completely ignoring the original formatting
information and of adapting itself to a variety of different
styles.

The various experiments described in the paper demonstrate
that different learning methods can be used effectively and that
the corpus of code representing the target style does not have
to be that large or completely consistent. Indeed, one of the
reasons we restricted the corpus size to about 26,000 lines of
source was that the time spent in the different learning
algorithms, which is already quite large, increased with the
corpus size. We found that accuracy generally increased with
the size of the corpus both because we achieved better
coverage of fringe cases and because style differences in the
corpus became less significant. However, the increase in
accuracy was not significant beyond 20,000-30,000 lines of
source.

There are several ways that this work can be extended. First,
the notion of coding style can be broadened in the various
ways that were described earlier, both in terms of overall style
and in terms of alternative programming constructs. Second,
the tool, which currently runs in stand-alone mode, could be
integrated into a programming environment such as Eclipse.
Third, while integrating the tool into the programming
environment, it should be possible to have the programmer
identify incorrect style transforms and to have the system learn
from these.

Finally, we note that the source code for this effort is available
as the hump package in the wadi system, which can be found at
ftp://ftp.cs.brown.edu/u/spr/wadi.tar.gz.

12. ACKNOWLEDGEMENTS
This work is supported by the National Science Foundation
through grant CCR0613162. We also thank the various
referees for their helpful comments.

13. REFERENCES
1. Ronald M. Baecker and Aaron Marcus, Human Factors and

Typography for More Readable Programs, Addison-Wesley

(1990).

2. Jason Baldridge, Tom Morton, and Gann Bierner, “OpenNLP:

The Maximum Entropy Framework,”

http://maxent.sourceforge.net/about.html, (October 2001).

3. Robert D. Cameron, “An abstract pretty printer,” IEEE

Software Vol. 5(6) pp. 61-67 (November 1988).

4. D. E. Critchlow, Metric Methods for Analyzing Partially

Ranked Data, Springer-Verlag, Lecture Notes in Statistics,

Volume 34 (1985).

5. Erich Gamma and Kent Beck, Contributing to Eclipse:

Principles, Patterns, and Plug-ins, Addison-Wesley (2004).

82

6. James Gosling, Unix Emacs, Carnegie-Mellon Computer

Science Department (August 1982).

7. Matti O. Jokinen, “A language-independent prettyprinter,”

Software Practice and Experience Vol. 19(9) pp. 839-856

(September 1989).

8. Brian W. Kernighan and P. J. Plauger, The Elements of

Programming Style, McGraw-Hill (1974).

9. Richard Kirkby and Eibe Frank, “WEKA explorer user guide

for version 3-5-3,” University of Waikato, (June 2006).

10. Andrew Kachites McCallum, “MALLET: a machine learning

for language toolkit,” University of Massachusetts Computer

Science, http://mallet.cs.umass.edu, (2002).

11. Scott Meyers, Effective C++, Addison-Wesley (1997).

12. Dereck C. Oppen, “Prettyprinting,” ACM Trans.

Programming Lanaguages and Systems Vol. 2(4) pp. 465-

483 (October 1980).

13. Steven P. Reiss, “PECAN: program development systems that

support multiple views,” IEEE Trans. Soft. Eng. Vol. SE-11

pp. 276-284 (March 1985).

14. Steven P. Reiss, “The Desert environment,” ACM TOSEM

Vol. 8(4) pp. 297-342 (October 1999).

15. Lisa F. Rubin, “Syntax-directed pretty printing: a first step

towards a syntax-directed editor,” COMPSAC 1981, (1981).

16. Allan Vermeulen, Scott W. Ambler, Greg Bumgardner, Eldon

Metz, Trevor Misfeldt, Jim Shur, and Patrick Thompson, The

Elements of Java Style, Cambridge University Press (2000).

17. Philip Wadler, “A prettier printer,” Bell Laboratories, (March

1998).

18. Ian H. Witten and Eibe Frank, Data Mining: Practical

Machine Learning Tools and Techniques, 2nd Edition,

Morgan Kaufmann (2005).

83

