
The Desert Environment

STEVEN P. REISS
Brown University

The Desert software engineering environment is a suite of tools developed to enhance
programmer productivity through increased tool integration. It introduces an inexpensive
form of data integration to provide additional tool capabilities and information sharing among
tools, uses a common editor to give high-quality semantic feedback and to integrate different
types of software artifacts, and builds virtual files on demand to address specific tasks. All
this is done in an open and extensible environment capable of handling large software
systems.

Categories and Subject Descriptors: D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.6 [Software Engineering]: Programming Environments

General Terms: Design

Additional Key Words and Phrases: Integrated programming environments, program editors

1. INTRODUCTION
The Desert environment was developed over four years as an extension of
the message-based integration techniques used in our previous work on the
FIELD environment. Our goal in implementing a new environment was to
show that new and powerful facilities can be combined inexpensively with
current tools in an open framework. This was motivated by the dearth of
environments that effectively utilize information about the program to help
the programmer.

The contributions of Desert are in three main areas:

—Global Control Integration: Desert augments standard control integra-
tion pioneered in FIELD with a global message server that lets everyone
in the project team work together using common program information.

Support for this research was provided by the NSF under grants CCR9111507 and
CCR9113226, by DARPA order 8225, DARPA order D885, ONR grant N00014-91-J-4052, Sun
Microsystems, and Digital Equipment Corporation.
Author’s address: Department of Computer Science, Brown University, Providence, RI 02912;
email: spr@cs.brown.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 1049-331X/99/1000–0297 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999, Pages 297–342.

The server allows the various tools of the environment to synchronize
their views of a complex project with low computational cost.

—Inexpensive Data Integration: Desert introduces the notion of fragments
along with specialized data stores to provide the benefits of data integra-
tion without the costs. This allows the programmer to view the software
using virtual files containing only the portions relevant to the task at
hand. It provides the environment developer with the capabilities of a
project repository while maintaining source files and an open environ-
ment.

—Common Software Editor: Desert uses a word processor rather than a
text editor and integrates it into the environment. This gives the user a
single editor with a high-quality display for all phases of software
development and lets the system provide semantic feedback to show the
user potential problems as the code is written. It provides the environ-
ment developer a high-quality editor with advanced features as a basis
for tool integration.

In the remainder of this section we provide the historical basis for
Desert, noting both the FIELD environment and our goals for a new
environment, and then provide a brief overview of Desert. The bulk of the
article provides a detailed account of the various pieces of the environment,
how they fit together, and what they have achieved. This is followed by a
look at related work and a summary of our experiences with the environ-
ment.

1.1 The FIELD Environment

The FIELD programming environment was developed in the late 1980s and
early 1990s to demonstrate the feasibility of integrating a wide variety of
software tools in an inexpensive manner [Reiss 1994]. FIELD introduced
the use of messages for combining tools, a technique now called control
integration. It uses messages to integrate tools for program editing, debug-
ging, browsing, visualization, and configuration management into a single
environment that appeared seamless to the user.

Message-based control integration combines software development tools
using a central message server. Each tool is augmented either internally or
with a simple wrapper so that it can communicate with the message server.
Integration is then achieved by having tools send messages to the message
server and having the message server redirect these messages to other
tools as appropriate. To make this scheme work efficiently and to ensure
that the various tools need not be aware of one another, the system uses
patterns to direct the messages and views message sending as broadcast-
ing.

Messages in general have two forms. The first, a synchronous message
representing a command from one tool to another, is used, for example, by
the editor to set a breakpoint in the debugger. The second form is an
asynchronous notification message. Whenever the debugger takes control,

298 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

for example, it sends out such a message indicating the location of its
current focus. Editors and browsers use this message to update their
display accordingly.

When a tool starts, it registers a set of patterns with the message server
that describe the messages the tool is interested in receiving. These include
the command messages that the tool will handle and the informational
messages that the tool wants to monitor. Tools send messages to the
central message server in order to request information or action from
another tool or to send out information that other tools might be interested
in. The message server matches this incoming message against all the
registered patterns and forwards it to the appropriate tools. If the message
was synchronous, it gathers the first nonnull reply from any of the
accepting tools and sends it back to the original sender.

This approach to integration has proven very powerful. When combined
with an editor that uses annotations to interact with other tools (e.g., using
a breakpoint annotation both to create and to show debugger breakpoints),
a cross-reference database, a sophisticated wrapper for the system debug-
ger, a graphical wrapper for configuration tools including make and rcs, a
variety of visualization tools, and a common control panel, it yielded an
environment that appeared to the programmer as a single entity rather
than a diverse set of tools. This improved programmer productivity by
simplifying the use of tools for the novice programmer and providing better,
more intuitive user interfaces for existing textual tools.

In addition to message passing, FIELD was one of the first environments
to make extensive use of an external database of program information. It
included tools for automatically gathering and maintaining cross-reference
information (effectively an extended symbol table) for the current execut-
able. This information was used mainly by the various visualizations that
FIELD provided, notably a call graph viewer and a class browser, by search
tools, and in extended editor commands such as “go to the definition of
what I’m pointing at.”

1.2 Our Goals for a New Environment

While FIELD provided a high degree of integration, we felt that more could
and should be done. We wanted to focus on two particular aspects:
providing quick and easy access to data about the system being developed
and providing a common editor for all phases of software development

Most attempts at providing access to program information have focused
on providing a global repository of program information. While these
approaches do provide a large amount of information, they have had
serious problems with scalability, handling multiple languages simulta-
neously, handling multiple users, openness, and maintaining consistency
with the actual program. In Desert, we focused on making only the basic
information available without the overhead and problems of such reposito-
ries. In determining what information was required, we concentrated on
feedback while editing and on the ability to provide virtual, editable views

The Desert Environment • 299

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

of the software, e.g., showing a function and all its call sites in a single
display.

A second area where we saw room for improvement was in the diverse set
of editors currently used for programming. Different editors are used for
writing documentation, writing code, drawing design diagrams, specifying
a system model, etc. Moreover, standard text editors do not do a good job of
giving the programmer highly readable source code. We wanted to offer an
environment that was centered around a single editor capable of handling a
wide variety of programming tasks. Moreover, we felt it important that the
editor provide the programmer with program text that was as readable as
possible.

We also saw it was important to provide these facilities in an open and
extensible framework. We wanted an environment that was compatible
with existing tools and techniques so that programmers could migrate to
the environment in stages and so that the environment could easily be used
for existing systems. We wanted an environment that could handle new
tools and new applications of existing tools. We wanted an environment
that could scale to handle large-scale software projects (over a million lines
of code in its prototype version, much more if the ideas were applied to a
production environment) so as to demonstrate that any techniques that we
developed were practical. We also wanted an environment that was as
simple as possible to develop using existing tools, and was easy to imple-
ment or replicate.

1.3 An Overview of the Desert Environment

The Desert environment was developed with these goals in mind. In order
to accomplish the goals, we had to combine several ideas, some of them
new, other ones tried before in different, generally limited, contexts.

A top-level view of the Desert environment is shown in Figure 1. At the
heart of the Desert environment and the center of this diagram are its
integration facilities. Desert extends control integration from the FIELD
environment with powerful mapping facilities that make it easier to
reconfigure the environment dynamically and ensure that tools are totally
independent. On top of this, Desert introduces an inexpensive form of data
integration which we call fragment integration whereby logical units (frag-
ments) of the original software artifacts are identified, while references to
them are kept in a data store. Here, the primary storage is still the original
software artifacts and not the data store, but tools can rapidly access and
associate information with the logical units through the store. These ideas
are discussed in Section 2.

One of our primary goals was to have the environment offer dynamic
editable views of the software to simplify editing and program understand-
ing. Desert provides such views through a concept we call virtual files. A
virtual file combines fragments gathered from multiple locations in a single
editable file. Desert supports creating, storing, and locking such files.
Section 4 looks at the mechanisms Desert provides here.

300 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

Desktop publishing technology has improved significantly over the past
decade, yielding a variety of systems that offer WYSIWYG displays of both
text and graphics and which provide the facilities needed to integrate
specialized editors with a common display. Desert exploits this technology
by showing how a modern word processor can be extended to handle the
tasks involved with software development. The principal extension offers
an interface for coding using the data stores to provide feedback and
high-quality text formatting. Additional extensions offer interfaces to spe-
cialized graphical editors for design and user interface development, tools
to help in design and documentation, and preliminary facilities for cooper-
ative development. These are detailed in Section 5.

The specialized data stores, editing facilities, and integration mecha-
nisms are all based on the notions that the programmer is working on a
project and that the underlying environment must be aware of what that
project is, what it contains, how it is shared, and how it is developed.
Desert maintains and offers to the rest of the environment a suitable
system model that identifies projects and their properties using the notion
of contexts. This is described in Section 6.

2. BASIC INTEGRATION MECHANISMS IN DESERT

Integration in software development environments can occur along multi-
ple dimensions. Schefstrom and van den Broek [1993] identify three
dimensions: control, data, and user interface or presentation. Desert uses
an extended version of FIELD’s message-passing framework to provide
robust control integration. It uses a new concept called fragment integra-
tion that offers a low-cost alternative to traditional data integration tech-
niques. These serve as the basis for control and data integration and are
described in this section. Desert offers broader data integration through
specialized data stores described in Section 3. Finally, Desert provides for
presentation integration through its emphasis on the use of the common
editor described in Section 5.

2.1 Control Integration

Desert attempts to enhance the FIELD approach to message-based control
integration to make it easier to use and extend it to large-scale software
development.

Fig. 1. Overview of the Desert environment.

The Desert Environment • 301

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

Desert’s first enhancement is to integrate and use a message-mapping
engine to make adding new tools and customizing the environment easier.
Desert uses mappings to define how messages are used so that no tools
need to know the messages produced or consumed by any other tool and so
that the interaction of the tools could be individualized.

This message-mapping engine, MSGMAP, was based on ideas in the
Forest system [Garlan and Elias 1990] and the related notion of mediators
and events [Sullivan and Notkin 1990] and was partially implemented
(although not used) in the FIELD system as the policy tool. MSGMAP can
modify, resend, or hide any incoming message. It can take an arbitrary
message sent out by one tool and transform it into a set of messages that
serve as input for other tools. Its actions are determined by a textual
resource file, so the tool can easily be customized for a particular work
group or even a particular user. An example of such a resource file is shown
in Figure 2.

The final Desert control integration enhancement is designed to handle
multiple-person development within the environment. Desert uses two
message servers whereas FIELD only used one. In Desert, one of the
message servers, like the FIELD server, connects the local tools to form an
integrated framework. The other message server operates globally, provid-
ing common access for all users to the environment facilities. This is used
in various ways. Projects in Desert can be defined either globally or locally.
Global projects are supported with shared data stores that automatically
reflect the changes of each use. These stores are accessed and managed
through the global message server. This server also provides the system
editor with mechanisms for fine-grain locking and cooperative editing.

Fig. 2. Extract from policy message-mapping file for the FRED editor. This specifies, for
example, that when a MscanErrorMessage is sent (by the build tool), the system should send
out a FredAddGotoMsg causing the editor to go to that line, and that the MscanBeginMsg
clears all previous error and warning messages.

302 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

Moreover, it provides the hooks needed for a wide variety of cooperative
support and notification tools.

2.2 A Basis for Data Integration

Data integration is used in software engineering environments to offer such
facilities as

—semantic feedback while editing, compiling or debugging;

—extensive data sharing among tools;

—tracability of changes;

—linkages among the data items;

—query-based access to system information;

—multiple views of the stored data; and

—support for cooperative development.

These have typically been achieved either through a program repository
or through shared files. Both of these approaches have their advantages
and disadvantages, and Desert attempts to take a practical middle ground.

In a repository-based environment all data about the system, typically to
the level of abstract syntax trees, are kept in a database that the various
tools can access. While such environments can, in theory, provide all the
above facilities, in practice they have proven difficult to build and use. The
largest problems, as we have mentioned, are with scalability, handling
multiple languages in a single project, handling multiple users, openness,
and consistency maintenance. In essence, this approach has generally
proven too cumbersome and inefficient to be practical for large systems.

The alternative approach is to maintain individual files and to have tools
share information by sharing these files as is typically done in UNIX. The
disadvantages here are that the above facilities are often difficult or
impossible to implement, that much of the work involved, especially pro-
gram analysis, has to be done repeatedly by each tool, and that it is
difficult to maintain consistency of the various files as the system is being
developed. Despite these drawbacks, files have significant advantages.
Using individual files lets one develop a simple, open, and scalable system.
Files are relatively inexpensive with today’s operating systems, since the
mechanisms for storing and accessing them are well developed and highly
optimized. They also have the advantage of providing the reader of the
software with the logical organization created by the original programmer.
For these reasons, most current programming environments are still file-
based.

Desert’s approach to data integration is a compromise between using files
and using a repository. Desert maintains the original files and uses them
as the primary source of data; this provides the benefits of files. At the
same time, Desert automatically extracts information from the files and

The Desert Environment • 303

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

saves it in specialized data stores, thus gaining many of the advantages of
a repository-based environment. Further benefits are achieved by dividing
each file into logical chunks called fragments and creating a data store of
references to these fragments.

2.2.1 Fragments. A fragment in Desert is a section of a file that should
be considered a logical unit by the programmer. The basis for fragments is
the set of documents or artifacts that comprise a software system, such as
source code files, documentation, requirements and specification descrip-
tions, and design documents. These artifacts may be stored as actual files
or may (like design diagrams in many of today’s CASE tools) actually be
sets of items stored in a database.

The primary motivation for fragments is that they can serve as the basis
for better data integration. They represent the level at which associations
between different program units and tool-specific information are main-
tained. They also represent the context to be presented to the programmer
when displaying such links or using such information. A fragment-based
representation is a compromise between a repository-based representation
that works at the low level of an abstract syntax tree and a file-based
representation that works at too high a level.

While Desert makes no specific assumptions about what is in a fragment,
we have developed guidelines for defining fragments for different types of
artifacts. Fragments should first and foremost represent a context that can
be shown to the user as a meaningful unit. This generally implies that a
fragment should represent a logical portion of the artifact at a high enough
level such that additional context for that portion is not essential to its
understanding. For example, a statement in a program is probably too
low-level for a fragment, but the function containing that statement would
be okay. If fragments are at too fine a level, the size of the database
required to hold them, the time it takes to update and track them, and the
complexity of analyses based on them will all be too large to be practical for
large systems. Ensuring that a fragment represents a logical context
reduces the number of potential fragments to a manageable number, even
for a large software project.

Second, fragments should represent concrete concepts such as files,
classes, or dialog boxes. This provides a logical context for using fragments
to share information among tools and offers a firmer basis for presenting
the fragment to the user. Fragments that are concrete concepts provide a
natural basis for a tool to associate information for other tools. They also
provide a meaningful basis for establishing relationships such as the
compilation dependencies inherent in a system model.

In the same way, a third guideline is that each file should itself be a
fragment. Files are concrete entities that need to be represented within the
environment. Having a single top-level fragment for each file lets frag-
ments be used as files or vice versa, allowing, for example, file-based
locking in conjunction with fragment-based locking.

304 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

Finally, fragments should represent hierarchical portions of files. While
fragments can be properly nested in other fragments, two fragments at the
same level of hierarchy should never overlap one another. This ensures
that fragment-based locking works, allows the use of hierarchy, and en-
sures that a single location in a file corresponds to a single lowest-level
fragment. This makes the implementation of fragments easy and logically
consistent throughout the system.

With these guidelines, fragments can be created for a wide variety of
documents. Fragments for a C11 program include files, function declara-
tions, class definitions, and top-level variable, member, and type declara-
tions. For example, Figure 3 shows a simple C11 file and the associated
fragments. Fragments for documentation include title, sections, and sub-
sections. Fragments for an OMT diagram represent the different sheets
and, within each sheet, the various objects. Fragments for a user interface
diagram represent the different top-level windows.

Desert creates and automatically maintains a data store of information
about the fragments in a project. For each fragment, the store includes a
source location specifying the start and end position in its source file. In
addition, it includes the fragment’s parent, a fragment type characterizing
both the type of file it came from and the type of information it represents,
a name that is relatively unique (as discussed below), a hash value of the
contents of the fragment (computed using cryptographic techniques [Rivest
1992]) so that changes to the content can be detected, and a set of
name-value associations that let arbitrary data be stored with the frag-
ment.

In order to simplify updating and maintaining the data store, relation-
ships among fragments are kept indirectly using the fragment name. Our
motivation here was not only to let the data store be updated without
having to maintain links, but also to let fragments be tracked as functions
and other information are moved between files. This requires a consistent
strategy for naming fragments that ensures that names are unique and

Fig. 3. Sample C11 code fragment with brackets showing the different fragments.

The Desert Environment • 305

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

based on the content of the fragment. We use a scheme similar to C11
name mangling [Sun Microsystems 1995] to distinguish what would other-
wise be duplicates within a file. We allow duplicate names in separate files
and ensure unique references by always requesting fragments using a
name-file pair.

2.2.2 Fragment Data Store. Desert’s implementation of fragment inte-
gration has two parts: a simple data store of the fragment information and
a set of scanners to identify fragments in different types of software
artifacts. The data store is meant to contain the necessary information
about the fragments and to let tools associate information with a fragment
for their own or other tool’s use. It is implemented as one of a set of
specialized relational databases; the other databases and their common
implementation are described in Section 3. The scanners are designed to
allow the data store to be updated quickly, accurately, and unobtrusively.

The fragment data store is a relational database consists of two relations
that maintain the data store and three relations that actually store the
information associated with each fragment, as shown in Figure 4. The File
and Include relations determine what files need to be rescanned when the
data store is updated, by looking at which files have changed and which
files are dependent on them. Dependencies here, while typically oriented
toward the use of header files in programming, are actually generalized for
just this updating function. The Fragment relation stores the information
that is associated with each fragment. The start and end position here can
be interpreted differently, depending on the fragment and file types, thus
allowing for fragments that are actually stored in containers other than
simple files. Finally, the Attribute and Property relations let arbitrary
strings be associated with a fragment for information sharing.

2.2.3 Fragment Scanning. In order to make fragment integration work,
the system must be able to find and track fragments as the system evolves.
This is done using a set of scanners that are designed to be as simple and
fast as possible and are not full parsers for the corresponding languages.

Fig. 4. Relations and fields of the fragment database.

306 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

For example, our C and C11 scanners pay attention to block comments
and blank lines as well as the syntax for functions and declarations. They
totally ignore the syntax of statements and expressions. The scanners are
also designed to handle incorrect and incomplete files in a logical way.
When programmers are actively working on the system, files are often left
in an intermediate, uncompilable state. In this way our scanners are
similar to the various partial scanners that have been developed for quickly
obtaining semantic information such as SGI’s cvstatic or SniFF [TakeFive
Software 1993].

Our scanners differ in that they must take comments into account. The
scanners need to report to the data store the start and end positions of each
fragment. Comments appearing in the source files should be associated
with the correct fragment even though they may precede or follow its text.
While the general problem of determining the token to which a comment
applies is quite difficult, here we need only determine whether a comment
that immediately precedes or follows a syntactical fragment should be
considered part of it or not. Our approach has two parts. First, the end
position of a token is defined to include any blank spaces and comments up
to the end of the line in which the token occurs. This associates end-of-line
comments with the proper fragments. Second, we associate any comment
lines (lines that contain only a comment) that precede the start of a
fragment with the fragment if there are fewer than K blank lines separat-
ing that comment from the fragment, where K is a user-definable parame-
ter. This finds block comments that precede function or type definitions and
associates them with the correct fragment.

While we developed a common framework for scanning source files,
scanners for other document types have been written separately. This has
not been a problem, since most of these scanners are relatively simple (less
than 500 lines of code), and the problems that arise are much less complex
than with source files. For example, we have developed scanners for OMT
files from xomt, database files from Cadre’s Case tools, UIL files for user
interfaces, and XD files from Sun’s visu. We would expect, that, as the
Desert approach is extended to include other areas, such as specifications
or documentation, that more sophisticated scanners might be desired.

2.3 Evaluation

The control integration facilities provided by Desert are a natural exten-
sion of the successful mechanisms offered in FIELD. They have made it
easy for the 20 or so tools currently composing the environment to interact
with each other without imposing significant overhead or coding restric-
tions on the tools. Moreover, they have made it easy to add new tools.

The use of fragments for data integration, however, is more contentious.
Fragments seem to be an appropriate mechanism around which to organize
the data in a programming environment. They are a compromise between
the low-level details that most repository-oriented environments store and
the high-level notion of files. They form a good basis for presenting

The Desert Environment • 307

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

information to the programmer and should be useful for information
storage and sharing between tools. At the same time, it is not always clear
that the extra costs of this mechanism are needed nor that our approach to
fragments is the right one.

Evaluating the worth of fragments in an environment requires that they
be used to their fullest extent. This has not yet been done in Desert. The
current set of tools makes only limited use of the ability to save information
with fragments. This is probably because the current selection of tools in
the environment is limited, but we need more experience with the addi-
tional tools to see if fragments are a reasonable mechanism for data
sharing and storage. Our presentation methods based on virtual files
described in Section 4 are incomplete, and we have not yet used fragments
as a basis for system modeling or building. This means that much of the
promise and opportunity we saw for fragments has been unfulfilled. Still,
based on the advantages that can be gleamed even from the limited use we
make of them, we feel that this approach is a strong step in the right
direction. Note that some more recent environments such as Visual Age
C11 [Nackman 1996] and CMU’s Sheets [Stockton and Kramer 1998] use
what can easily be seen as a fragment-based approach.

Our approach to fragments involves defining them, storing them, and
scanning for them. Our guidelines for defining fragments represent a
starting point. Our experiences show that a programming environment
needs to work with units that are smaller than files and larger than
syntactic constructs for presentation, editing, compilation, and information
sharing. We have defined fragments based primarily on their use in source
code. This approach has worked well for source-related details, but has not
been tested extensively for other software artifacts. A better evaluation of
this work will require understanding a broader range of the applications of
fragments, especially for large-system development.

Our fragment data store is quite fast both for query and update. How-
ever, we have found that the current environment does not need to access it
very often. Most of its use comes from the creation of virtual files by
extracting a logically related set of fragments, as discussed in Section 4.
Here the data store is used mainly to find the proper fragment to display
based on a location in a source file; it is not being asked to use fragment
properties or other information in the date store. The other major use we
envisioned early on was to provide an intelligent system-building tool that
would determine when recompilation was needed on a fragment rather
than a file basis. While the fragment data store has much of the informa-
tion needed for this task, it proved much harder than anticipated to define
precisely and then determine what constituted a compilation dependency
between two files, and we have not yet implemented such a tool.

Finally, our work on fragment scanning has shown that scanners can be
developed that are fast, unobtrusive, and can handle incorrect files as
needed in an active development environment. Our approach to comment
management in the scanners has worked very well for a limited set of
examples. We have found few if any problems in the scanners’ analysis of

308 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

our own code or of a large portion of library code. However, it is quite likely
that other coding styles and formats would confuse the current scanners. A
more detailed analysis that considers a wide range of different coding
styles is needed.

3. DATA STORES

Many of the benefits of data integration come from making information
derived from the original files available to the various tools. This makes a
suitable database an essential part of a software engineering environment.
To be practical, such a data store must update itself with a minimum of
overhead and user intervention and must provide query mechanisms that
are fast enough to meet response expectations (i.e., keystrokes in the
editor) and general enough to address the needs of a wide variety of tools.

3.1 Specialized Data Stores

Desert achieves these goals using multiple data stores. It divides the
program information into multiple categories and builds for each a special-
ized data store that is tuned to the particular needs of the data it stores.
These specialized data stores are relatively small and cheap while, at the
same time, offering superior performance. The current ones include one for
fragment data and another for semantic data. Both of these are language-
independent and currently handle C, C11, and Java source files, OMT
diagrams, user interface resource files, and some documentation. Addi-
tional stores are envisioned to handle performance data, run time trace
data, and to handle configuration data for both system building and version
management.

These data stores are supported by a common framework in order to
make it simple to add new stores and minimize the effort involved in
implementing and updating each. The framework, a set of C11 classes
that are easily inherited and customized, provides a relational database for
each data store. It includes the code needed for interacting with the
message servers and scanners, a query interface that supports SQL,
storage and retrieval mechanisms for relations, and a general-purpose
optimizing query engine. Creating a new data store then involves special-
izing two of the framework classes, one for defining the server and one for
defining the relational database. The specializations needed for a basic
implementation are quite simple and can be done easily in a day or less.

The framework also provides a generic interface for defining the relations
in the data store. A new relation is added to a store by specializing an
instance of this interface, defining the fields of the relation, and providing
methods to read and write a tuple of the relation. This makes adding or
modifying relations quite simple and has let us augment the relations as
we added other data sources or needed additional information. All relations
are kept in memory for processing and saved and loaded on disk only when
needed, and the framework supports indices for higher performance. All

The Desert Environment • 309

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

this ensures that the data stores can be readily adapted to new languages
and changing data demands.

A relational approach was used here because most of the relevant data
was already present in a tuple-based framework, because it is simple to
implement and general enough to handle the variety of data we need to
store, and because there are efficient and standard query languages avail-
able. Where we need to go beyond the relational model (e.g., in doing scoped
name lookup), we defined specialized operations.

The overall architecture of the Desert data store implementation is
shown in Figure 5. The two ovals on the left, PALM and DUNE, represent
the library interface to the stores provided to all tools. These communicate
to the actual data stores using the message server MSG. These are shown
as rectangles to indicate that they are separate processes.

The actual data store code is broken into three parts. SAND provides the
generic framework. The two data stores currently implemented, the frag-
ment data store described in the previous section, FRAG, and the semantic
or cross-reference data store, SXRF, are built on top of this framework. The
SXRF store keeps track of symbol table information such as scopes,
definitions, the class hierarchy, and access information about class mem-
bers. It also contains cross-reference information such as a static call graph
and all references to names. The complete set of relations and fields in the
current data store is shown in Figure 6.

The next piece of the framework is SEGO, a common interface to the
various data stores that takes generic queries and redirects them to the
appropriate store, combining the results as needed. Currently SEGO only
handles the limited set of queries needed by the Desert search engine
CAMEL described in Section 4. It is essentially a placeholder for a true
federated interface.

The final component, SAGE, contains the code for scanning software
artifacts in order to obtain the data store information. It consists of both
generic code and specific implementations for scanning the current set of
support files. Some scanning, such as for Java programs, is done by
independent scanners such as JAVASB.

Fig. 5. The basic architecture of the Desert data stores.

310 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

3.2 Collecting Program Information

For these data stores to be a successful part of the environment, they must
be maintained unobtrusively so that the data are available without the
programmer having to specifically request it or to wait for it to be
accumulated or brought up-to-date. This led to a variety of design decisions
concerning the appropriate implementation strategy. The first of these
involved generating the necessary data.

Information for the various data stores can be gathered from a variety of
sources. As noted in the previous section, fragment information is obtained
by scanning source files using a specialized parser that identifies fragments
and can deal with comments, preprocessors, and errors. Semantic informa-
tion for the SXRF data store is obtained in part in a similar way, using
specialized scanners. However, such information is now typically available
from the compiler. Desert, to save time and effort, takes advantage of this
compiler-generated information whenever possible by reading the compiler-
generated data files rather than the original sources. This turned out to be
considerably faster

The various scanners are all embedded in the SAGE server. This is a
separate process that handles scan requests through the message bus. The

Fig. 6. Relations in the semantic cross-reference database SXRF.

The Desert Environment • 311

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

server handles requests by scanning the appropriate artifact and generat-
ing files that can be loaded directly into the data stores. It turned out to be
more efficient and faster to implement this as a service rather than to
spawn separate scanners for each file. The actual implementation allows
multiple SAGE servers for handling different types of requests. This lets us
process multiple requests in parallel and provides increased performance
when updating multiple data stores.

Our current implementation of SAGE is quite efficient: most files are
scanned in a second or less, and most of the time is spent on reading the
files on input and writing the standard data files as output. When updating
a large number of files, SAGE typically runs faster than the requesting
system, so that the bottleneck is in integrating the information into the
data stores, not in generating the information.

The only drawback to implementing SAGE as a service is that the code
for scanning a new artifact type generally must be written as part of the
server. To facilitate this, the server provides an interface class that can be
redefined for each artifact type. The scanner for the artifact can either be
written from scratch or make use of the current scanning facilities. We
have found, except for source code files, that most artifacts are generally
quite easy to parse for either fragments or the limited semantic information
they contain. Adding a scanner for a new artifact type generally takes less
than a day of effort.

3.3 Updating the Data Stores

The other part of the implementation strategy aimed at making the
implementation of the data stores unobtrusive involved making update as
fast and efficient as possible. This was achieved by doing all updates in a
“batch” mode at the file level. The SAND framework provides the logic for
updating the data stores as needed. When the framework detects that a
given file has changed, it first determines which scanners for that file need
to be rerun. Then, for each scanner, it removes all tuples that were derived
for the file by the scanner, runs the scanner to generate a new data file,
then reads this data file and adds the resultant information to the data
store. All tuples to be removed for a set of files are actually just flagged for
removal, and the whole data store is cleaned up only once.

To make this update strategy work, the data stores must not contain any
links between data elements that arise from separate files. This is neces-
sary to let the framework remove and add tuples locally without having to
worry about global consequences. Where links are needed (i.e., for an
include file or the containing scope of a definition), they are computed
dynamically from names or other information in the data store and cached
for efficiency. The drawback of this approach is that it allows dangling
links, e.g., a reference to an include file that is no longer in the data store.
While the user of the data store should take the possibility of dangling
links into account, these actually occur quite rarely in practice. In almost
any case where references in a file change, the files referring to those

312 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

references are either explicitly changed or at least recompiled or repro-
cessed (since the base file changed) so that their information is also
updated. Other than very contrived situations, we have not seen any
dangling links nor had them adversely affect any of the tools.

A final step in making the updates unobtrusive is to make them occur
automatically. The framework provides the common logic for determining
when a file should be scanned and updated. It keeps track of all the files in
a project and can search for additional files created since the last update. It
keeps track of the last update time and periodically (every 15 minutes)
checks for changes and updates the data store accordingly. It also handles
requests from other tools to update the whole data store or the data store
relative to a particular file. The Desert editor automatically sends a
message to the data store requesting a specific-file update whenever the
corresponding file is saved. The current front end to UNIX make sends a
similar message after a successful compilation.

3.4 Query Mechanisms

In addition to efficient updating, the data stores must present a fast and
general-purpose query interface to the various tools, letting tools request
information as needed without significant delays. The SAND interface
provides for this in two ways: a general SQL-based query front end and a
separate interface for special-purpose queries.

SAND provides a query evaluator based on an underlying set of rela-
tional operators along with a general-purpose query optimizer. The opti-
mizer uses techniques developed for relational databases and provides an
extensible set of operators [Mitchell 1993; Reiss 1983]. In addition, a
common front end takes SQL as input and translates it into operators for
the evaluation engine, so that tools can send SQL queries to any of the data
stores.

SAND also supports a message-based interface for requests that are
specific to a particular data store. This is used for queries with high
performance requirements that would be too slow through the standard
mechanism. The fragment data store uses these commands to find the
fragment corresponding to a given line in a given file. The semantic data
store uses them to find the external definitions corresponding to a reference
of a name in a given file and to find all references to these definitions.

The maintenance of the various data stores has proven quite effective. As
long as the environment is used on a project on a regular basis, the
automatic updating is unobtrusive and fast. This leads us to conclude that
it is possible for a programming environment based on files (or fragments)
to actively maintain a program data store that can be readily used by the
various tools.

The largest project we have used the data stores for is Desert itself.
Desert consists of about 250,000 lines of C11, or about five megabytes of
source. The fragment data store for Desert occupies about six megabytes
and the semantic data store about 25 megabytes. Our experience has

The Desert Environment • 313

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

shown, that, for almost all systems, the combined sizes of these two data
stores is less than 10 times that of the source (and the ratio is typically
smaller for larger systems and about half of this for non-object-oriented
systems). This means that the extra space needed for the combined data
store is quite reasonable and that it is practical to keep both in memory for
fast access, as Desert does.

We note that these numbers also imply that our approach of keeping the
data store in memory is practical even for large systems. Extrapolating
from our experience, we estimate that a system with 10 million lines of C
source should have a data store size of about one gigabyte, well within the
memory capabilities of modern workstations. Simple compressing tech-
niques would easily cut the size of this database in half without any loss of
performance. Larger systems could be accommodated by dividing the
project into logical units, say representing the different executables or
libraries.

The update time for the data store is minimal. When a single file is
changed, the updates propagate into the store with no noticeable delay.
When large numbers of files change, the data store typically processes files
at the rate of one to three per second. This means that even complex
changes (which typically occur only if everything must be recompiled or if
the data store has not been updated for a long time) run fairly fast. (The
update time is a small fraction of the compilation time, for example.) Even
rebuilding the data store for the Desert system from scratch takes approx-
imately 10 minutes on a Sun workstation.

Keeping the data store in memory has also allowed our query response to
be adequate for most purposes. The specialized queries used for finding
fragments or for doing symbol table lookup run very fast (on the order of 10
milliseconds, including message overhead). Most sophisticated queries such
as SQL requests from the visualization engine generally take time propor-
tional to the size of the output, with the bulk of the time being spent on
doing character output to generate the resultant file. The only queries we
have had problems with are those that do not use the built-in indices for
doing relational joins over very large (over 100,000 tuples) relations. As
practical instances of these arise, we have either added indices or intro-
duced new optimizations into the query engine.

There are difficulties with the data stores, however. The first is the need
to compile all files so that the compiler generates cross-reference informa-
tion. This does slow down compilation slightly and can use a significant
amount of disk space in and of itself. A second issue is that the current data
stores are not multithreaded, while multiple query requests or update
requests block other users. The consequent delays have not been a problem
so far, but could be so in a multiuser environment with shared data stores
and lots of activity.

One of the principal features of data integration we wanted Desert to
provide is the ability to offer the developer multiple views of the underlying
system. Here we wanted to deliver a number of capabilities, including

314 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

—Arbitrary views: Multiple views of a software system are useful for
program understanding and during program maintenance. However,
these tasks require a diverse set of views that cannot be determined in
advance. Here the facility should make it easy for the user to define the
specific views needed for these tasks using a general-purpose mecha-
nism.

—Diverse criteria: In defining diverse views of a system, the user should be
free to use any information available. This includes the various Desert
data stores and the source files, as well as temporal information such as
the set of lines with errors in the most recent compilation.

—Arbitrary artifacts: The views that can be constructed should be able to
span the whole software engineering process. The user should be able to
include specifications, design documentation and diagrams, code, user
documentation, and error reports all in one view.

—Editable views: The views should be editable. While some applications of
multiple views, e.g., software understanding, generally require only
read-only views, other applications, such as maintenance, are best han-
dled with views that can be edited. However, supporting editable views is
complex. It requires the editor to be aware of the context of each part of
the view so that it can be edited appropriately. It requires the ability to
map changes in the view back to changes in the source objects. It also
requires that views be managed correctly so that they can be shared
among multiple users.

4.1 Managing Virtual Files

The solution used in Desert is based on virtual files. These are temporary
files that Desert constructs from a user-selected set of fragments. Virtual
files can be edited and used as any other file. When a virtual file is saved,
any modified fragments in that file are replaced in their original locations.
This approach offers the above capabilities while maintaining an open
environment based on files.

Fragments are a natural unit for defining system views. They provide a
logical context for presentation in a view; they can be easily extracted and
replaced; they can be defined for a wide variety of software artifacts; and
they can be identified readily using information in the various data stores.
Each virtual file consists of a file header identifying the context in which
the file was created, individual headers for each fragment identifying the
fragment, its location, and its lock status, and the fragments themselves.

In order for virtual files to be practical, the environment must support
their creation and update. A Desert tool defines a virtual file by specifying
the basic set of fragments for the file, either directly or indirectly as
file-location pairs. Desert processes this list to ensure consistency and build
the file. It first ensures that only fragments of appropriate types are added
to a virtual file. The types allowed in a particular virtual file are specified
when the file is first defined. If a fragment is requested of a type inappro-

The Desert Environment • 315

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

priate for the given file, Desert substitutes the appropriate parent of that
fragment. This lets the tool creating the virtual file specify the level of
granularity to present to the user. Second, Desert ensures that only one
copy of a particular fragment is included. This involves checking parents to
ensure that a parent and its child are not both included. This is necessary
to ensure the consistency of both the presented file and the result of editing
it. If more than one copy of a fragment were present, the file could present
multiple, different representations of the same source, and it would be
unclear, when the virtual file was stored, which representation should be
used. Next, Desert determines the initial lock status of each fragment,
using both UNIX permissions and an underlying lock manager; it uses an
optimistic approach to locking so that fragment locks are created only when
needed, not when the virtual file is created. Finally, Desert builds the
virtual file.

When the virtual file is saved, Desert processes it, using the headers it
generated to identify the fragments in the file. It then orders the fragments
so that multiple fragments derived from the same file are considered from
the back to the front to ensure that the fragment positions in the data store
are valid for all the fragments in the file. Desert checks whether each
fragment was actually changed by comparing the hash value of its new
contents to the value stored in the data store. If the fragment was changed,
Desert then replaces it in the original artifact.

4.2 CAMEL: Defining Virtual Files

For virtual files to be useful, the environment must provide the user with
appropriate tools for manipulating them. Desert first attempts to make it
easy for the user to define a virtual file through a search and query tool,
CAMEL, which enables the user to find locations across all artifacts that
might be relevant to the task at hand. The front end, shown in Figure 7,
displays a list of relevant locations, each of which consists of a reason, a
line, and a file name. CAMEL lets the user construct this list by querying
the various data stores or monitoring other tools. It also lets the user edit
the list directly. The list can then be used to direct the editor to view a
particular location or to construct a virtual file.

CAMEL lets arbitrary queries be defined through resource files. Each
query displays a set of appropriate fields that the user can define. Any
items defined by the user are used as selectors when the query is evalu-
ated. Four such queries are currently defined, one for finding references to
a name, one for finding definitions, one for finding call sites, and one for
general text search. Queries can be used to add or remove items from the
current list of tuples. We plan to extend the interface of this tool to let the
user define new queries and query types interactively. The actual queries
are sent and processed by the SEGO interface described in Section 3.1.

An additional mechanism provided by CAMEL involves monitoring
events and translating them into tuples. The system looks for messages
directed at the CAMEL tool. Such messages can either be generated

316 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

directly by other tools or can be generated automatically by the message
mapper when any arbitrary message is seen. We currently monitor for
compiler errors and warnings as well as user selections in the various tools.

4.3 Evaluation

CAMEL and virtual files represent a simple approach to defining editable
views of programs. Program views have long been considered appropriate
for a programming environment. Some of these, such as Interlisp’s Master-
scope package [Teitelman 1974] and Linton’s OMEGA system [Linton
1984], simply provide views of information stored in a program database.
Garlan’s work on views for tools [Garlan 1986] allowed the definition of
arbitrary editable views, but did so from a tools viewpoint rather than from
the users: the idea was to let each tool define its own interface to the
program data rather than to give the user an editable program view.
Several older environments such as Magpie [Delisle et al. 1984] provided
editable views of a single routine. More recent environments such as Poem
[Lin and Reiss 1995] or IBM’s Visual Age C11 provide similar facilities.
Reps’ recent systems [Reps 1989] use slicing to construct an editable slice
from a simple program, so that the user can edit the slice and then merge
the result back into the code.

Our work attempts to provide a practical front end so that programmers
actually work in terms of virtual files, an approach that has had limited
success. The overall concept of virtual files is different from what program-
mers are used to. Desert does not enforce (or even encourage) their use. We
have found that most programmers tend to work in terms more familiar to
them and not to learn the new tools and concepts needed to use virtual files
effectively. A concurrent issue is how much the programmer is willing to
trust the system to construct the “proper” virtual file. A virtual file is most

Fig. 7. A view of a CAMEL search window.

The Desert Environment • 317

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

useful if it contains all the information desired and little else. This means
that the data store used for creating the file must be accurate, and the
context of the presentation must be appropriate. This becomes a problem
because the data stores typically only have incomplete information on files
currently being worked on.

Another issue is whether the context provided by a fragment is the right
one. The overall routine or the class or structure definition is probably an
appropriate context as long as these contexts do not get too long. This is
typically a matter of programming style. It would probably have helped if
the editor had been able to show programs at different levels of detail and
show automatically those parts containing the lines targeted by CAMEL at
the lowest level of detail and others at a higher level. Even simply
highlighting those lines in some way would have made a better presenta-
tion.

A more general question is whether virtual files are a viable presentation
model. Virtual files gather the relevant information into a single file.
However, FrameMaker and other editors present this file so that the user
can view only one part of the file at a time. The very nature of a virtual file
means that the programmer is likely to want to view multiple portions, e.g.,
a definition and its use, simultaneously. A more flexible editor presenta-
tion, one that offered a table of contents and multiple views, would
probably be preferable here.

Another general issue is the appropriateness of CAMEL as a front end for
defining virtual files. It seems that a general-purpose front end is useful
here. However, it also seems, from our limited experience, that program-
mers typically construct virtual files of a small number of types using
limited information, and an interface that lets such files be created more
directly might be more appropriate. We will evaluate this more thoroughly
as we get more experience with the system.

Desert was designed to use virtual files primarily as temporary artifacts
that are edited once and then disappear. An interesting alternative would
be to create permanent virtual files offering the user different views of the
software system. This raises a number of concerns, however, regarding
consistency and how and when such files should be updated.

Perhaps a better approach to this problem would have been to view
virtual files as dynamic, editable views of the underlying data store.
Database views are typically defined as queries into the database. As such,
although defined once, they can vary as the database changes and can be
updated dynamically. Desert’s virtual files are defined as a specific set of
elements and, hence, cannot be updated dynamically if additional frag-
ments become candidates for the virtual file. Database views also allow
arbitrary manipulation of the data, while Desert restricts virtual files to
contain exact copies of pieces of the files. The advantage of the Desert
approach is that it avoids the database view-update problem in which
updates to the view are ambiguous with respect to the database. It also
avoids most of the problems cited in Meyers’ work on supporting different
semantic views [Meyers 1991].

318 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

5. COMMON EDITOR

While fragments and the semantic data stores provide an internal basis for
a more powerful environment, we felt that providing an external basis in
the form of a common editor was equally important. We wanted Desert to
offer the programmer a single context that could handle a wide variety of
different software engineering tasks. At the same time we wanted the
editor to take advantage of the semantic data stores and high-quality
graphics displays.

From these objectives, we developed a set of requirements for program
editing within the Desert framework. These included

—System-based editing: The user should think of the editor as a front end
to all the artifacts making up the system rather than to a single file. The
editor should be aware of definitions that span files, and searches should
cover all relevant files.

—Semantic-based editing: The editor should make use of semantic as well
as syntactic information and should help the programmer as much as
possible. This means detecting both syntax and potential semantic errors
as early as possible and providing feedback on such errors in a nonobtru-
sive way during editing.

—High-quality formatting: While most programmers today use machines
capable of providing high-quality graphics, most program editors make
little use of these capabilities.

—A single common editor: Programmers currently are forced to use multi-
ple editors, one for editing programs, one for editing documentation, one
for editing specifications, etc. An integrated programming environment
would use a single editor for all documents and all phases of develop-
ment. Such an editor has to handle diagrams as well as text, documenta-
tion as well as code. Where specialized editors are needed, e.g., a
graphical editor for creating a user interface, these should be integrated
with the common editor.

—Integration with the environment: The editor needs to be integrated into
the overall environment so that it can talk to other tools and so that
other tools can communicate through it.

—Simplicity and familiarity: Finally, we wanted an editor that program-
mers would actually use. This meant that the base editor must be
familiar to them, preferably one they were using already. More impor-
tantly, we needed to be able to implement all the above facilities with
minimal effort.

Our solution to these requirements was to use Adobe FrameMaker as the
basis for the common editor. FrameMaker provides many of the baseline
features we needed: it displays both pictures and text; it can display
high-quality program views; and many programmers are familiar with it,
using it for documentation or specifications. In addition, FrameMaker

The Desert Environment • 319

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

offers an application programming interface (API) that is relatively easy to
use [Frame Technology 1995]. Through the API, one can integrate the
editor with the rest of the system, provide additional functionality such as
semantic-based editing, and provide live-links to other graphical editors.

While Desert uses FrameMaker, our intention was to demonstrate that
the desired features could be provided to the programmer and not that
FrameMaker was the ideal platform for doing so. Most of the extensions
that we provide for FrameMaker could have been done for any other word
processor with a suitable API and capabilities. (Microsoft Word, for exam-
ple, could be used on a Windows platform.) As much as possible, the various
extensions have been coded so that the FrameMaker-specific aspects are
kept independent from the remainder of the code.

The common editor in Desert serves both as an integration tool and as a
front end for new facilities. We have implemented a variety of APIs that
extend the basic editor as shown in Figure 8. The rounded rectangles in the
figure are the various APIs that talk to FrameMaker; the rectangles
represent separate tools. Other than the message server (MSG) that acts as
a communications engine, the separate tools are aligned with the API they
are designed to support. The APIs currently available include

—FADE: an annotation facility that extends the use of annotations demon-
strated in the FIELD environment [Reiss 1990a]. Annotations are a
convenient and consistent way for tools to display information such as
breakpoints in the editor and, at the same time, provide a standard
interface whereby the user can make requests of other tools such as
creating a breakpoint.

—FAIL: a general-purpose link package that lets the programmer install
HTML and other forms of hyperlinks into a FrameMaker document. This
provides additional functionality for maintaining documentation and
other similar artifacts.

—FIDO: the basic interface between the message server and FrameMaker.
It supports starting FrameMaker when needed by other tools in the

Fig. 8. The architecture of the Desert program editing tools.

320 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

environment and sending message-based requests to the various Frame-
Maker interfaces.

—FINS: supports live-links to embed other graphical editors in Frame-
Maker. It currently supports several varieties of object design and user
interface editors.

—FISH: a first attempt at providing a shared editor using FrameMaker. It
supports group whiteboard capabilities as well as common editing using
a server.

—FLIP: supports Knuth-style Web-based literate programming [Knuth
1984] using a server.

—FLUFF: provides fragment locking and virtual file support using a lock
manager.

—FOOD: a first attempt at an object-oriented analysis facility using
FrameMaker. A server is used to find nouns and verbs in a document.

—FRED: the primary interface for program editing. It provides all the
necessary formatting capabilities, does incremental parsing and analysis,
and provides semantic feedback as the user edits.

Some of these, notably FADE, FAIL, FIDO, and FISH, are written only
as demonstration vehicles and are not complete implementations. The
others are complete prototypes and are described in more detail in the
following sections.

5.1 FRED: The Program Editing Interface

The first three requirements, system-based editing, semantic-based edit-
ing, and high-quality formatting, mandated that we provide extended
facilities for program editing within the common editor. Here, in addition to
providing well-formatted text, we offer the programmer nonobtrusive syn-
tactic and semantic feedback. Syntactic feedback is provided through the
use of indentation, with unexpected indentations being used to indicate
syntactic problems, and through appropriate highlighting of keywords and
contexts. Semantic feedback is provided through the use of formatted text,
with different types of identifiers being displayed in different colors and
with undefined symbols and other errors being displayed in red. In addi-
tion, the front end provides the programmer with implicit links between
declarations and their uses throughout the system.

To handle dynamic text formatting as well as the appropriate syntactic
and semantic feedback, we needed to parse the code as it was entered.
While parsing on a keystroke basis is not new—it was done in the early
1980s in the COPE system at Cornell [Archer and Conway 1981]—doing it
outside of a syntax-directed editor, without direct control over the user’s
input, in the context of a powerful word-processing system, and in a
language-independent manner is new.

The Desert Environment • 321

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

A basic issue in designing such a parser is determining how the parse is
to be represented internally. The parser needs to do incremental parsing to
minimize the amount of work to be done on each keystroke. It needs to
handle incorrect programs and a variety of programming languages, includ-
ing some (such as C11) that are notoriously difficult to parse. The obvious
choice of representations, parse trees, has several drawbacks. They are
much more complex than necessary, since we need only enough information
for formatting. They are suitable when the program is correct, but are
inadequate for incorrect programs. They are typically used to represent the
language portion of the program and ignore comments and white space.
Finally, parse trees imply that full parsing must be done, and even full
incremental parsing can be complex and time-consuming. For example,
adding a left brace in a C program would normally invalidate the remain-
der of the file and cause it to be reparsed.

FRED uses a simpler representation that meets our needs without the
difficulties of parse trees. It represents the parse as two structures, a
stream of tokens and a symbol table. The tokens serve as input for the
simple parsing needed to maintain the symbol table, as the basis for
finding the proper indentation for a line, and as the basis for formatting.

In the next three sections we look in more detail at symbol table
management, parsing, and formatting.

5.1.1 Symbol Table Management. Symbol table management in the
editor interface enables the programmer to define and look up names inside
scopes. It differs from traditional compiler-symbol table management in
three respects. First, it provides incremental facilities whereby symbols can
be dynamically defined and undefined to support incremental parsing. This
is done by including an undefine operation in the scope table and keeping
track of all current implicit and explicit definitions.

The second difference is that FRED supports incomplete programs by
maintaining the implicit type of undefined symbols. This is done by adding
an assume operation that takes a name and the symbol type. If the name is
already defined, the assume operation is ignored. If the name is undefined,
this operation creates a definition in the outermost scope regardless of the
scope it is called for, and sets a flag in that definition indicating that the
name is assumed. If the name was previously assumed, then the symbol
type of the previous definition and of this definition are checked to
determine a new symbol type for a name. This is needed to handle names
that can be used ambiguously, e.g., type names that can be used as
functions (for casting or constructors) and functions that can be used as
pointer-to-function variables.

The third unique feature of FRED’s symbol table mechanism is its
connection with the system data store to facilitate lookup and cross
referencing of names defined and used in other parts of the system. This is
managed through the outermost scope. This scope automatically estab-
lishes a connection with the proper semantic data store, it determines the
set of include files referenced by the file being edited and creates a lookup

322 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

context in that data store consisting of these files and the files they include.
When a name is looked up in the global scope, this data store is requested
to find this name in this lookup context, and the information returned is
used to define the symbol.

The global scope is also used to manage dynamic cross-reference links
based on uses and declarations. When the editor interface needs either the
set of declarations or the set of references for a name that is defined or
could be accessed externally, it sends a corresponding request to the data
store.

The editor interface also provides a direct user interface to the symbol
table through the symbol lookup dialog, which updates automatically as the
user types, showing possible continuations to the current identifier and
handling symbol completion. It also supports qualified lookup on demand.
This is another example of aiding the programmer by providing access to
appropriate semantic information.

5.1.2 Parsing. FRED parses the user’s program for two reasons. The
first is to maintain the symbol table and to locally link references to their
declarations to support implicit links within the file. The second is to let
the editor format the text to make it more readable.

Parsing is done in three phases. The first phase is scanning the source to
produce a sequence of tokens. Figure 9(a) shows a simple source example
that is tokenized as shown in Figure 9(b). Scanning is done incrementally
one line at a time, being extended to additional lines only when necessary.

Once tokens have been computed for a line, the line is parsed. The parser
first goes through the tokens on the line to identify declarations and
difficult-to-parse constructs. It saves its result by changing the token types
returned by the scanner to indicate definitions or special symbols. The
result of this scan on the previous example is shown in Figure 9(c).

The final parsing phase maintains the symbol table by doing a left-to-
right scan through the tokens. Any token that starts or ends a scope causes
the current scope to be updated. The name corresponding to a token
identified as a definition in the previous pass is entered into the symbol
table in the current scope. Finally, any identifier token not modified by the
first pass is looked up in the current scope and context, and its token type
is changed to identify the actual symbol type. Symbols are first looked up in
the current file. If they are not found, the system data store and other
active editors for the project are queried to see if the symbol is defined at
the outermost level or in an appropriate class. This gives the user the most
up-to-date information and can be used to provide multiple-user support if
the project is set up for multiple users (see Section 6). Figure 9(d) shows
the result of this second scan on the previous examples.

This approach to simplified parsing was implemented with C and C11 in
mind but was designed to be language-independent. The implementation
already isolates those parts that are language-dependent from the large
body of common support code. We extended the original parser to handle
Java in half a day’s work. Other languages might be more difficult, but our

The Desert Environment • 323

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

intuition and preliminary analysis indicate that most languages will be
easier to parse than C11. For the purposes of the editor, the parser need
only maintain the symbol table and identify the symbol type of each
identifier token. For most procedural and object-oriented languages, this

Fig. 9. An example of parsing inside the editor.

Fig. 10. The basic character formats used by the editor interface.

324 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

involves finding declarations, building the symbol table, and then doing
symbol table lookup, just as we have done for C11. Most languages other
than C and C11 make it easy to identify declarations. The symbol table
processing already provided by FRED was designed to handle most current
and proposed symbol mechanisms. Extending it to other languages should
not be a problem. We estimate that support for even a complex language
such as Ada could be added in well under a week.

5.1.3 Formatting. Once parsing is complete, the text can be formatted.
This is done in two stages. The first involves assigning a paragraph format
to the line based on the tokens of that line, and the second involves
assigning a character format to each token based solely on the type of
token. This simple approach is made possible by the parsing strategy,
which encodes the result of the parse in the token types.

This approach is quite flexible. Our objective was to approximate the
work of Baecker and Marcus [1989] in designing a color display of the
program text. Some changes had to be made in their recommendations to
fit into the structure provided by word processors and the notion of the user
directly editing the text. Accommodations also had to be made so that
existing source code could be read in and so that a readable ASCII file could
be regenerated.

Line-based formatting is used primarily to identify block comments so as
to highlight them, as suggested by Baecker and Marcus. Blank lines served
to identify valid breaking points so that functions can be kept on the same
page as much as possible.

The key part of formatting is handled by assigning each token an
appropriate character format. Different character formats are provided for
different types of lexical units, as shown in Figure 11. In addition, different
formats are used to describe different types of identifiers. Each of the
identifier types shown in Figure 11 has three possible formats, one to
indicate a reference to an identifier of that type, one to indicate a reference
to an external identifier of that type, and one to indicate a definition of an
identifier of the given type. Function declarations without a body (and
similar method declarations) are formatted as external references rather
than as definitions. The result of this can be seen in Figure 12. When
displayed on the screen, type names, both built-in and user-defined, are
shown in dark green; the names and functions being defined are high-
lighted in dark magenta in a large font to stand out from the rest of the
text; functions being called are shown in bold italics; names being declared,
both in the argument list and in declarations, are shown in boldface;
keywords are displayed in blue; and all other identifiers are shown in
standard font.

5.2 FLUFF: Support for Virtual Files

One of the goals for our common editor was that it should be integrated into
the environment. Since one of the goals of Desert itself is to support virtual
files, we needed to ensure that the editor provide full support for such files.

The Desert Environment • 325

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

Most of the virtual file support is embedded in the program editor
interface described in the previous section. The header lines for a virtual
file are parsed and formatted separately by this front end and are protected
from editing. The program editor also sets up appropriate editing contexts
for each individual fragments, so that name lookup and the like can be
done appropriately within that fragment.

Full virtual file support, however, also requires support for fragment-
based locking. With whole files it is fairly easy for the editor or user to
ascertain if the file is already being edited or in use. However, with
fragments it is easy for even a single user unwittingly to create multiple
views of a single fragment and change each one separately. Fragments also
hold the promise of a finer granularity for sharing source code during
cooperative development by letting multiple programmers edit different
pieces of the same file safely.

Desert supports a simple form of locking based on fragments using the
FLUFF editor interface and the LOFA lock manager. FLUFF uses optimis-
tic locking to keep track of the lock state of each fragment in the current
file. If the user attempts to edit a fragment that has not yet been locked,
FLUFF attempts to lock that fragment by sending appropriate messages to
the lock manager. If the fragment is locked by another file or another user,
then FLUFF disables edits on the corresponding portion of the file. Other-
wise, FLUFF updates the lock state and allows editing.

The lock manager, LOFA, implements a simple nested locking strategy
with both read and write locks. It is modularized so that if in the future a
more sophisticated locking strategy becomes necessary it could be replaced
with a system such as PERN [Ben-Shaul et al. 1992; Heineman and Kaiser
1995]. LOFA communicates with FLUFF and any other tools that require
fragment locking through the global message server. This ensures that
locks are maintained systemwide. The infrequency of lock requests ensures
that this is not a performance bottleneck.

Fig. 11. Formatting styles for different types of identifiers. Most identifiers have different
formats depending on whether they are local references, global references, or definitions.

326 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

5.3 FINS: Insets for Software Artifacts

Another goal for our common editor was to provide common access to a
variety of software artifacts. Several of these artifacts, particularly the
graphical ones, are built and maintained using special purpose editors:
OMT diagrams describing an object-oriented design are maintained with
an object design tool; user interface designs are edited using an interface
builder. Ideally such specialized editing should be included as part of the
common editor. This is typically done today using a facility such as ActiveX
that allows embedding a document of one type within another and uses a
common front end for the different editors. FrameMaker, in its current
state, does not support such a facility. Such facilities assume, however, that
both the base editor and the specialized editor be designed with a common
interface and facilities in mind. This is generally not the case in practice.

The FINS editor interface does the best it can in integrating a suite of
diverse tools, using their interfaces and the inset mechanism that Frame-
Maker does provide. FINS manages two files for each inset interface. The
first file is the input file to the tool, i.e., a file representing the software
artifact. For tools that actually use a database such as Paradigm1 and
Cadre’s OMT tool, we generate a state file when the user saves the design
and use this file to recreate the windows open at the time of the save. For
tools that have a single data file, such as Builder Xcessory, Sun’s VISU
interface builder, and GE’s omtool, we use the data file saved by the tool.

The second file managed by the front end is a file containing the image to
display in the inset. This can either be a PostScript file or an X11 image file
and is generated in various ways depending on the tool’s capabilities. The
common inset interface detects when the tool input file is older than the

Fig. 12. Example of formatting in the editor interface.

The Desert Environment • 327

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

image file and automatically generates a new image file. Integrating
additional tools through the inset interface is simple and fast, taking less
than half a day provided that the tool has a state or data file or one can be
easily generated and that there is a logical way of generating an image file
that can be incorporated into FrameMaker.

5.4 FLIP: Literate Programming Support

Literate programming [Knuth 1984] is an attempt to make programs
readable by humans by integrating documentation and code in a single file.
Since this coincides with one of the goals of the Desert environment, it is
only natural that Desert provide support for literate programming.

Desert’s support for literate programming is twofold. First, since Frame-
Maker can define both text and graphics and is commonly used for program
documentation, Desert supports a straightforward form of literate pro-
gramming by letting the programmer intersperse documentation and code
in the same file using standard FrameMaker facilities.

Literate programming, however, is more than simply placing code and its
documentation in a single file. Childs [1991] provides a list of features that
literate programming should support. These include generating problem
descriptions and examining alternative solutions, breaking the program
down into logical subdivisions such as chapters and sections, presenting
the program in a logical order, and providing reading aids such as cross-
references automatically.

To support literate programming along these lines, we implemented an
additional interface, FLIP, that supports a traditional approach similar to
that of other literate programming systems. In doing so, we make effective
use of FrameMaker by letting the programmer use the formatting capabil-
ities of the programming interface for code while still providing access to
the full range of text and graphics for documentation.

Most literate programming systems utilize stylized commands in the code
to indicate different sections of documentation and code. Our literate
programming interface uses special FrameMaker paragraph types for this
purpose. These paragraph types are all displayed with special visual
attributes to indicate that they are not part of the document but rather
define how the document should be interpreted.

In addition to this interface, our literate programming support depends
on a separate server, SLIP, that does the underlying processing. When a
file containing literate programming commands is saved, or when the user
specifically requests an update of the literate programming portions from a
file, FLIP sends information about each file to be generated, each con-
tainer, each container extension, and the contents of the containers to
SLIP, which in turn stores them in a directory that is specific to the current
Desert project and is a database for literate programming information for
the project. SLIP then makes it possible to regenerate or update all
source-code files for a given project from this specialized database. An
interface for triggering this update is provided in FrameMaker.

328 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

5.5 FOOD: Object-Oriented Analysis and Design Support

To demonstrate the use of Desert in other phases of software engineering,
we have included a small set of tools for object-oriented analysis and
design. Some of this support involved integrating design tools such as OMT
editors into the editor. To go beyond this, we added a tool for finding a
candidate set of objects from a specification document and using this set to
build an initial OMT diagram. Extending this tool with additional capabil-
ities is one of our current research projects.

The first stage of object-oriented design involves determining the set of
object classes that will be needed. Several techniques have been proposed
to accomplish this, ranging from looking for nouns and verbs in the
specification documents to constructing and analyzing scenarios. Our tool,
the FrameMaker interface FOOD, uses the former approach, since it can be
easily automated.

FOOD uses an external package developed for natural-language process-
ing to determine the parts of speech of each word in an arbitrary Frame-
Maker document [Charniak et al. 1993]. A further analysis selects nouns
that occur frequently as potential objects, taking into account synonyms,
reference words such as “anything,” and word size. The verbs that act on
these nouns then become the potential methods. FOOD builds a table of
potential objects and their methods. The user can edit the table to refine
the set of objects and methods or to add more information. The tool can
then take the edited table and produce an initial OMT diagram using one of
the OMT tools that the environment supports. This diagram can then be
edited with the appropriate editor and included in the appropriate source
or virtual files using the inset mechanism.

Two views of the use of FOOD in FrameMaker are shown in Figure 13.
The upper view shows nouns and verbs in the document, nouns highlighted
as the lighter underlined items in the figure (red on the screen) and verbs
as the darker underlined items (blue on the screen). The bottom view shows
part of the table of potential classes generated from this document, objects
on the left and potential methods for these objects in the middle; space is
left for more description of both objects and methods. The table is designed
so that additional information such as relationships between objects can
easily be added in the future.

5.6 Evaluation

Our experience to date has shown the power of using a single editing
interface in a programming environment. The common editor makes edit-
ing easier for the programmer and provides a convenient front end to a
wide variety of programming tools. The best feature we have found thus far
is the use of formatting and unobtrusive semantic feedback (for instance,
displaying undefined identifiers in red) during program editing. Once one
gets used to these facilities, going back to a more “primitive” editor lacking
them is bothersome. (The purely syntactic highlighting of Visual C11 or
emacs noticeably lacks the accuracy and completeness that FRED offers.)

The Desert Environment • 329

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

The use of FrameMaker as the common editor has been somewhat
controversial. FrameMaker has all the facilities needed in a common editor.
It lets us mix text and graphics for documentation, supports high-quality
formatting of programs, and offers inset and link mechanisms for integrat-
ing the editor with other tools. These, combined with the fact that many
programmers are already familiar with the editor because they use it for

Fig. 13. FrameMaker windows showing the object-oriented design tool FOOD in action. The
top window shows highlighting of nouns and verbs in a document. The bottom window shows a
portion of the resultant object table.

330 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

documentation or writing papers, made it a convenient choice. Moreover,
its powerful API enabled us to implement a large number of tools.

On the other hand, FrameMaker was not designed for applications such
as programming and the highly interactive extensions we have added.
FrameMaker is large and relatively slow as editors go. The time to open a
file is generally measured in seconds, and the system is almost unusable on
older hardware. We also had to take special measures to eliminate some of
the bottlenecks that arose in implementing the FRED package. While we
still have some performance problems in the current implementation, in
terms of both speed and memory usage, we have gotten to the point where
the editor is usable.

While FrameMaker provides Desert with many capabilities, it has re-
stricted the interfaces we can offer. Insets in FrameMaker are somewhat
primitive when compared to Microsoft’s ActiveX and similar technology.
FrameMaker’s cross-reference links are also somewhat restricted, being
difficult to activate and define. Comments in the program display had to
use simple tables to achieve the desired background. This made the design
and implementation of the program-editing front end more complicated
than necessary. Annotations were also difficult to integrate into the docu-
ment-oriented philosophy of FrameMaker. Finally, because FrameMaker
essentially controlled the display, some of our user interface options are not
optimal. For example, the dialog box for symbol completion would probably
be better using a popup menu or cue, as in Visual C11.

Overall, however, our experiences with the use of a word-processing
editor in general and FrameMaker in particular have been positive. We
anticipate that other environments will move in this direction as these
tools become more general and the machines they run on become more
powerful.

6. CONTEXT MANAGEMENT IN DESERT

The Desert framework is designed to handle large-scale software engineer-
ing projects typically involving a number of programmers working on a
large set of files to produce a smaller number of different binaries. Doing
this requires the notion of a project.

The environment must recognize and utilize projects in several ways.
First, the project must define the set of relevant source files that will be
used in the data stores. Second, it must provide the information needed to
understand how to scan and use these files, e.g., indicating where include
files can be found or what compilation flags are to be used for particular
files. Third, it must allow easy customization so that each individual
programmer can have a private view of a complex project. Fourth, it must
be readily adaptable, anticipating and tracking changes in the set of files
and binaries without explicit commands from the user. Finally, it must let
the programmers edit the project definitions as appropriate. Desert accom-
plishes these ends through the use of contexts.

The Desert Environment • 331

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

6.1 Contexts

Desert defines a context as a set of files along with associated information.
The files are identified with two sets of path names, one indicating paths to
include in the context and one indicating paths to exclude. Each path name
to include can either indicate individual files or a directory. In the latter
case all files in the directory and in any of its subdirectories are included or
excluded as appropriate. This provides the adaptability cited above, with
new files added to directories or files renamed within a directory being
handled automatically. The set of path names to exclude is interpreted as a
set of regular expressions to give the user the most flexibility.

Focusing on the set of base files as is done in Desert rather than on
target systems provides additional flexibility. In Desert, a collection of
binaries can be included in a single context. For example, all the Desert
tools (about 40 binaries not including test programs) are included in the
Desert context; similarly, the Forest context includes the underlying C11
support library used by Desert as well as a large collection of test pro-
grams. A context can also be built with no executable, as, for example,
during the design stages of a system or when only the literate programming
facilities of Desert are being used.

Desert contexts provide a general mechanism, associations, for providing
information about individual files. Each association is a mapping from file
name patterns to data. If a file name matches a given pattern, the
associated data either replace or are added to (depending on the type of
association) the corresponding data for that file. For example, the IN-
CLUDE association lets the user specify paths to be used to find include
files while scanning and is additive, with multiple patterns adding separate
include paths for a file. Other associations are provided for compilation
options, for determining the appropriate source language, and to let con-
texts be integrated with a version control and a configuration management
system.

Desert provides individualized contexts in two stages. It first supports
two basic types of contexts: global contexts that are shared among a set of
users and local contexts that are specific to a single user. Second, it lets a
new context be defined relative to a base context. In this case the new
context inherits the definitions of the base context and can provide addi-
tional definitions of its own as well as override the base definitions. This
lets the overall information about a project be defined in a shared global
context while letting individual programmers create a custom context with
their own minor variations of the global information. It can also be used to
create multiple global contexts representing different versions of a system.

6.2 The Context Interfaces

Desert makes the information about contexts available both to the user and
to other tools. The interface to other tools is provided by the PUMA front
end as shown in Figure 14. PUMA runs as an independent process
connected to the other tools using the message server. It lets other tools

332 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

query and set information about the various contexts, and provides addi-
tional facilities for creating new contexts, finding the context associated
with a given file, returning all files in a context, and determining if a given
file is in a context.

The interface to the user is through the COMD tool. COMD was devel-
oped as a simple front end for context management, letting the user define,
edit, and control updates to contexts. As shown in Figure 15, it provides a
set of pulldown menus for this purpose as well as a display area showing
what is in the context. For the display, we use the 3D facilities provided by
the tools we developed for program visualization [Reiss 1995]. White nodes
represent directories explicitly used in the context; black nodes represent
directories explicitly excluded; otherwise a node’s color represents the last
time that node or any file in it was modified. The height of a node
represents the number of files. The display can also show the particular
files included in the database.

6.3 Evaluation

PUMA is actually a placeholder for what should be a complete configura-
tion management system that can be used for both version management
and system building. PUMA was designed to be general enough to serve as
a back end for configuration management, but has never been used to its
full capacity or with an appropriate set of front ends for system building or
versioning. For example, it provides functionality for selecting which ver-
sion of each file should be used using patterns similar to the Shape system
[Mahler and Lampen 1989].

The COMD interface was also designed for extension to a full front end
for configuration management. Here we drew on previous experience with
the formview tool provided by FIELD and the POEM system [Lin and Reiss
1995]. Many of the capabilities, e.g., specifying what include paths are to be

Fig. 14. The tool architecture of the Desert environment. The message server connects the
various tools to their servers and to the data stores and editing tools. COMD provides
context-management services using the PUMA database server. CAMEL provides search and
virtual file-building facilities using the SEGO query server as an interface to multiple data
stores. MSCAN provides an interface to make, scanning the output to generate messages for
compiler error and warning messages. Finally, CACTI and MIRAGE are new tools being
developed for program visualization.

The Desert Environment • 333

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

used for different directories or files, are similar to what is needed in a
configuration management package. Moreover, the display component of
the tool was designed to support a variety of different displays, e.g., a
file-dependency display or version tree display as well as the current
directory view.

While both of these systems were designed to be extended, the fact that
they have not been is one of the major drawbacks of the current Desert
environment. Any configuration information needs to be specified twice,
once for PUMA and once in a makefile. Most of this information should be
specified at most once, since multiple specifications not only require addi-
tional work of the user but also can lead to inconsistencies.

The lack of a central system model with version and building information
has also hurt other tools in the environment. For example, searches done in
the editor should restrict themselves to files that are part of the same
generated binary as the current file. One should be able to restrict queries
in the CAMEL tool to a particular binary or subsystem or a particular
version of the system. The editor should be aware of different versions of a
source file and automatically find the proper one. Because of all this, we

Fig. 15. The COMD interface for a project showing its various directories. Colors (shown here
in various gray scales) code the date last modified of any file in the directory. Height above a
midline shows the number of files while depth below the midline shows the total size of the
files.

334 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

now feel that any new programming environment should be built with an
integrated system model from the start.

The advantages of a central system model are also shown in the various
process-centered environments such as those of the Arcadia consortium
[Taylor et al. 1989] and Marvel [Ben-Shaul et al. 1992]. These environ-
ments provide a flexible framework for directing and augmenting the
development process, and assume that the user provides a suitable model
describing the system being developed. The existence of such a model lets
these environments provide a proactive set of system management tools to
assist the programmer. Once Desert has a full system model, adding such
capabilities using either rules (like Marvel) or a process language (like
Arcadia) would be a natural extension.

7. RELATED WORK

Desert uses a combination of control, data, and presentation integration to
approach a seamless environment. Control integration, a technique we
pioneered for programming environments in the FIELD system [Reiss
1990b; 1990c; 1994], is very effective for integrating a concurrently running
set of tools. It is the basis for most current commercial programming
environments, including HP’s Softbench, Digital’s FUSE, and Sun’s Work-
shop. It is relatively inexpensive and allows the use of existing tools with
only minor modifications. Moreover, as we demonstrated in FIELD, it can
be completely compatible with the use of existing tools. However, it does
not provide complete integration.

Data integration was first introduced in the early 1980s. It has been used
to some extent in Ada programming support environments [Munck et al.
1989], in software engineering environments based on PCTE [Boudier et al.
1989], in commercial tools such as the SMARTsystem [PROCASE 1989],
and in research environments such as Centaur [Borras et al. 1989].

Unfortunately complete data integration has proven difficult to achieve.
An alternative has been providing a program database as another tool in
the environment, either accessed directly or through control integration.
Interlisp’s Masterscope package used an internal database [Teitelman
1974], and Linton [1984] proposed using relational databases. More re-
cently, the FIELD environment provides a cross-reference database of
program information that is used by a variety of tools in the environment
[Lejter et al. 1992], and CIA and CIA11 represent environment-indepen-
dent program databases for C and C11 respectively [Grass and Chen
1990]. Sun’s programming environment includes a similar tool, the source
browser, that maintains its own database. Similarly, SGI’s cvstatic uses
either a compiler-based scanner or cscope from Bell Laboratories for fast
generation of approximate semantic information. SNiFF also provides
approximate information for a program database [TakeFive Software
1993]. The use of an independent program database addresses some of the
issues of data integration, but not all. Such databases are limited to the
source code and do not extend to other aspects of software development.

The Desert Environment • 335

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

They provide detailed information about variables, types, etc., but rarely
handle multiple languages cleanly. Finally, most of these systems either
require that the code is compiled in order to be included in the database
(since the scanners are either built into the compiler or are effectively full
language parsers), or only return approximate results, ignoring the scoping
information needed to resolve duplicate names.

A more recent data-integration approach similar to that used in Desert is
seen in the new version of IBM’s Visual Age environment [Nackman 1996].
Here the compiler generates abstract syntax trees that are stored in a
common repository and are available to the other tools. Unlike other
attempts at data integration, the Visual Age repository is viewed as a
cache, with the original program files viewed as the actual source of the
data. This provides many of the benefits of data integration while preserv-
ing the openness of files. Desert uses a similar technique, but with different
goals in mind. Visual Age uses the database primarily to provide fast
incremental compilation and is geared toward helping the individual pro-
grammer. Desert, on the other hand, emphasizes editing and tries to
address a full range of software development issues. The two approaches
are complementary.

The Desert emphasis on editing and presentation and its use of a
common editor also builds on existing work. Many proposed and existing
environments have been centered around the editor. This is natural, since
the editor is typically the tool used most widely by the programmer.
FIELD, for example, integrates the editor into the environment using
annotations to interact with other tools [Reiss 1990a]. Emacs [Gosling
1982] represents the current UNIX approach; here the editor is extended to
run other tools such as make to build systems and dbx to debug them, all
within its own framework.

Desert extends such editor integration by letting a common editor
support all phases of software development and by incorporating semantic
information from other tools into the editing process. As such, it shares
common elements with syntax-directed and language-knowledgeable edi-
tors, literate programming, and hypertext editing. The closest previous
environment is probably Cedar Mesa where a single specialized editor was
used for both structured documentation and for programming [Swinehart
et al. 1985; Teitelman 1984].

Many editors have been written exclusively or primarily for program-
ming. Many of these are syntax-directed editors, editors that parse the
program and let (or force) the programmer work in terms of syntactic units
of the underlying programming language. Syntax-directed editors were
widely proposed and implemented in the early 1980s [Delisle et al. 1984;
Donzeau-Gouge et al. 1984; Ellison and Staudt 1985; Reiss 1985; Teitel-
baum and Reps 1981]. While some syntax-directed editors continue to be
written, our general experience and that of others who have written and
used them is that users do not generally edit in terms of syntactic
constructs, and the syntax-directed features often get in the user’s way.
Language-based editors [Welsh et al. 1991; Wood 1981] are a compromise

336 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

that attempts to provide syntax-directed facilities along with standard text
editing. Most current editors with syntax-directed features are of this type.

Programmer-knowledgeable editors such as the Programmer’s Appren-
tice have also been proposed [Waters 1984]. These attempt to use artificial
intelligence techniques to provide direction to the programmer. More
recently, the Pan system attempts to use sophisticated semantic knowledge
to provide programmer feedback [Ballance et al. 1990]. Neither of these
approaches has been demonstrated as practical for realistically sized
programs.

More popular for programming are language-knowledgeable editors such
as emacs [Gosling 1982] and those in Microsoft’s Visual Studio. These
editors know enough about the language being edited to do automatic
indentation and simple error checking such as parenthesis balancing.
Extensions included in such editors include a tags file for handling simple
links between a definition and use (assuming the name is unique), and
color highlighting based on simple patterns. Language-knowledgeable edi-
tors can offer many of the features that our editor interface does. However,
they do not guarantee accuracy, since the pattern matching (for indenta-
tion, links, and formatting) is approximate and only based on local informa-
tion. Desert, even with the problems inherent to files currently being
edited, does partial parsing and uses global information from the data
stores to achieve significantly better accuracy. These editors are also not
fully functional word processing systems that can display and combine
graphics with text.

Other work related to ours includes work on literate programming
[Knuth 1984; 1992; Ramsey 1989; 1991] which is a general attempt to use a
single file for both documentation and code. A preprocessor extracts the
code from the file when compilation is needed. Other preprocessors can
extract documentation, function headers, or other relevant information.
Our editor interface is built on top of the commercial word processor
FrameMaker, which in turn supports much of this directly. This is closer to
the approach used in the Cedar Mesa environment where the Cedar editor
used the document structure and document tags to distinguish code and
comments in the same document [Teitelman 1984]. As described in Section
5.4, we also provide extensions that support Web-style literate program-
ming directly.

Another area of related work involves the use of hypertext editors and
browsers for programming. This has been advocated by several researchers
as appropriate technology. It is becoming more common with the advent of
HTTP and editors built for the World Wide Web [Ferrans et al. 1992] that
let the user create explicit links between the various parts of the program.
Our approach can provide similar facilities, using the hypertext capabilities
of FrameMaker for explicit links. Desert goes beyond this to create implicit
links dynamically, e.g., letting the user click on an identifier that is not an
explicit link and then computing where the definition or references to that
identifier are using the internal parse and the external data store. Multi-
media insets are supported both by HTTP and by FrameMaker. Hypertext-

The Desert Environment • 337

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

based tools such as javadoc preprocess a set of source files to produce a
read-only linked view of the software. Many of the links that are created
here are available automatically within Desert. Others items, such as
automatically generated documentation, could be built within Desert as an
additional tool.

Wasserman [1990] and Thomas and Nejmeh [1992] have both proposed
extending the three basic types of integration addressed in Desert with the
notion of process integration, measuring how the tools interact with a
particular software development process. This generally involves ensuring
tool compatibility and showing that the tools interact well with a given
development process. Desert does not yet address this aspect of integration.
However, incorporating additional tools to control and facilitate a software
development process, a step integral to process integration, should be
relatively easy to do within the Desert framework using the current control
integration facilities and the data available in the various data stores.

Finally, the processing done in the Desert editor involves incremental
parsing and semantic analysis. Incremental parsing typically shows how to
extend standard parsing techniques to support incrementality [Ghezzi and
Mandrioli 1980]. A variety of techniques have been proposed for incremen-
tal semantic analysis, including attribute grammars [Demers et al. 1981],
model-based functions [Reiss 1984], unification [Snelting and Henhapl
1986], and functions [Kaiser 1985]. All these techniques attempt to pre-
serve full semantic information and depend on having the full, error-free
program available. Our simplified techniques provide the information
needed for editing without the cost of maintaining the more detailed
information needed by a compiler. Moreover, they work well in the presence
of syntactic and semantic errors.

8. EXPERIENCES AND CONCLUSIONS

Desert is currently implemented as a research prototype designed to get
experience with and evaluate the potential of the various concepts it
introduces. Our concerns to date have focused on whether such an environ-
ment can be made to work, and, if so, how to fit the various pieces together.
We have been particularly interested in the potential uses of the various
data stores and a common editor and in finding ways for the environment
to improve programmer productivity.

At present, Desert consists of about 250,000 lines (five megabytes) of
C11 code evenly split between the actual implementation of Desert and
general support facilities (templates, Motif interface, data store framework
and query engine, Java parser). The actual implementation of the data
store and of all the scanners each involve about 12,000 lines of code. The
current search tool implementation involves 4,000 lines for CAMEL and
2,000 lines for SEGO. The FRED program-editing interface, the largest
single component, is about 30,000 lines of code. The implementation has
been done over four years.

338 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

The current environment has been used for its own development, for
developing a number of related projects and course software, and, to a
modest extent, in a small set of projects at Brown. This use, although quite
limited, has demonstrated that the ideas are practical and scale to large
software systems. Moreover, they have provided interesting feedback and
ideas for possible future extensions.

The major strengths of the environment have established from the point
of view of the environment developer are

—a flexible control integration mechanism that makes it easy to add new
tools;

—the introduction of fragment integration as a basis for finer-grain practi-
cal data integration among tools;

—tool-accessible data stores with fast response and access to semantic
information;

—integrated support for creating and saving virtual files

—a powerful word processor as a basis for presentation integration and for
tool integration in general; and

—a context database supporting flexible project definition and file-base
associations.

The strengths from a potential users point of view have been

—support for working in terms of virtual files including the ability to lock
files at the fragment level for cooperative development;

—a common query interface that can do semantic searches throughout a
project for either finding locations or for building virtual files;

—a single editor for most aspects of software development;

—unobtrusive semantic feedback while editing; and

—an adaptive interface for context management.

The major weaknesses of the current environment and thus the primary
directions for future work, as noted in the evaluation sections of this
article, are the lack of a system model for the data stores and the minimal
use of virtual file-based presentations. We expect to pursue various ideas in
both of these areas. For example, we are looking into different front ends
that would allow a more structured and flexible presentation schema,
possibly based on XML. We will also use the current environment as a basis
for studying program visualization tools (using the information available in
the various data stores) and intelligent program editing and presentation
mechanisms.

We also plan to get significantly more experience with the Desert
environment. We will begin to encourage its use in-house for student
projects in a variety of software engineering courses. We are also making

The Desert Environment • 339

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

the system available, in both binary (for Solaris 2.X) and source form, at
http://www.cs.brown.edu/software/desert. As we get more in-house experi-
ence with the system, we will encourage and support outside users.

ACKNOWLEDGMENTS

The author would like to thank the various anonymous reviewers for their
helpful and detailed suggestions.

REFERENCES

ARCHER, J., JR. AND CONWAY, R. 1981. COPE: A cooperative programming environment. Tech.
Rep. TR81-459. Cornell University, Ithaca, NY.

BAECKER, R. M. AND MARCUS, A. 1989. Human Factors and Typography for More Readable
Programs. ACM Press, New York, NY.

BALLANCE, R. A., GRAHAM, S. L., AND VANDE VANTER, M. L. 1990. The Pan language-based
editing system for integrated development. SIGSOFT Softw. Eng. Notes 15, 6 (Dec.), 77–93.

BEN-SHAUL, I. Z., KAISER, G. E., AND HEINEMAN, G. T. 1992. An architecture for multi-user
software development environments. SIGSOFT Softw. Eng. Notes 17, 5 (Dec. 1992),
149–158.

BORRAS, P., CLEMENT, D., DESPEYROUX, TH., INCERPI, J., KAHN, G., LANG, B., AND PASCUAL,
V. 1988. Centaur: The system. SIGPLAN Not. 24, 2 (Feb.), 14–24.

BOUDIER, G., GALLO, F., MINOT, R., AND THOMAS, I. 1988. An overview of PCTE and
PCTE. SIGPLAN Not. 24, 2 (Feb.), 248–257.

CHARNIAK, E., HENDRICKSON, C., JACOBSON, N., AND PERKOWITZ, M. 1993. Equations for
part-of-speech tagging. In Proceedings of the 11th International National Conference on
Artificial Intelligence (Chambery, France). AAAI Press, Menlo Park, CA, 784–789.

CHILDS, B. 1991. Literate programming, a practitioner’s view. TUGboat 12, 3,
1001–1008. Proceedings of the 1991 Annual Meeting of the Tex Users Group

DELISLE, N. A., MENICOSY, D. E., AND SCHWARTZ, M. D. 1984. Viewing a programming
environment as a single tool. SIGPLAN Not. 19, 5 (May), 49–56.

DONZEAU-GOUGE, V., HEUT, G., KAHN, G., AND LANG, B. 1984. Programming environments
based on structured editors. In Interactive Programming Environments, D. R. Barstow, H.
E. Shrobe, and E. Sandewall, Eds.

DEMERS, A., REPS, T., AND TEITELBAUM, T. 1981. Incremental evaluation for attribute
grammars with application to syntax-directed editors. In Proceedings of the 8th ACM
Symposium on Principles of Programming Languages (Jan.). ACM Press, New York, NY,
105–116.

ELLISON, R. J. AND STAUDT, B. J. 1985. The evolution of the GANDALF system. J. Syst. Softw.
5, 2 (May).

FERRANS, J. C., HURST, D. W, SENNETT, M. A., COVNOT, B. M., JI, W., KAJKA, P., AND OUYANG,
W. 1992. HyperWeb: a framework for hypermedia-based environments. SIGSOFT Softw.
Eng. Notes 17, 5 (Dec. 1992), 1–10.

FRAME TECHNOLOGY. 1995. Frame Developer’s Kit Programmer’s Guide. Frame Technology
Corp.

GARLAN, D. 1986. Views for tools in integrated environments. In An international workshop
on Advanced programming environments (Trondheim, Norway, June 16-18, 1986), R.
Conradi, T. M. Didriksen, and D. H. Wanvik, Eds. Springer-Verlag, Berlin, Germany,
314–343.

GARLAN, D. AND ILIAS, E. 1990. Low-cost, adaptable tool integration policies for integrated
environments. SIGSOFT Softw. Eng. Notes 15, 6 (Dec.), 1–10.

GHEZZI, C. AND MANDRIOLI, D. 1980. Augmenting parsers to support incrementality. J. ACM
27, 3 (July), 564–579.

GRASS, J. AND CHEN, Y. F. 1990. The C11 information abstractor. In Proceedings of the 2nd
USENIX on USENIX C11 Conference (Apr.). USENIX Assoc., Berkeley, CA, 265–275.

340 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

GOSLING, J. 1982. Unix Emacs. Tech. Rep.. Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA.

HEINEMAN, G. T. AND KAISER, G. E. 1995. An architecture for integrating concurrency control
into environment frameworks. In Proceedings of the 17th International Conference on
Software Engineering (ICSE-17, Seattle, WA, Apr. 23–30), D. Perry, Ed. ACM Press, New
York, NY, 305–313.

KAISER, G. E. 1985. Semantics for structure editing environments. Computer Science
Department, Carnegie Mellon University, Pittsburgh, PA.

KNUTH, D. E. 1984. Literate programming. Comput. J. 27, 2 (May 1984), 97–111.
KNUTH, D. E. 1992. Literate Programming. Center for Study of Language and Information,

Stanford, CA.
LEJTER, M., MEYERS, S., AND REISS, S. P. 1992. Support for maintaining object-oriented

programs. IEEE Trans. Softw. Eng. 18, 12 (Dec. 1992), 1045–1052.
LINTON, M. 1984. Implementing relational views of programs. In Proceedings of the

SIGSOFT/SIGPLAN Workshop on Practical Software Development Environments. ACM,
New York, NY.

LIN, Y.-J. AND REISS, S. P. 1995. Configuration management in terms of modules. In
Proceedings of the 5th International Workshop on Software Configuration Management:
Selected Papers of the ICSE SCM-4 and SCM-5 Workshops (Apr.), J. Estublier, Ed. Springer
Lecture Notes in Computer Science, vol. 1005. Springer-Verlag, Vienna, Austria.

MAHLER, A. AND LAMPEN, A. 1988. An integrated toolset for engineering software
configurations. SIGPLAN Not. 24, 2 (Feb.), 191–200.

MEYERS, S. 1991. Difficulties in integrating multiview development systems. IEEE Softw. 8,
1 (Jan.), 50–57.

MITCHELL, G. A. 1993. Extensible query processing in an object-oriented database. Ph.D.
Dissertation. Brown University, Providence, RI.

MUNCK, R., OBERNDORF, P., PLOEDEREDER, E., AND THALL, R. 1988. An overview of DOD-STD-
1838A (proposed) the common APSE interface set: revision. SIGPLAN Not. 24, 2 (Feb.),
235–247.

NACKMAN, L. R. 1996. An overview of Montana. Research Division, IBM, New York, NY.
PROCASE. 1989. SMART System Techical Overview. PROCASE Corp.
RAMSEY, N. 1989. Weaving a language-independent WEB. Commun. ACM 32, 9 (Sept. 1989),

1051–1055. Moderated by Christopher Van Wyk.
RAMSEY, N. 1991. Literate programming tools need not be complex. Tech. Rep.

CS-TR-351-91. Department of Computer Science, Princeton Univ., Princeton, NJ.
RIVEST, R. 1992. The MD5 message-digest algorithm. MIT Laboratory for Computer Science,

Cambridge, MA.
REISS, S. P. 1983. Eris. Brown University, Providence, RI.
REISS, S. P. 1984. An approach to incremental compilation. In Proceedings of the ACM

SIGPLAN ’84 Symposium on on Compiler Construction (June). ACM Press, New York, NY.
REISS, S. P. 1985. PECAN: Program development systems that support multiple views. IEEE

Trans. Softw. Eng. SE-11, 3 (Mar. 1985), 276–285.
REISS, S. P. 1990a. On the use of annotations for integrating the source in a program

development environment. In Human Factors in Analysis and Design of Information
Systems, R. Traunmuller, Ed. North-Holland Publishing Co., Amsterdam, The Netherlands.

REISS, S. P. 1990b. Connecting tools using message passing in the FIELD
Environment. IEEE Softw. 7, 4 (July), 57–67.

REISS, S. P. 1990c. Interacting with the FIELD environment. Softw. Pract. Exper. 20, S1
(June 1990), 89–115.

REISS, S. P. 1994. FIELD: A Friendly Integrated Environment for Learning and
Development. Kluwer B.V., Deventer, The Netherlands.

REISS, S. P. 1995. An engine for the 3D visualization of program information. J. Visual Lang.
Comput. 6 (Dec.), 299–323.

REPS, T. 1989. Demonstration of a prototype tool for program integration. Tech. Rep.
TR-819. Computer Science Department, Univ. of Wisconsin—Madison, Madison, WI.

The Desert Environment • 341

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

SCHEFSTRÖM, D. AND VAN DEN BOEK, G., Eds. 1993. Tool Integration: Environments and
Frameworks. Wiley series in software based systems. John Wiley & Sons, Inc., New York,
NY.

SNELTING, G. AND HENHAPL, W. 1986. Unification in many-sorted algebras as a device for
increment semantic analysis. In Proceedings of the 13th ACM Conference on Principles of
Programming Languages (POPL ’86, Jan.). ACM, New York, NY, 229–235.

STOCKTON, R. AND KRAMER, N. 1998. The Sheets hypercode editor. Computer Science
Department, Carnegie Mellon University, Pittsburgh, PA.

SULLIVAN, K. AND NOTKIN, D. 1990. Reconciling environment integration and component
independence. SIGSOFT Softw. Eng. Notes 15, 6 (Dec.), 22–33.

SUN MICROSYSTEMS. 1995. The C11 Application Binary Interface. Sun Microsystems, Inc.,
Mountain View, CA.

SUNSOFT. 1993. Tooltalk 1.1.1 User’s Guide. SunSoft Press, Mountain View, CA.
SWINEHART, D. C., ZELLWEGER, P. T., AND HAGMANN, R. B. 1985. The structure of

Cedar. SIGPLAN Not. 20, 7 (July 1985), 230–244.
TAKEFIVE SOFTWARE. 1993. SNiFF1 Version 1.0 Reference Guide. TakeFive Software.
TAYLOR, R. N., BELZ, F. C., CLARKE, L. A., OSTERWEIL, L., SELBY, R. W., WILEDEN, J. C., WOLF,

A. L., AND YOUNG, M. 1988. Foundations for the Arcadia environment
architecture. SIGPLAN Not. 24, 2 (Feb.), 1–13.

TEITELMAN, W. 1974. Interlisp Reference Manual. Xerox.
TEITELMAN, W. 1984. A tour through Cedar. IEEE Softw. 1, 2 (Apr.), 44–73.
TEITELBAUM, T. AND REPS, T. 1981. The Cornell program synthesizer: A syntax-directed

programming environment. Commun. ACM 24, 9 (Sept.), 563–573.
THOMAS, I. AND NEJMEH, B. A. 1992. Definitions of tool integration for environments. IEEE

Softw. 9, 2 (Mar.), 29–35.
WASSERMAN, A. I. 1990. Tool integration in software engineering environments. In

Proceedings of the international workshop on environments on Software engineering environ-
ments (Chinon, France, Sept. 18–20, 1989), F. Long, Ed. Springer Lecture Notes in
Computer Science, vol. 467. Springer-Verlag, New York, NY, 137–149.

WATERS, R. C. 1984. The programmer’s apprentice: Knowledge-based program editing. In
Interactive Programming Environments, D. R. Barstow, H. E. Shrobe, and E. Sandewall,
Eds.

WELSH, J., BROOM, B., AND KIONG, D. 1991. A design rationale for a language-based
editor. Softw. Pract. Exper. 21, 9 (Sept. 1991), 923–948.

WOOD, S. R. 1981. Z—The 95% program editor. SIGPLAN Not. 16, 6 (June), 1–7.

Received: July 1997; revised: December 1997, September 1998, and December 1998; accept-
ed: March 1999

342 • S. P. Reiss

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 4, October 1999.

