
PILOT: An Interactive Tool for Learning and Grading*

Stina Bridgeman
Brown Univ.

ssb@cs.brown.edu

Michael T. Goodrich
Johns Hopkins Univ.

goodrich@jhu.edu

Stephen G. Kobourov
Johns Hopkins Univ.
kobourov@cs.jhu.edu

Roberto Tamassia
Brown Univ.

rt@cs.brown.edu

Abstract

We describe a Web-based interactive system, called
PILOT, for testing computer science concepts. The
strengths of PILOT are its universal access and plat-
form independence, its use as an algorithm visualization
tool, its ability to test algorithmic concepts, its support
for graph generation and layout, its automated grading
mechanism, and its ability to award partial credit to
proposed solutions.

1 Introduction

Interactive World Wide Web (WWW)-based learning
tools have become the focus of research for a large num-
ber of computer science educators [7, 8]. Interaction and
animation in and out of the classroom offer the chance
to actively engage students in the learning process. Sev-
eral interactive educational tools have been developed
over the last few years. Many of these, however, quickly
become obsolete as hardware/software platforms and
operating systems change. With the advent of platform-
independent applications, there are far greater possibil-
ities for creating more useful educational tools. While
many computer science courses offer online access to
handouts, syllabi, homework assignments solutions and
other static documents, only a few have begun to ex-
ploit the full potential of the new technology available
to us.

Online testing systems can be useful in distance learn-

*Research supported in part by the National Science
Foundation under grants CCR-9732327 and CDA-9703080,
and by the U.S. Army Research Office under grant DAAH0~
96-1-0013.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCSE 2000 3/00 Austin, TX, USA
© 2000 ACM 1-58113-213-1/00•0003 ... $5.00

ing, virtual universities, and online classes, and several
systems that allow for online testing have been devel-
oped in the last decade (e.g., see [10]). Such systems
tend to support multiple-choice questions, which pro-
vide a natural class of questions that can be automati-
cally graded online. While such questions can be used
to provide useful measures of student learning, we be-
lieve there are significant additional learning and test-
ing opportunities available that have yet to be fully ex-
ploited. In particular, because of the ability to formally
define input and output specifications, there are other
more complex questions that should also allow for au-
tomatic online grading, at least in theory. Some of the
immediate advantages of online grading for richer sets
of questions are the ability to test students' answer cre-
ation abilities rather than simply their answer choosing
abilities. In addition, online grading also provides fas t
and consistent grading, provably correct solutions, and
pointers to information relevant to the question. More-
over, online grading also allows the assignment of dif-
ferent questions to the students, thus reducing issues of
cheating and plagiarism.

We are therefore interested in interactive online auto-
mated grading tools that aid student learning and test
answer creation abilities, not just answer choosing skills.
In addition, we are interested in the visualization of
questions, errors, and answers.

1.1 Previous Work
Several previous software systems have been designed
with online testing in mind [13, 14]. Blaclcboard.com [5]
provides automati c grading for quizzes with multi-
ple choice and true/false questions. Systems such as
QUIZIT [17], WebCT [18], and ASSYST [12] have been
designed to perform online testing of answers whose cor-
rect syntax can be specified as regular expressions. Pre-
vious systems that allow for richer types of answers have
needed assistance fTom the course graders and the in-
structor to perform the actual answer checking. In addi-
tion to the difficulty of dealing with sophisticated forms
of answers, another area where these previous systems
have trouble is in their lack of ability to provide partial
credit to answers that are "almost" correct.

139

Intelligent tutoring systems have been an area of re-
search in artificial intelligence for several decades. The
primary application of these systems is providing feed-
back and tutoring the student rather than grading re-
sponses. Many systems, such as the LISP Tutor [2]
and the Geometry Tutor [1], focus on abstract problem-
solving skills and thus are more complicated than our
aims here.

Since our notion of answer specification and checking
involves a strong visualization component, it is also re-
lated to previous work on the visualization of algorithms
and data structures. There is a rich literature that de-
scribes the benefits of concept visualization in educa-
tion settings. Algorithm animation has been success-
fully used for visualizing graph algorithms, sorting, and
searching, to name a few examples [16]. Similarly, pro-
gram code animation also helps in the learning of new
programming languages. Finally, concept animation
has also been successful in in communicating difficult
concepts such as finite state automata [7]. Tools for cre-
ating animations of data structures and algorithms have
also been developed [15]. Interactive tutorials have been
designed and their positive impact on student learning
evaluated [4]. Electronic books have been proposed and
developed, in which hypertext, interactive animations,
audio and video parts are integrated in a web-based
standalone educational resource [6].

1.2 Our Results

We have designed a Platform-Independent Learning
Online Tool, PILOT, with several goals in mind. First,
we would like to offer an interactive tool that can be
used in class to aid in exposition. Furthermore, there
are numerous problems that students learn best by ex-
ample, and we would like a tool that can generate ran-
dom instances of a problem and allow the student to
create the solution online. Finally, we would like to
allow for automated grading so that the student can
receive immediate feedback on her work. Thus, PILOT
allows for:

• WWW access and platform independence
• generation of interesting random instances of a

problem
• user interaction to specify a solution
• online submission of solutions for evaluation
• evaluation of solutions, providing a score and com-

ments
• generation of correct solutions to the problem

At this time, PILOT supports graph problems such as
finding the minimum spanning tree (MST), tree search
algorithms (breadth first search (BFS) and depth first
search (DFS)), and shortest path algorithms.

One of the main advantages of PILOT is that it is a plat-
form independent client/server based applet that can

be run from a browser such as Netscape or Internet
Explorer. Another even more important feature is its
capability to successfully interact with the student by
providing detailed feedback. For example, in creating a
MST, if an edge is chosen incorrectly, PILOT will high-
light the edge and suggest how to correct it.

With additional security, PILOT can be used for grad-
ing by allowing graders to input both problems and stu-
dents' solutions. (In the current system, PILOT can only
be used to check problems generated on the spot. This is
to prevent students from entering their homework prob-
lems and using PILOT's problem-solving capabilities to
obtain solutions.) Such security could take the form of
password protection or encryption, to allow only autho-
rized users to connect. Additional security would also
allow the use of PILOT in testing situations, where it is
important to ensure that each student only submits one
version of the answer.

2 Using PILOT

In the current scenario, the user chooses a problem type
from a pull-down menu and clicks the "generate" but-
ton to create a random instance of that problem. Fig-
ure l(a) shows the result of generating an instance of
MST-Prim - - a minimum spanning tree problem to be
solved using Prim's algorithm. PILOT easily allows test-
ing of both general concepts ("find a minimum spanning
tree of the given graph") and specific algorithms ("find
a minimum spanning tree of the given graph, using
Prim's algorithm"). For MST-Prim, the user is to exe-
cute Prim's algorithm, starting with the vertex marked
"start"; the solution is a numbering of the edges in the
order in which they were added to the MST. To indi-
cate the solution, the user clicks on the edges belonging
to the MST. The order can be adjusted in the "Edge
Ordering" window; by default, the edges are listed in
the order in which they are selected.

Once the user is satisfied that she has entered the cor-
rect solution (Figure l(b)), clicking the "check" button
will correct and grade the solution. The system will
display the graph with the incorrect edges highlighted,
along with a score and an explanation of the errors
made; see Figure l(c). Note that the actual solution
is not d i sp l ayed" this is because the checker may not
actually compute the solution in the process of grad-
ing the user's input. A solution can be obtained at any
point by clicking the "solve" button; see Figure l(d).

3 PILOT Architecture

PILOT uses a client-server architecture, and is built on
top of GeomNet [3]. In the GeomNet model, the client
is responsible for maintaining the user interface and all
of the algorithm-related computation is done on the
server. For PILOT, the client is implemented as a Java

140

(a) random instance of MST-Prim (b) user's solution

!

(c) automatically corrected solution, with incorrect
edges highlighted

(d) system-generated solution

Figure 1: Example of user interaction with PILOT.

141

applet and the server side contains the problem genera-
tors, checkers, and solvers, currently also implemented
in Java. The main motivation for choosing the client-
server architecture was flexibility - - the server is not
constrained by the security restrictions placed on ap-
plets and is not limited to running Java programs, mak-
ing it possible to take advantage of existing tools. The
graph generator, for example, uses the Graph Drawing
Server [9] component of GeomNet to compute a layout
for the automatically generated graphs. The modular-
ity of the GeomNet system also makes it easy to add
new components - - both interfaces and problem gener-
a tors /checkers /so lvers- to PILOT.

We now look at the graph generator and problem
checker components of PILOT in more detail, focusing
on minimum spanning tree problems as an example; the
problem solvers are straightforward implementations of
the appropriate problem solving algorithms and are not
considered further.

3.1 Graph Generator

The graph generator uses a method similar to that
of [11] to generate "realistic" graphs for experimental
purposes. Graphs are built from a single vertex by re-
peatedly applying three operations - - (1) insertion of
a vertex and a random number of adjacent edges, (2)
insertion of an edge between two existing vertices, and
(3) splitting of an existing edge by replacing it with a
new vertex and two new edges. Graph properties such
as the ratio of edges to vertices can be controlled by ad-
justing probabilities assigned to each of the operations
and the degree of newly inserted vertices.

3.2 Problem Checkers

There are four main challenges in designing problem
checkers: determining what constitutes a solution, han-
dling non-unique solutions, assigning appropriate par-
tial credit, and returning meaningful comments.

The format of the solution fundamentally affects the
structure of the checker. For example, the MST problem
simply tests whether or not the user can construct a
minimum spanning tree, and so the solution is a list of
the edges belonging to the MST. The checker simply
verifies whether or not the right edges were selected. In
MST-Prim, the goal is to test the user's knowledge of a
specific algorithm and so more information is needed in
the solution. In this case, the order in which the edges
are added to the MST is sufficient to verify that the
user executed the algorithm correctly, and the checker
must check this order.

The last three problems are related. It is relatively easy
to compute a solution and compare the user's input to
it, simply returning "correct" or "incorrect" (or "full
credit" / "no credit"). However, this unfairly penalizes a

student who understands the concept but makes a small
mistake, and is of limited use to a student who is trying
to master a concept. More appropriate responses for
MST problems, for example, would be something like
"Edge (a,c) should be replaced by the lower-weight edge
(a,b)" and a 1-point penalty for each incorrect edge.
The solve-and-compare approach also runs into prob-
lems when the solution is not unique, since the user
may have a correct solution but be marked wrong be-
cause the system generated a different one. Non-unique
solutions can easily occur in MST problems when mul-
tiple edges have the same weight.

One approach is to verify properties of the user's solu-
tion, to ensure that it is valid. This is the approach
taken in the MST checker - - for each edge in the MST,
that edge should be the lowest-weight edge of any con-
necting the two vertex partitions created by the removal
of the edge from the spanning tree. Each time an edge
violates this property, it is marked incorrect and the ap-
propriate replacement edge can be indicated to the user.
Partial credit can be assigned according to the number
of incorrect edges. (If the user's input is not a spanning
tree, cycles are broken by removing the highest-weight
edge in the cycle and trees are joined by adding the
lowest-weight edge between the trees. The checker then
proceeds with the spanning tree produced, adding an
additional penalty for non-tree input.)

This approach partially addresses the problem of mean-
ingful comments and partial credit, but is not appropri-
ate for problems where an early mistake can be com-
pounded. For example, if the user chooses the wrong
edge in the first step of Prim's algorithm but otherwise
executes the algorithm properly, the one mistake may
cause several other edges to be selected incorrectly. It is
unfair to penalize the user for every edge that is wrong
since it was actually only one mistake, and the system's
comments may be similarly misleading. A checker can
solve this problem by taking an incremental approach
and stepping through the solution of the problem, tak-
ing into account the user's choices as they happen. The
MST-Prim checker considers the user's edges in order,
testing each edge to determine if it is valid as the next
choice. An edge is valid if it connects a new vertex to the
spanning-tree-in-progress and has the lowest weight of
any edge connecting a new vertex to the tree. A penalty
is assessed if the user's edge is not valid, with a higher
penalty if the edge does not connect to the tree. The
internal data structures are then updated to include the
new edge, and the checker continues with the next edge.

4 Future Work

The current PILOT system can be extended in many
ways. Of particular use in a teaching tool would be to
allow greater interactivity m as the user works through

142

the problem, the system can immediately provide feed-
back as to whether or not the user is doing the right
thing. Also, if the user is unsure of what step to take
next, the system can provide hints or outright state-
ments about what to do.

Another issue is the generation of problems of approx-
imately equal difficulty (and, related to this, the gen-
eration of appropriate special cases). For example, in
Prim's algorithm the addition of an edge and vertex to
the spanning tree may result in a new, lower-weight con-
nection for an unconnected vertex and thus change the
best choice for the next vertex/edge pair added to the
tree. Problems with many instances of this case may
be viewed as harder than problems without, since they
require knowledge of particular cases in the algorithm.
This is particularly relevant if PILOT is used in a testing
situation, since it is undesirable for one student to get
an easy case when another is faced with a much harder
example. Dealing with this involves looking more care-
fully at the properties of the graphs produced by the
graph generator.

Problem checkers can pose challenging problems of their
own. The issues are the same as those mentioned in
Section 3.2 - - determining an appropriate format for
the solution and handling partial credit and comments.
Partial credit is one of the most "human" tasks of grad-
ing, and one that is very subjective, and so determining
appropriate ways to handle it automatically is an im-
portant task. Implementing checkers to assign partial
credit can be significantly harder than the correspond-
ing problem solvers.

Finally, PILOT can be extended to handle additional
problem types and algorithms. The mechanism for do-
ing this is straightforward - - many other graph prob-
lems, such as maximum flow, can be supported by the
current interface so all that is required are additional
checkers and solvers. Adding new problem types, such
as sorting, requires more work to create a new inter-
face in addition to generators/checkers/solvers. In both
cases, however, the server remains the same so adding
new components is only a matter of plugging in a new
front- or back-end.

5 Acknowledgements

Thank you to Ryan Baker for useful discussions regard-
ing PILOT.

References

[1] Anderson, J. R., Boyle, C. F., and Yost, G. The
geometry tutor. J. Math. Behavior (1986), 5-20.

[2] Anderson, J. R., and Reiser, B. J. The LISP tutor.
Byte 10 (1985), 159-175.

[3] Barequet, G., Bridgeman, S., Duncan, C. A.,
Goodrich, M. T., and Tamassia, R. Geometric

computing over the Interact. IEEE Internet Com-
puting 3, 2 (March/April 1999), 21-29.

[4] Barnett, L., Casp, J., Green, D., and Kent, J. De-
sign and implementation of an interactive tutorial
framework. In Proc. $9th SIGCSE Tech. Syrup.
(1998), pp. 87-91.

[5] Blackboard Inc. amy.blackboard.com.

[6] Boroni, C., Goosey, F., Grinder, M., Lambert, J.,
and Ross, R. Tying it all together creating self-
contained, animated, interactive, web-based re-
sources for computer science education. In Proc.
30th SIGCSE Tech. £lymp. (1999), pp. 7-11.

[7] Boroni, C., Goosey, F., Grinder, M., and Ross,
R. Weblab! A universal and interactive teach-
ing, learning, and laboratory environment for the
World Wide Web. In Proc. 28th SIGCSE Tech.
Syrup. (1997), pp. 199-203.

[8] Boroni, C., Goosey, F., Grinder, M., and Ross, R.
A paradigm shift! The Internet, the Web, browsers,
Java, and the future of computer science educa-
tion. In Proc. 30th SIGC, gE Tech. Syrup. (1999),
pp. 145-152.

[9] Bridgeman, S., Garg, A., and Tamassia, R. A
graph drawing and translation service on the
WWW. Internat. J. Comput. Geom. Appl. 9, 4
& 5 (1999), 419-446.

[10] Carrasquel, J. Teaching CS1 on-line: the good, the
bad, and the ugly. In Proe. 30th SIGCSE Teeh.
Syrup. (1999), pp. 212-216.

[11] Di Battista, G., Garg, A., Liotta, G., Tamassia,
R., Tassinari, E., and Vargiu, F. An experimen-
tal comparison of four graph drawing algorithms.
Comput. Geom. Theory Appl. 7 (1997), 303-325.

[12] Jackson, D., and Usher, M. Grading student pro-
grams using ASSYST. In Proc. 28th SIGCSE Tech.
Syrup. (1997), pp. 335--339.

[13] Mason, D., and Woit, D. Integrating technology
into computer science examinations. In Proc. Pgth
SIGCSE Teeh. Syrup. (1998), pp. 140-144.

[14] Mason, D., and Woit, D. Providing mark-up and
feedback to students with online marking. In Proe.
30th SIGCSE Tech. ,ffymp. (1999), pp. 3-6.

[15] Pierson, W., and Rodger, S. Web-based animation
of data structures using JAWAA. In Proc. ~gth
SIGCSE Tech. Syrup. (1998), pp. 267-271.

[16] Stasko, J., Domingue, J., Brown, M. H., and Price,
B. A., Eds. Software Visualization: Programming
as a Multimedia Exper/ence. MIT Press, 1998.

[17] Tinoco, L., Fox, E., and Barnette, D. Online eval-
uation in WWW-b~ed courseware. In Proe. 28th
SIGCSE Tech. Syrup. (1997), pp. 194-198.

[18] WebCT, Inc. ~ . w e b C T . com.

143

