
IGOR: A System for Program Debugging via Reversible
Execution

Stuart I. Feldman

Channing I?. Brown

Bellcore
Morristown, New Jersey

ABSTRACT

Typical debugging tools are insufficiently powerful to find the most difficult types of
program misbehaviors. We have implemented a prototype of a new debugging system,
IGOR, which provides a great deal more useful information and offers new abilities that
are quite promising. The system runs fast enough to be quite useful while providing
many features that are usually available only in an interpreted environment. We
describe here some improved facilities (reverse execution, selective searching of execution
history, substitution of data and executable parts of the programs) that are needed for
serious debugging and are not found in traditional single-thread debugging tools. With
a little help from the operating system, we provide these capabilities at reasonable cost
without modifying the executable code and running fairly close to full speed. The pro-
totype runs under the DUNE distributed operating system.

The current system only supports debugging of single-thread programs. The paper
describes planned extensions to make use of extra processors to speed the system and for
applying the technique to multi-thread and time-dependent executions.

1. INTRODUCTION

The usual debugging tools are insufficiently powerful for finding the most difficult types of program mis-
behaviors. We describe here some improved facilities (reverse execution, selective searching of execution
history, substitution of data and executable parts of the programs) that are quite promising, and can be
supported at reasonable cost, but are unusual in a compiled-language environment.

The typical debugger provides two facilities, post-mortem dumping and breakpoints. Most modern
debuggers will provide a multi-window menu-driven graphical interface and nice representations of the
data in memory after the crash, but the basic data are the same as found in an old-fashioned octal dump.
Breakpoints permit modification of the execution flow, and most commonly provide selective checking of
assertions and occasional output of trace information at a fixed point in the program, once it is re-
initiated. A careful autopsy followed by insertion of breakpoints will often locate an error, but deep bugs
often resist these elementary techniques. A subtle malfunction can cause complicated results which do not
result in a noticeable problem till much later in the computation, at which time the original source of the
problem is no longer obvious. With sufficient pain and diligence, the usual tools can lead to a fixed pro-
gram, but for sufficiently devious bugs, it is more important to provide better information about the
course of the computation than to make the interface somewhat more attractive.

As a simple example of the sort of bug that can be maddening to identify correctly, consider a program in
which a basic tree manipulation operation is misimplemented so that in some case a cycle appears in the
data structure:

112

tree *p, *q;
P = q;

p - > right _ child - >left _ child = q; /* whoops */

The declared type structure is not violated by these assignments, but the result is a cycle. The problem
will not become apparent till a full tree-walk is applied to this data structure, which will result in an
infinite recursion or some similar unexpected collapse. If data structures are built up piecemeal in a pro-
gram, it is possible that the proximate cause of the crash (the tree walk) will occur billions of instructions
after the actual cause (the error in storing q into the tree structure.) Faced with a stack overflow in a
depth first search routine, or a related symptom, the programmer will examine the final state of the com-
putation (the post mortem dump) and discover huge numbers of loops, though this will take a lot of work
unless the debugger has a good way of picturing graphs. The programmer wants to ask

“When did this tree first get an illegal cycle?”

The tricky parts of this question are: “when”, “this tree”, “first get”, and “cycle”. The first and third
questions require being able to look back in time. The second requires identifying particular data struc-
tures, whose locations in memory will change with time but for which there must be some identifying pro-
perty (location of the root of the tree perhaps). The fourth requires introducing a complicated test condi-
tion that is unlikely to be present in a standard debugger.

1.1. Prototype Debugging System

In order to help solve these problems, we have constructed a prototype system named IGOR that enables
us to look at varying epochs of the run of a program and to make changes in the program and its data.
The system can automatically save snapshots of the program’s execution. It also has procedures for modi-
fying these images, then bringing them to life. Reverse execution is not a new concept; cf. COPE system
[l]. Earlier systems required very expensive support (full interpretation, generation of code with inversion
options, or special recompilation to threaded code). We use a mechanism that could be supported on
almost any virtual memory machine and requires no changes to the executing code. (In effect, we provide
an automatic incremental checkpoint facility, or an automated recovery block [2] approach). It may not
always be possible to restart a program if the external state cannot be re-created (it is difficult to rewind
a printer or call back data from a communications line), but the tools can succeed in a wide variety of
cases. For changing the program, we implement a dynamic loading facility. To allow special case exami-
nation of data, we provide an interpreter that can be applied selectively to certain procedures while per-
mitting others to run at full speed. Data can also be modified at various states of the computation.

1.2. Implementation Environment

The debugger prototype described here was implemented, mostly in C, on a Motorola-G8000-based system
running the DUNE [3] distributed operating system (which supports the semantics of UNIX System V).
Certain special system calls make this implementation economical; they are easy to add to almost any
system with virtual memory. Some of the code depends on the way the GSOOO handles stacks and regis-
ters and on the way this UNIX system represents certain data, but the ideas can be translated to similar
systems. The work is simplified by assuming that programs are written in C, which has a transparent
procedure call mechanism and a rudimentary scoping mechanism (there is a single external scope for all
global variables and functions). We take advantage of these simplifications in the prototype implementa-
tion, which requires modifications to the compiler, loader, and standard library, but another procedural
language could have been used with a little extra effort.

UNIX is a registered trademark of AT&T

113

1.3. Aims and Limitations

A major goal of this work was to provide a practical way to attack large and complicated problems.
When the debugger is turned off and no checkpoints are being made, there is almost no effect on the exe-
cution of a program. The few modifications made to the compiler add just a few bytes to the program.
The program runs somewhat slower when the history capture mechanism is functioning, but we judge the
slowdown to be acceptable for real use. (Performance is discussed in a later section.)

The technique described here ought to apply to a broad spectrum of programs, but it is not a panacea. A
program with bad working set properties (e.g., one which touches memory in unpredictable ways) will
generate high output traffic. In a program that makes many small changes to huge files, it may be
difficult to restore the earlier state of the files at low cost. Irreversible input/output (mouse movements,
printer output) may also prevent full use of these techniques. The approach is untried for debugging
asynchronous parallel programs, though it could be applied well in a synchronous distributed environ-
ment. Despite these caveats, it is applicable to most “garden variety” programs and can be of help for
finding bugs that have some of the unfortunate properties described above.

The system described here is an experiment, not a finished product. There are therefore many loose ends
that could be finished but are not essential to the initial study. Performance is quite acceptable though
the system has not been lovingly tuned. A number of important cases of input/output behavior and the
easier cases of tracing program properties have been covered; more general cases are understood but not
implemented. We have concentrated on providing functionality rather than on a snazzy interface. Even
so, IGOR is usable and actually helped find some bugs in the course of its own development.

1.4. System Changes

In order to apply IGOR, one should use a modified compiler, library, and loader, and run on a system with
a modified kernel. The changes however are quite small. The compiler needs to put out a little extra
information about data allocation and to insert no-op instructions at the start of each procedure. The
basic start-up routine that is automatically loaded into a program must be changed to permit turning the
history mechanism on and to simplify restarting. The relatively small kernel modifications are described
in detail later.

2. RESTARTING EXECUTION

One principal ability of IGOR is restarting the execution of a program. This might be attempted after the
abnormal termination of a program, or it might involve backing up to a previous point in the execution
sequence and restarting from there. This section explores both possibilities.

2.1. Reviving Dead Programs

When a program terminates abnormally (such as when it attempts an illegal memory reference or divides
by zero), it typically produces a memory dump (commonly called a core image by the UNIX operating sys-
tem) which contains the user accessible state of the program (registers, static variables, stack, heap). We
have developed a set of programs to enable a user to restart a program from a core image. The restart
programs work in conjunction with a routine that is bound into the user’s program whenever the debug-
ging version of the compiler is used. Unless changed in the prestart procedure, the run picks up at the C
statement after the one that caused the dump. Of course, there are some situations that cause a dump
from which it is not possible to restart without effort. For example, if the program has run out of stack
space due to an infinite recursion, the stack must be unwound before execution can proceed.

2.2. Restarting Execution from an Interim State

We next extended the concept of reviving a dead program to allow the revival of a program from various
interim points between the start of execution and its (normal or abnormal) termination. This requires
saving the state of the execution at interim points, often referred to as checkpointing.

114

2.2.1. Checkpointing

We have implemented a scheme in which the execution state is written out periodically to a set of files
during the execution. (If execution runs long enough or the memory access pattern is malign, these files
could grow rapidly, but in favorable cases the checkpoint files grow slowly.) In order to save interim exe-
cution states efficiently, we rely on a concept similar to that used in virtual memory systems.

A virtual memory system generally divides the program’s memory into fixed-size pages, keeps the more
recently required pages in physical memory, and stores the remaining pages in secondary memory. When
a new page needs to be brought into physical memory, the system may swap out an existing page to make
room for it; if that page was not written on during its time in physical memory, there is no need to write
it out to disk. Many processors assist the virtual memory system by marking each page that is written
upon. (If the hardware does not maintain a “dirty bit” for each page, but does have page-oriented write
protection, the software can get the same information by protecting pages against being written upon at
the start of a time interval, then setting a bit and permitting future writes to the page when a protection
violation is detected. Other uses of this technique are suggested later.)

At intervals, IGOR saves a copy of every page that has been changed since the last check. In effect, we
simulate demand paging activity. If the program has good locality of reference, only a fraction of the
pages will be changed during any short computation, while many different cells will be changed in a single
page. We therefore expect that this technique will not waste too much time copying unnecessary informa-
tion and will run fast by taking advantage of installed hardware.

The result of executing in this mode is to produce a file containing copies of all pages changed during each
interval. It is then easy to reconstruct the memory state at any of those discrete times, To examine the
state at an arbitrary time, it suffices to find the checkpoint immediately preceding that time, then execute
forward (using an interpreter) till the specific program point is reached. If checkpoints are moderately
frequent, then the number of instructions to be executed will be small and so the delay incurred by run-
ning a slow interpreter is in practice acceptable. There is a tradeoff between amount of page copying and
timer interval, as is shown in the Performance section below. The interval is chosen in part based on how
long the human user is willing to wait before the interpreter reaches the exact point of interest. If the
interpreter runs around 100 times slower than real time, an impatient person who is only willing to wait a
half minute would then set the interval to a quarter second.

Various indices and tables improve the use of the history data. To reconstruct a memory image at a par-
ticular checkpoint interval, it is necessary to choose the copy of each page that was changed during that
interval or most recently before it. To locate the time when a particular static variable reached a partic-
ular value, it is only necessary to look at the generations of the page on which the variable resides,

An example shows the memory reference pattern we hope to see when using this technique. The following
Figure shows the pages that were dumped at each checkpoint for an example execution of the UNIX sort
program. The program was sorting a file of 2853 lines, and checkpoints were taken four times per second.
The left side of the graph shows the hexadecimal address of the start of each page; the top of the graph
numbers the checkpoints sequentially from zero. An X indicates that the page was dumped during the
checkpoint. An ellipsis indicates a line that is identical to the preceding line. Note that a few pages (bot-
tom of the stack and some external variables) are written each time interval, but that most pages change
only occasionally after the first time. (Of course, some other programs do not behave this nicely, as will
be seen in the section on performance.)

115

1111111111222222222233333333334444444444
01234567890123456789012345678901234567890123456789

text

data

bss

heap

0x00100000 X
0x00100800 X

oxoOiOSooo
0x00108800
0x00109000
0x00109800
OxOOlOaOOO
OxOOlOa800
OxOOlObOOO
OxOOlOb800
oxoolocooo
OxOO1Oc8OO
OxOOlOdOOO
OxOOlOd800
OxOOlOeOOO
OxOOlOe800
OxOOlOfOOO
OxOOlOf800
0x00110000

X .
X ..xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xx
xxx.............. .xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

f
...
...

X
X ...
. .
A ..*.................

xxx...
xxx............. ,.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xx
xx~xx
X .
X
X ...
X

oxoG.;7000
OxOOlld800
OxOOlleOOO
OxOOlle800
OxOOllfOOO
OxOOllf800
0x00120000

X-........*........................
X xx:::::::::::::::

.................................
xx ..
xx
. A .

.X.........................,...,.,,.................-.

oxoOiiCoo0
OxOO12c8OO
Ox0012dOOO
OxOO12d800
Ox0012eOOO

.X ..

.x........................,......................-.

.xx ...

.xx

. AA...

oxoOi~Coo0 .xx ...
OxOO13c8OO .xx ...
Ox0013dOOO .xx ...
Ox0013d800 .X ..
Ox0013eOOO .X ..

. . . .
Ox0014bOOO
Ox0014b800
oxoo14cooo
OxOO14c8OO
Ox0014dOOO
Ox0014d800
Ox0014eOOO
Ox0014e800
0x0014f000

.X...*

.X....- ...

.xxx ..

.xxxxx.................................-

.xx..xxx ..

.x . . * ..xxx ..

.x......xxxxxx

.x..........xxxxxx

.x...............x
x.x....xxx ..
xxxxxxxxxxxxxXxxxxXXxxxxxxxxxxxxxxx~xxxxxxxxxxx

stack Ox007ffOOO
Ox007ff800

A Graph of Checkpointed Pages

116

2.2.2. Special System Calls for Checkpointing

In order to create a checkpoint at a given point during the execution, we use a new UNIX system call,
pagemod, that returns a list of all memory pages that have been written since the previous call to
pagemod. At each checkpoint, the contents of these memory pages are saved in the checkpoint files, with
the contents of the registers and program counter. A timestamp (showing the program’s elapsed real
time, user time, and system time) is also added to indicate when the checkpoint occurred.

The interval between checkpoints is controlled with a call to another new system call, ualarm. This sys-
tem call is similar to the standard UNIX alarm system call, in that it provides an interrupt to the program
after a specified amount of time has elapsed. However, ualarm counts user CPU time rather than real
time, and allows a finer granularity (0.01 second in place of 1.0 second for alarm). These times seem
appropriate to our 68000-family processors, but might not be right for machines of enormously different
speeds.

We provide a program that allows the user to modify the checkpointing interval or to turn the feature on
or off by modifying the executable file.

2.2.3. Checkpointing Without the New System Calls

It would be considerably more costly, and in some ways difficult or impossible, to implement similar
checkpointing without the two new system calls mentioned. If the pagemod call were not available but
there were easy access to the protection map and traps, the system could write-protect all pages at the
beginning of an interval, then copy and turn off write protection on each data page that suffered a write
protection violation. Without virtual memory support, it would be necessary to write out all of memory
at each checkpoint, or at least to touch all of the writable part of the user’s memory at each checkpoint.
(If necessary, it would be possible to save all of the data from the preceding checkpoint time, or a set of
hash values corresponding to those pages; the data or a set of hashed values at the next interval could
then be compared with those values.) If the program displays a reasonable locality of reference, then the
number of pages written at any one checkpoint should be small compared to the program’s total address
space.

Without the ualarm call, the frequency of checkpointing might be inadequate for debugging purposes. In
addition, an alarm interrupt based on real time elapsed would occur sometimes during a system call (as,
for example, while the program is waiting for input from a terminal). Such an unexpected interrupt
would cause the system call to fail, and the program would behave erroneously. An interrupt based on
user time elapsed does not cause such a problem. It also ensures that the program has accomplished some
work during each interval, avoiding superfluous interrupts.

Some results on the performance of IGOR are provided below.

2.2.4. Checkpoint data manipulation

After running a program with the checkpointing feature enabled, the user can search the checkpoint data
for the values of a variable (or a memory address); IGOR responds with the values taken on by that vari-
able during the course of execution, with the checkpoint number and timestamp for reference purposes.

Execution restart from a checkpoint is similar to restart from a core image. IGOR reconstructs a core
image for the specified checkpoint by retrieving the latest image of each page as of the desired checkpoint.
The data are then copied in from the reconstructed core image, the stack and registers are restored, and
execution resumes.

3. DYNAMIC FUNCTION REPLACEMENT

IGOR also makes it possible to replace parts of the program dynamically 1 i llrin~ debugging. IGOR allows

the user to replace one or more C functions with new versions without hub 1 I”- 10 link the entire program,
and to restart execution from a core (or checkpoint) image with the new \‘I’I- I(111s of the functions. Fun-
damental problems arise if the frozen program is executing a procedure tlnll I- Ijeing changed or if data
elements being replaced are referenced in an active procedure. We do the beat we can to recognize these

cases and avoid the side effects of changes to a suspended program.

117

The user can replace any function in a program with a new version; the new object module is incremen-
tally loaded into the program by a special version of the loader. The old version of the function remains
in the executable file, so the user can switch among several versions.

When the new version is loaded, the first few bytes of the old version are replaced with a jump to the
start of the new version. To restore the old version, the original bytes are replaced. (To simplify the
implementation, the debugging version of the compiler inserts enough no-op instructions to provide room
for the jump to be inserted.) The same effect could be achieved on other systems by calling all procedures
indirectly through a transfer vector.

If the function is replaced in a memory image that is to be used for an execution restart, it is necessary
that the variables in the new version retain their values from the previous version. For static and exter-
nal variables, the loader accomplishes this by using the address of the original variable for the new ver-
sion, rather than allocating a new memory location for the variable. Of course, any new variables intro-
duced by the new version are allocated space in the usual way.

If the user replaces a function that is active at the execution restart point, the new version does not apply
to the currently active instantiation(s); i.e., the new code is not used until the next time the function is
called. Thus, automatic variables need not be tied to a previous version.

The loader notes various differences between the declaration of a variable in the old and new versions of a
function, and warns the user about such discrepancies. For example, the type of a variable or the size of
an array might change; in general such a change will lead to erroneous results. Ideally, a system might
attempt to resolve such contradictions, but such considerations can lead to the undecidable problem of
program equivalence.

If a function is replaced in an executable file that is to be used for an execution restart, the restart and
replacement must be carefully coordinated. The incremental linking cannot occur until after the data seg-
ment is copied in from the core image. IGOR then knows what parts of memory have been allocated dur-
ing execution, so that the new function can be allocated to an unused portion of memory. However, the
incremental linking must occur before the execution begins.

4. RESTARTING INPUT/OUTPUT

In order to restart the execution of a program from a previous state, it is necessary to restore the
input/output environment to its previous state. In general this is difficult, and is impossible in some
cases. (One cannot undo the writing of output data to a hardcopy device.)

We have implemented some techniques that allow the re-establishment of the input/output environment
under various conditions, as described in this section. In each case, a prestart routine is run before the
user’s program execution resumes and it attempts to restore the status quo ante. Basically, a program
which does naive I/O is easy to handle, one that does fancier I/O is harder.

4.1. The Standard Prestart Routines

If the user does not supply a prestart routine, IGOR supplies a default routine. It queries the user at the
terminal to obtain the name of each file that should be opened, the mode for each file (read, write, etc.),
and the position within the file at which the file pointer should start, It is thus possible to set the
program’s input/output system pAnstakingly to an arbitrary state, in particular to get back to the pre-
cise positions that the program was in at the time it stopped. It is also possible to move the pointers
backward or forward to reprocess some data or to skip over some of it.

Another prestart routine is available to simplify the common case of programs in which all file output is
sequential, and no file is rewritten. The names, modes, and file pointers of open files are dumped during
each checkpoint; this information is used by the prestart routine to establish the environment. Gathering
the information during checkpointing incurs additional costs, but the technique automates the restart pro-
cess for many common scenarios.

118

4.2. User-Supplied Prestart Routines

Alternatively, the user may supply a specially crafted prestart routine to establish the I/O environment
and perform any other desired actions prior to normal execution resumption. For example, if the user’s
program uses a screen manipulation package, the prestart routine might refresh the screen from the
current memory image of the screen. A user-supplied routine may be worthwhile if a particular program
is to be studied for a long time and will require frequent monitoring and restarts.

If the prestart routine does nothing, the environment at restart is the same as the environment for any
normally executing program; i.e., the standard input, output, and error files are opened automatically,
and refer to the terminal unless redirected to a file or a pipe.

4.3. More General Prestart Handling

In order to handle the general case, it would be necessary to keep a complete record of all input/output
calls, those that control the unit and those that transmit data. The easiest way is to modify the library
routines that interface to the system calls, but programs that circumvented the library would not be
debuggable. A safe implementation would track all I/O requests in the kernel

5. REVERSIBLE EXECUTION

The functions described in the previous sections can support execution reversal. Two additional mechan-
isms, described below, have been implemented to enable us to reverse a program execution - a way of
specifying the point to which execution will revert, and a method of reaching that precise point.

5.1. The Object Code Interpreter

In order to provide the necessary fine granularity in selecting a point in the execution, we implemented an
object code interpreter for our system. Starting with the core image constructed from a checkpoint, the
interpreter simulates the execution of the user’s program forward from that point, stopping when the
selection criterion is met (or when the program attempts to exit if the criterion is never satisfied).

5.2. Selection Criterion Specification

As described previously, the user can search the checkpoint data for the values of variables or arbitrary
memory locations. Similarly the user might inspect the registers, the program counter, or the stack
frames.

In the same way, we allow a user to specify the point to which execution is to be reversed by specifying a
variable, a value, and a relational operator. For example, the user might wish to back up to the first
point at which x > 0, or to the first point for which n = 10.

Ideally, the variable or variables in the search criterion should take on values that are monotone (either
non-increasing or non-decreasing) during the course of the execution. This property allows IGOR to locate
the last checkpoint before the desired point, from which the interpreter starts. (A variable whose value
fluctuates up and down might satisfy a criterion at various times between checkpoints, while never satis-
fying it at any checkpoint.)

In the current implementation, selections must be based on a single comparison between a program vari-
able (global, argument, or local) and a constant. A future version will permit the user to specify an arbi-
trary boolean combination of expressions, and to include references to the control flow in the program
(with expressions such as the program counter reached line 16 of function f). A command that would
find th first time interval after the thousandth line of a file had been processed might be

chfind ‘lineno>lUOO’

6. PERFORMANCE CHARACTERISTICS

The typical edit-compile-test cycle might be modified for subsequent iterations by an edit-compile-
reverse-restart cycle, with the use of these tools. We have measured the execution time and other perfor-
mance criteria of the various tools used on several programs. The programs have not been carefully

119

tuned, and it is clear how to speed up some of the functions, but the performance is already quite accept-
able for ordinary development use.

6.1. Performance of the Compiler

The compiler required almost no change to support the debugging tools. However, the compiler and
linker must be run with options that retain extra symbol and relocation information and therefore run
slower than in the standard mode. The execution time of the modified compiler was 17% greater than
the standard compiler for a typical source file, and 37% greater for the compilation and linking of a
47OO-line program. However, its performance was similar to that of the standard compiler when the -g
debugging option is used (4% greater for compilation only; 11% greater for compilation and linking).

6.2. Characteristics of Checkpointing During Program Execution

We measured the performance of the checkpoint generation routines while executing three existing UNIX
programs: make, the C compiler’s main pass and sort with a 2853-line input file. These programs are, we
hope, typical of those to be debugged, with reasonably simple but nontrivial input/output and a variety
of memory access styles. The accuracy of this prediction can only be tested by real use. Table 1 shows
the execution time overhead of the checkpointing (based on elapsed time).

Table 1: Execution Time Overhead

Make Ccom Sort

Checkpointing Execution Execution Execution
Interval Time Overhead Time Overhead Time Overhead
(seconds) (seconds) (seconds) (seconds)

none 4.7 12.1 - 22.2

1.0 8.0 70% 24.3 101% 31.7 43%
0.3 11.3 140% 34.3 183% 37.3 68%
0.1 22.7 380% 46.5 280% 47.5 114%

Table 2 indicates the average percentage of non-text memory pages that were written out during the exe-
cution. (Occasionally the total number of non-text pages accessed by the program appears to vary with
different checkpointing intervals. At longer intervals, the checkpointing might not observe a peak in
stack growth, or it might miss pages allocated between the last checkpoint and the program’s termina-
tion. Make makes heavy use of allocated memory and linked lists, so a short execution has quite random
memory access patterns.)

Table 2: Checkpointed Non-text Pages

Program Checkpointing Total Avg. Pages Percent
Interval Pages Written Written
(seconds) Accessed per Checkpt.

Make 1.0 46 34.0 74%
0.3 47 27.9 59%
0.1 47 23.9 51%

Ccom 1.0 89 41.2 46%
0.3 89 36.5 41%
0.1 89 30.7 34%

Sort 1.0 143 6.9 5%
0.3 143 9.2 6%

6.3. Performance of the Incremental Loader

We tested the incremental loader by linking a replacement module into a 4700-line program consisting of
nine modules. The incremental Ioader required 4.1 seconds of CPU time to link the replacement module
and bind the variables to their original addresses. This represents an increase of 21% over the standard
link edit run time of 3.4 seconds. (In addition, a total of 5.6 seconds were consumed by two supporting
programs and a shell script that ties them together; most of this time would be eliminated by integrating
the programs and eliminating the shell script.)

6.4. Execution Timing for Restart

In order to measure the overhead incurred in restarting a program execution, we ran sort on a file of 2853
records, which required 160 pages of memory. The execution time (in seconds) is indicated in Table 3.

Table 3: Restart Timing

real user system
time CPU CPU

Regular execution 31.9 17.6 1.2
(with checkpointing on)
Restart 54.5 5.7 6.9

Portion of Restart 10.1 3.9 0.3
in user program
Restart Overhead 44.4 1.8 6.6

In this example, the overhead of 1.8 seconds of user CPU time for restarting circumvents 13.7 seconds of
user CPU time in the user’s program (i.e., the amount of computation that preceded the restart point).
The 6.6 seconds of system CPU time attributed to overhead would be decreased by integrating the several
programs and the shell script involved in the process.

8.5. Execution Timing for the Interpreter

The time required by the interpreter to process an instruction mix of adds, comparisons, and branches is
a factor of approximately 140 times slower than actual execution. Although not as fast as might be
desired, it can be compensated for to some extent by decreasing the interval between checkpoints. In a
later implementation, serious advantage might be taken of co-processors or other special hardware assis-
tance to speed up the instruction stepping.

7. EXAMPLES

This section contains several examples that illustrate the use of IGOR. The commands typed by the user
are shown in italic type, with the system’s response in Roman type. Each example is based on a simple C
program which converts the data in one or more input files to upper case.

7.1. Running a Program with Checkpointing

The program is compiled with the debugging version of the compiler. The user may optionally change
the checkpointing interval (or turn off checkpointing); here a very short interval of 1 (hundredth-second)
was used for illustrative purposes. The program is then executed in the usual way.

ncc upcase.c -0 upcase
chinter -01 upcase # turn on checkpointing,

#set timing interval to I * .Ol set
upcase input1 input2 >output # checkpointing file names begin with R.
5056 characters were processed

121

7.2. Examining the History of a Variable

In the following example, the user inspects the value of the local static variable chcount in the function
main. The output shows the checkpoint number, the execution time at the checkpoint (in real elapsed
time, user CPU time, and system CPU time). Finally the value of the variable at the checkpoint is
shown. In this example, most of the execution time was consumed in the buffer flushing portion of the
standard I/O package, so most of the checkpoints occurred at times when the number of characters pro-
cessed was a multiple of the buffer size.

chfind main:chcount upcase # look for values of variable
checkpoint # 0 (r0.15 / ~0.07 / ~0.16) value 1024
checkpoint # 1 (r0.23 / uO.09 / ~0.20) value 2048
checkpoint # 2 (r0.35 / ~0.10 / ~0.22) value 3072
checkpoint # 3 (r0.37 / ~0.11 / ~0.23) value 409G
checkpoint # 4 (r0.40 / ~0.12 / ~0.25) value 4709

7.3. Backing up and Restarting

The program was then backed up to the point where the character count was 3500, and restarted from
that point. The -q options provided for automatic handling of I/O reversal and restart, and directed file
descriptor 1 (standard output) to the file named

reverse -@output “main:chcount > = 3500” upcase
restart -qloutput -iR.core upcase
5056 characters were processed

8. FUTURE DIRECTIONS

We have shown here that general access to the execution history, including querying of that history, mak-
ing changes, and restarting at an arbitrary point in an arbitrary state, can be provided in a general and
efficient manner. The current system is just a prototype which needs further work.

8.1. Interfaces

To produce a fully useful debugger, the new capabilities should be integrated into a high-quality debugger
that provides the usual facilities (menu access, symbolic listing of variables with certain properties, attrac-
tive displays, simple breakpoints). Examples of possible frameworks in the UNIX environment are the pi
debugger [4] for Eighth Edition systems and dbx [5,6] for 4BSD systems.

8.2. Cleanups

The current system cannot search for system states based on general logical expressions or ones involving
register variables. It ought to.

The general input/output case ought to be handled correctly, so that program state could be backed up
with confidence even if files are modified randomly.

The tools are currently implemented as a collection of small standalone programs, which facilitated exper-
imentation. Integration of the tools would eliminate some duplication and enhance their performance.

The interpreter could be sped up a great deal by using machine-dependent features. Some chips have
facilities that permit single stepping of an execution, but usually only in kernel mode. If the interpreter
could run in the kernel, it would run an order of magnitude faster, and thus time intervals of a few
seconds would be tolerable.

8.3. Secondary Storage Reduction

The same checkpointing scheme would allow one to restart very long-running programs after a system
failure. Less frequent checkpoints would be adequate (with an interval on the order of seconds or even
minutes). It is easy to save a coarser time grid than was originally created by the checkpointer: it is only
necessary to keep the most recent copy of each page changed during the coarser interval.

122

A special option to save only the most recent copy of each page would limit the amount of data accumu-
lated yet automatically provide the advantages of a regular checkpoint facility.

Many programs change only a few ceils on a page during a typical time interval. It would therefore often
save a lot of disk space (at the cost of processor time) to store the differences in page values rather than
the whole page. (As an aside, we found that around 1% of the pages that were written on did not actu-
ally change - they were the same at the end of the interval as at the beginning.)

8.4. Use of Multiple Processors

At present, the program to be debugged stops at each timer signal and copies its pages to disk. In a sys-
tem with multiple processors and shared memory, a second processor could take up part of the load. The
simplest implementation would copy the touched pages to shared memory, then move them (perhaps after
compression) to disk. A more interestin g implementation would make further use of the memory system:
all data pages could be marked unwritable when the timer signals. A second process could then copy each
page, then make it writable to the first process, If the first process tried writing on a page, it could make
a copy of it then proceed. This technique is similar to the one used for garbage collection in [7].

8.5. Extensions to Asynchronous and Multi-Thread Programs

The current implementation assumes that all interesting events are directly caused by the running pro-
gram. If externa1 signals are important, it will be necessary to keep a record of them, with appropriate
timing information, in order to permit true reversal of the execution sequence. It might be convenient to
do a memory checkpoint at the times such external events occur, though it would still be necessary to
trap periodically in the absence of signals.

A simple and valuable extension of this work would make checkpoints simultaneously on several cooperat-
ing processors. This could be accomplished by synchronizing the ualarm timer signals.

In a more general case, the ideas of the last two paragraphs would be combined to provide memory traces
whenever an external or interprocessor event occurred or at synchronized time intervals.

REFERENCES

1) J. Conway, “The COPE User Interface”, Proc of IEEE Compsac ‘82 (Computer Society 6th Interna-
tional Computer Software and Applications Conference, Chicago, 1982)

2) B. Randell, “System Structure for Software Fault Tolerance”, mEE Transactions on Software

Engineering vol. SE-l, no. 2, pp. 220-232 (June 1975)

3) M. Pucci and J. Alberi, “The Architecture of the DUNE Multiple Processor System: An Experiment
in Generalized Interprocessor Communication”, Bellcore Technical Report

4) T. A. Cargill, “Pi - A Case Study in Object-Oriented Programming”, Proceedings of the Confer-
ence on Object-Oriented Programming Systems, Languages and Applications, Portland, Oregon, pp.
350-3GO (September 1986)

5) M. Linton, “A Debugger for the Berkeley Pascal System”, Master’s project, UCB (June, 1981)

6) Sun Microsystems, Inc., ‘(Debugging Tools for the Sun Workstation”, Part No. 800-1325-03 (198G)

7) John R. Ellis, Kai Li, and Andrew W. Appel, “Real-time Concurrent Collection on Stock Multipro-
cessors”, DEC Systems Research Center Technical Report #25 (February, 1988)

ACKNOWLEDGEMENTS

Marc Pucci implemented the pagemod and ualarm system calls in the operating system kernel, which
enabled the efficient implementation of our checkpointing. Jim Alberi and Marc Pucci gave generous
assistance in setting up and running our DUNE system.

123

