
Unifying Logic and Probability: Recent Developments

Stuart Russell
Computer Science Division, University of California, Berkeley

ABSTRACT
Logic and probability theory are two of the most important
branches of mathematics and each has played a signi�cant
role in arti�cial intelligence (AI) research. Beginning wi th
Leibniz, scholars have attempted to unify logic and probabi l-
ity. For \classical" AI, based largely on �rst-order logic, the
purpose of such a uni�cation is to handle uncertainty and
facilitate learning from real data; for \modern" AI, based
largely on probability theory, the purpose is to acquire for -
mal languages with su�cient expressive power to handle
complex domains and incorporate prior knowledge. This
paper reports on recent e�orts in these directions, focusin g
in particular on open-universe probability models that allow
for uncertainty about the existence and identity of objects .
Such models encompass a wide range of applications and
may lead to qualitative advances in core areas of AI.

1. INTRODUCTION
Perhaps the most enduring idea from the early days of

AI is that of a declarative system reasoning over explicitly
represented knowledge with a general inference engine. Such
systems require a formal language to describe the real world;
and the real world has things in it . For this reason, classical
AI adopted �rst-order logic|the mathematics of objects and
relations|as its foundation.

The key bene�t of �rst-order logic is its expressive power,
which leads to concise|and hence learnable|models. For
example, the rules of chess occupy 100 pages in �rst-order
logic, 105 pages in propositional logic, and 1038 pages in
the language of �nite automata. The power comes from
separating predicates from their arguments and quantify-
ing over those arguments: so one can write rules about
On(p; c; x; y; t) (piece p of color c is on square x; y at move
t) without �lling in each speci�c value for c, p, x, y, and t.

Modern AI research has addressed another important prop-
erty of the real world| pervasive uncertainty about both its
state and its dynamics|using probability theory. A key
step was Pearl's development of Bayesian networks, which
provided the beginnings of a formal language for probabilit y
models and enabled rapid progress in reasoning, learning, vi-
sion, and language understanding. The expressive power of
Bayes nets is, however, limited. They assume a �xed set of
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee.
Copyright 2014 ACM 0001-0782/08/0X00 ...$5.00.

variables, each taking a value from a �xed range; thus, they
are a propositional formalism, like Boolean circuits. The
rules of chess and of many other domains are beyond them.

What happened next, of course, is that classical AI re-
searchers noticed the pervasive uncertainty, while modern
AI researchers noticed, or remembered, that the world has
things in it. Both traditions arrived at the same place: the
world is uncertain and it has things in it . To deal with this,
we have to unify logic and probability .

But how? Even the meaning of such a goal is unclear.
Early attempts by Leibniz, Bernoulli, De Morgan, Boole,
Peirce, Keynes, and Carnap (surveyed in [12, 14]) involved
attaching probabilities to logical sentences. This line of work
in
uenced AI research (see Section 3) but has serious short-
comings as a vehicle for representing knowledge.

An alternative approach, arising from both branches of
AI and from statistics, combines the syntactic and seman-
tic devices of logic (composable function symbols, logical
variables, quanti�ers) with the compositional semantics o f
Bayes nets. The resulting languages enable the construction
of very large probability models (see Section 4) and have
changed the way in which real-world data are analyzed.

Despite their successes, these approaches miss an impor-
tant consequence of uncertainty in a world of things: uncer-
tainty about what things are in the world . Real objects sel-
dom wear unique identi�ers or preannounce their existence
like the cast of a play. In areas such as vision, language
understanding, web mining, and computer security, the ex-
istence of objects must be inferred from raw data (pixels,
strings, etc.) that contain no explicit object references.

The di�erence between knowing all the objects in advance
and inferring their existence from observation corresponds
to the distinction between closed-universelanguages such as
SQL and logic programs and open-universe languages such
as full �rst-order logic. This paper focuses in particular
on open-universe probability models. Section 5 describes a
formal language, Bayesian logic or BLOG, for writing such
models [20]. It gives several examples, including (in simpli-
�ed form) a global seismic monitoring system for the Com-
prehensive Nuclear Test-Ban Treaty.

2. LOGIC AND PROBABILITY
This section explains the core concepts of logic and prob-

ability, beginning with possible worlds.1 A possible world
is a formal object (think \data structure") with respect to
1 In logic, a possible world may be called amodel or structure ;
in probability theory, a sample point. To avoid confusion,
this paper uses \model" to refer only to probability models.

which the truth of any assertion can be evaluated.
For the language of propositional logic, in which sentences

are composed from proposition symbols X 1 ; : : : ; X n joined
by logical connectives (^ , _ , : ,) , ,), the possible worlds
! 2
 are all possible assignments of true and false to the
symbols. First-order logic adds the notion of terms, i.e., ex-
pressions referring to objects; a term is a constant symbol,
a logical variable, or a k-ary function applied to k terms
as arguments. Proposition symbols are replaced by atomic
sentences, consisting of either predicate symbols appliedto
terms or equality between terms. Thus, P arent (Bill; W illiam)
and F ather (W illiam) = Bill are atomic sentences. The quan-
ti�ers 8 and 9 make assertions across all objects, e.g.,

8 p; c (P arent (p; c) ^ Male (p)) , F ather (c) = p :

For �rst-order logic, a possible world speci�es (1) a set
of domain elements (or objects) o1 ; o2 ; : : : and (2) mappings
from the constant symbols to the domain elements and from
the function and predicate symbols to functions and rela-
tions on the domain elements. Fig. 1(a) shows a simple
example with two constants and one binary predicate. No-
tice that �rst-order logic is an open-universe language: ev en
though there are two constant symbols, the possible worlds
allow for 1, 2, or indeed arbitrarily many objects. A closed-
universe language enforces additional assumptions:
{ The unique namesassumption requires that distinct terms
must refer to distinct objects.
{ The domain closure assumption requires that there are no
objects other than those named by terms.
These two assumptions force every world to contain the same
objects, which are in one-to-one correspondence with the
ground terms of the language (see Fig. 1(b)).2 Obviously,
the set of worlds under open-universe semantics is larger
and more heterogeneous, which makes the task of de�ning
open-universe probability models more challenging.

The formal semantics of a logical language de�ne the truth
value of a sentence in a possible world. For example, the
�rst-order sentence A = B is true in world ! i� A and B
refer to the same object in ! ; thus, it is true in the �rst
three worlds of Fig. 1(a) and false in the fourth. (It is always
false under closed-universe semantics.) LetT (�) be the set
of worlds where the sentence� is true; then one sentence�
entails another sentence� , written � j= � , if T (�) � T (�).
Logical inference algorithms generally determine whether a
query sentence is entailed by the known sentences.

In probability theory, a probability model P for a countable
space
 of possible worlds assigns a probability P (!) to each
world, such that 0 � P (!) � 1 and

P
! 2
 P(!) = 1. Given

a probability model, the probability of a logical sentence �
is the total probability of all worlds in which � is true:

P (�) =
P

! 2 T (�) P(!) : (1)

The conditional probability of one sentence given another is
P (� j �) = P (� ^ �)=P(�), provided P(�) > 0. A random
variable is a function from possible worlds to a �xed range
of values; for example, one might de�ne the Boolean ran-
dom variable VA = B to have the value true in the �rst three
2The open/closed distinction can also be illustrated with
a common-sense example. Suppose a system knows that
F ather (W illiam) = Bill and F ather (Junior) = Bill . How
many children does Bill have? Under closed-universe
semantics|e.g., in a database|he has exactly 2; under
open-universe semantics, between 1 and1 .

. . .

A B

A

B

A B

A

B

A B

A

B

A B

A

B

A B

A

B
(b)

A BA BA B A B A B A B

.(a)

Figure 1: (a) Some of the in�nitely many possible
worlds for a �rst-order, open-universe language with
two constant symbols, A and B , and one binary pred-
icate R(x; y). Gray arrows indicate the interpreta-
tions of A and B and black arrows connect pairs of
objects satisfying R. (b) The analogous �gure under
closed-universe semantics; here, there are exactly 4
possible x; y -pairs and hence 24 = 16 worlds.

worlds of Fig. 1(a) and false in the fourth. The distribu-
tion of a random variable is the set of probabilities associ-
ated with each of its possible values. For example, suppose
the variable Coin has values 0 (heads) and 1 (tails). Then
the assertion Coin � Bernoulli (0:6) says that Coin has a
Bernoulli distribution with parameter 0.6, i.e., a probabi lity
0.6 for the value 1 and 0.4 for the value 0.

Unlike logic, probability theory lacks broad agreement on
syntactic forms for expressing nontrivial assertions. For
communication among statisticians, a combination of En-
glish and LATEX usually su�ces; but precise language de�-
nitions are needed as the \input format" for general prob-
abilistic reasoning systems and as the \output format" for
general learning systems. As noted above,Bayesian net-
works [26] provided a (partial) syntax and semantics for the
propositional case. The syntax of a Bayes net for random
variables X 1 ; : : : ; X n consists of a directed, acyclic graph
whose nodes correspond to the random variables, together
with associated local conditional distributions. 3 The seman-
tics speci�es a joint distribution over the variables as fol lows:

P (!) = P (x1; : : : ; x n) =
Q

i P(x i j parents (X i)) (2)

These de�nitions have the desirable property that every well-
formed Bayes net corresponds to a proper probability model
on the associated Cartesian product space. Moreover, a sparse
graph|re
ecting a sparse causal structure in the underly-
ing domain|leads to a representation that is exponentially
smaller than the corresponding complete enumeration.

The Bayes net example in Fig. 2 (due to Pearl) shows two
independent causes,Earthquake and Burglary , that in
u-
ence whether or not an Alarm sounds in Professor Pearl's
house. According to Equation (2), the joint probability
P (Burglary; Earthquake; Alarm) is given by

P (Burglary)P (Earthquake)P (Alarm j Burglary; Earthquake).

The results of this calculation are shown in the �gure. Notic e
that the 8 possible worlds are the same ones that would exist
for a propositional logic theory with the same symbols.

A Bayes net is more than just a speci�cation for a dis-
tribution over worlds; it is also a stochastic \machine" for

3Texts on Bayes nets typically do not de�ne a syntax for
local conditional distributions other than tables, althou gh
Bayes net software packages do.

0.003
P(B)

Alarm

EarthquakeBurglary

B
t
t
f
f

E
t
f
t
f

P(A | B,E)

0.9

0.4
0.01

0.8

0.002
P(E) B A P(B, E, A)E

t
t
t
t

t
f
t
f

0.0000054

0.0023952
0.0005988

0.0000006
t
t
f
f

f
f
f
f

t
f
t
f

0.0007976

0.00995006
0.98505594

0.0011964
t
t
f
f

Figure 2: Left: a Bayes net with three Boolean vari-
ables, showing the conditional probability of true for
each variable given its parents. Right: the joint dis-
tribution de�ned by Equation (2).

generating worlds. By sampling the variables in topological
order (i.e., parents before children), one generates a world
exactly according to the distribution de�ned in Equation (2).
This generative view will be helpful in extending Bayes nets
to the �rst-order case.

3. ADDING PROBABILITIES TO LOGIC
Early attempts to unify logic and probability attached

probabilities directly to logical sentences. The �rst rigo rous
treatment, Gaifman's propositional probability logic [9], was
augmented with algorithmic analysis by Hailperin [12] and
Nilsson [22]. In such a logic, one can assert, for example,

P (Burglary) Earthquake) = 0 :997006; (3)

a claim that is implicit in the model of Fig. 2. The sentence
Burglary) Earthquake is true in six of the eight possi-
ble worlds; so, by Equation (1), assertion (3) is equivalent to

P (ttt) + P (ttf) + P (f tt) + P (f tf) + P (f f t) + P (f f f) = 0 :997006.

Because any particular probability model � assigns a prob-
ability to every possible world, such a constraint will be
either true or false in � ; thus, � , a distribution over possible
propositional worlds, acts as a single possible world, with
respect to which the truth of any probability assertion can
be evaluated. Entailment between probability assertions i s
then de�ned in exactly the same way as in ordinary logic;
thus, assertion (3) entails the assertion

P(Burglary ^ Earthquake) � 0:997006

because the latter is true in every probability model in whic h
assertion (3) holds. Satis�ability of sets of such assertio ns
can be determined by linear programming [12]. Hence, we
have a \probability logic" in the same sense as \temporal
logic"|i.e., a deductive logical system specialized for re a-
soning with probabilistic assertions.

To apply probability logic to tasks such as proving the
theorems of probability theory, a more expressive language
was needed. Gaifman [8] proposed a�rst-order probability
logic, with possible worlds being �rst-order model structu res
and with probabilities attached to sentences of (function-
free) �rst-order logic.

Within AI, the most direct descendant of these ideas ap-
pears in Lukasiewicz'sprobabilistic logic programs, in which a
probability range is attached to each �rst-order Horn claus e
and inference is performed by solving linear programs, as
suggested by Hailperin. Within the sub�eld of probabilis-
tic databases one also �nds logical sentences labeled with
probabilities [6]|but in this case probabilities are attac hed

directly to the tuples of the database. (In AI and statis-
tics, probability is attached to general relationships whe reas
observations are viewed as incontrovertible evidence.) Al-
though probabilistic databases can model complex depen-
dencies, in practice one often �nds such systems using global
independence assumptions across tuples.

Halpern [13] and Bacchus [3] adopted and extended Gaif-
man's technical approach, adding probability expressions to
the logic. Thus, one can write

8 h1 ; h2 Burglary (h1) ^ : Burglary (h2)

) P (Alarm (h1)) > P (Alarm (h2))

where now Burglary and Alarm are predicates applying to
individual houses. The new language is more expressive but
does not resolve the di�culty that Gaifman faced|how to
de�ne complete and consistent probability models. Each in-
equality constrains the underlying probability model to lie
in a half-space in the high-dimensional space of probability
models. Conjoining assertions corresponds to intersecting
the constraints. Ensuring that the intersection yields a si n-
gle point is not easy. In fact, Gaifman's principal result [8] is
a single probability model requiring 1) a probability for ev -
ery possible ground sentence and 2) probability constraint s
for in�nitely many existentially quanti�ed sentences.

Researchers have explored two solutions to this problem.
The �rst involves writing a partial theory and then\complet -
ing" it by picking out one canonical model in the allowed set.
Nilsson [22] proposed choosing themaximum entropy model
consistent with the speci�ed constraints. Paskin [23] de-
veloped a \maximum-entropy probabilistic logic" with con-
straints expressed as weights (relative probabilities) at tached
to �rst-order clauses. Such models are often called Markov
logic networks or MLNs [29] and have become a popular
technique for applications involving relational data. The re
is, however, a semantic di�culty with such models: weights
trained in one scenario do not generalize to scenarios with
di�erent numbers of objects. Moreover, by adding irrelevan t
objects to a scenario, one can change the model's predictions
for a given query to an arbitrary extent [19, 16].

A second approach, which happens to avoid the problems
just noted, 4 builds on the fact that every well-formed Bayes
net necessarily de�nes a unique probability distribution| a
complete theory in the terminology of probability logics|
over the variables it contains. The next section describes
how this property can be combined with the expressive power
of �rst-order logical notation.

4. BAYES NETS WITH QUANTIFIERS
Soon after their introduction, researchers developing Bayes

nets for applications came up against the limitations of a
propositional language. For example, suppose that in Fig. 2
there are many houses in the same general area as Pro-
fessor Pearl's: each one needs anAlarm variable and a
Burglary variable with the same CPTs and connected to
the Earthquake variable in the same way. In a propositional
language, this repeated structure has to be built manually,
one variable at a time. The same problem arises with mod-
els for sequential data such as text and time series, which
contain sequences of identical submodels, and in models for

4Brie
y, the problems are avoided by separating the gener-
ative models for object existence and object properties and
relations and by allowing for unobserved objects.

AlarmA,1 AlarmA,2

AlarmB,1 AlarmB,2 AlarmB,3

EarthquakeABurglaryA,1 BurglaryA,2

EarthquakeBBurglaryB,1 BurglaryB,2 BurglaryB,3

Figure 3: The Bayes net corresponding to Equa-
tion (4), given 2 houses in region A and 3 in B .

Bayesian parameter learning, where every instance variable
is in
uenced by the parameter variables in the same way.

At �rst, researchers simply wrote programs to build the
networks, using ordinary loops to handle repeated structur e.
Thus, to build an alarm network for R geological fault re-
gions, each with H (r) houses, we write:

loop for r from 1 to R do
add node Earthquake r with no parents, prior 0.002
loop for h from 1 to H (r) do

add node Burglary r;h with no parents, prior 0.003
add node Alarm r;h with parents Earthquake r , Burglary r;h

The pictorial notation of plates was developed to denote re-
peated structure and software tools such as BUGS [10] and
Microsoft's infer.net have facilitated a rapid expansion a p-
plications of probabilistic methods. In all these tools, th e
model structure is built by a �xed program, so every possi-
ble world has the same random variables connected in the
same way. Moreover, the code for constructing the models
is not viewed as something that could be the output of a
learning algorithm.

Breese [4] proposed a more declarative approach reminis-
cent of Horn clauses. Other declarative languages included
Poole's Independent Choice Logic, Sato's PRISM, Koller
and Pfe�er's probabilistic relational models, and de Raedt 's
Bayesian Logic Programs. In all these cases, the head of
each clause ordependency statementcorresponds to a pa-
rameterized set of child random variables, with the parent
variables being the corresponding ground instances of the lit-
erals in the body of the clause. For example, the dependency
statements equivalent to the code fragment given above are

Burglary (h) � Bernoulli (0:003)

Earthquake (r) � Bernoulli (0:002) (4)

Alarm (h) � CP T [: : :](Earthquake (F aultRegion (h)) ;

Burglary (h))

where CP T denotes a suitable conditional probability table
indexed by the corresponding arguments. Here, h and r are
logical variables ranging over houses and regions; they are
implicitly universally quanti�ed. F aultRegion is a function
symbol connecting a house to its geological region. Together
with a relational skeleton that enumerates the objects of each
type and speci�es the values of each function and relation,
a set of dependency statements such as Equation (4) corre-
sponds to an ordinary, albeit potentially very large, Bayes
net. For example, if there are 2 houses in regionA and 3 in
region B , the corresponding Bayes net is the one in Fig. 3.

5. OPEN-UNIVERSE MODELS
As noted in Section 1, closed-universe languages disallow

uncertainty about what things are in the world; the existenc e
and identity of all objects must be known in advance.

In contrast, an open-universe probability model (OUPM)
de�nes a probability distribution over possible worlds tha t
vary in the objects they contain and in the mapping from
symbols to objects. Thus, OUPMs can handle data from
sources (text, video, radar, intelligence reports, etc.) t hat vi-
olate the closed-universe assumption. Given evidence, OUPMs
learn about the objects the world contains.

Looking at Fig. 1(a), the �rst problem is how to ensure
that the model speci�es a proper distribution over a het-
erogeneous, unbounded set of possible worlds. The key is to
extend the generative view of Bayes nets (see Section 2) from
the propositional to the �rst-order, open-universe case:
{ Bayes nets generate propositional worlds one event at a
time; each event �xes the value of a variable.
{ First-order, closed-universe models such as Equation (4)
de�ne generation steps for entire classes of events.
{ First-order, open-universe models include generative steps
that add objects to the world rather than just �xing their
properties and relations.
Consider, for example, an open-universe version of the alarm
model in Equation (4). If one suspects the existence of up
to 3 geological fault regions, with equal probability, this can
be expressed as anumber statement:

Region � UniformInt (1; 3) : (5)

For the sake of illustration, let us assume that the number
of houses in a regionr is drawn uniformly between 0 and 4:

House(F aultRegion = r) � UniformInt (0; 4) : (6)

Here, F aultRegion is called an origin function , since it con-
nects a house to the region from which it originates.

Together, the dependency statements (4) and the two
number statements (5 and 6), along with the necessary type
signatures, specify a complete distribution over all the po s-
sible worlds de�nable with this vocabulary. There are in-
�nitely many such worlds, but, because the number state-
ments are bounded, only �nitely many|317,680,374 to be
precise|have non-zero probability. Below, we give an exam-
ple of a particular world constructed from this model and
the probability that the model assigns for it.

The BLOG language [20] provides a precise syntax, se-
mantics, and inference capability for open-universe proba-
bility models composed of dependency and number state-
ments. BLOG models can be arbitrarily complex, but they
inherit the key declarative property of Bayes nets: every
well-formed BLOG model speci�es a well-de�ned probability
distribution over possible worlds.

To make such a claim precise, one must de�ne exactly
what these worlds are and how the model assigns a proba-
bility to each. The de�nitions (given in full in Brian Milch' s
PhD thesis [19]) begin with the objects each world contains.
In the standard semantics of typed �rst-order logic, object s
are just numbered tokens with types. In BLOG, each ob-
ject also has an origin , indicating how it was generated.
(The reason for this slightly baroque construction will be-
come clear shortly.) For number statements with no origin
functions|e.g., Equation (5)|the objects have an empty
origin; for example, hRegion; ; 2i refers to the second region

generated from that statement. For number statements with
origin functions|e.g., Equation (6)|each object records i ts
origin; for example, hHouse; hF aultRegion; hRegion; ; 2ii ; 3i
is the third house in the second region.

The number variablesof a BLOG model specify how many
objects there are of each type with each possible origin; thus
HousehF aultRegion; hRegion; ; 2ii (!) = 4 means that in world
! there are 4 houses in region 2. Thebasic variablesdeter-
mine the values of predicates and functions for all tuples of
objects; thus, Earthquake hRegion; ; 2i (!) = true means that
in world ! there is an earthquake in region 2. A possible
world is de�ned by the values of all the number variables
and basic variables. A world may be generated from the
model by sampling in topological order; for example,

Variable Value Prob.
Region 2 0:3333
Earthquake hRegion; ; 1i false 0:998
Earthquake hRegion; ; 2i false 0:998
HousehF aultRegion; hRegion; ; 1ii 1 0:2
HousehF aultRegion; hRegion; ; 2ii 1 0:2
Burglary hHouse; hF aultRegion; hRegion; ; 1ii ;1i false 0:997
Burglary hHouse; hF aultRegion; hRegion; ; 2ii ;1i true 0:003

The probability of a world so constructed is the product
of the probabilities for all the sampled values; in this case,
0.00003972063952. Now it becomes clear why each object
contains its origin: this property ensures that every world
can be constructed by exactly one sampling sequence. If this
were not the case, the probability of a world would be the
sum over all possible sampling sequences that create it.

Open-universe models may have in�nitely many random
variables, so the full theory involves nontrivial measure-
theoretic considerations. For example, the number state-
ment # Region � P oisson(�) assigns probability e� � � k =k!
to each nonnegative integer k. Moreover, the language al-
lows recursion and in�nite types (integers, strings, etc.) . Fi-
nally, well-formedness disallows cyclic dependencies andin-
�nitely receding ancestor chains; these conditions are unde-
cidable in general, but certain syntactic su�cient conditi ons
can be checked easily.

5.1 Examples
The standard\use case" for BLOG has three elements: the

model, the evidence (the known facts in a given scenario),
and the query, which may be any expression, possibly with
free logical variables. The answer is a posterior joint proba-
bility for each possible set of substitutions for the free va ri-
ables, given the evidence, according to the model.5 Every
model includes type declarations, type signatures for the
predicates and functions, one or more number statements
for each type, and one dependency statement for each pred-
icate and function. (In the examples below, declarations
and signatures are omitted where the meaning is clear.) De-
pendency statements use an if-then-else syntax to handle
so-called context-speci�c dependency, whereby one variable
may or may not be a parent of another, depending on the
value of a third variable.

Citation matching : Systems such as CiteSeer and Google
Scholar extract a database-like representation, relating pa-
pers and researchers by authorship and citation links, from
5As with Prolog, there may be in�nitely many sets of substi-
tutions of unbounded size; designing exploratory interfac es
for such answers is an interesting HCI challenge.

type Researcher, Paper, Citation;
random String Name(Researcher);
random String Title(Paper);
random Paper PubCited(Citation);
random String Text(Citation);
random Boolean Prof(Researcher);
origin Researcher Author(Paper);
#Researcher � OM(3,1);
Name(r) � CensusDB NamePrior();
Prof(r) � Boolean(0.2);
#Paper(Author=r)

if Prof(r) then � OM(1.5,0.5) else � OM(1,0.5);
Title(p) � CSPaperDB TitlePrior();
CitedPaper(c) � UniformChoice(Paper p);
Text(c) � HMMGrammar(Name(Author(CitedPaper(c))),

Title(CitedPaper(c)));

Figure 4: BLOG model for citation information ex-
traction. For simplicity the model assumes one au-
thor per paper and omits details of the grammar
and error models. OM (a; b) is a discrete log-normal,
base 10, i.e., the order of magnitude is 10a � b.

#Aircraft(EntryTime = t) � Poisson(� a);
Exits(a,t) if InFlight(a,t) then � Boolean(� e);
InFlight(a,t) =

(t == EntryTime(a)) j (InFlight(a,t-1) & !Exits(a,t-1));
X(a,t) if t = EntryTime(a) then � InitState()

else if InFlight(a,t) then � Normal(F *X(a,t-1),� x);
#Blip(Source=a, Time=t)

if InFlight(a,t) then � Bernoulli(DetectionProb(X(a,t)));
#Blip(Time=t) � Poisson(� f);
Z(b) if Source(b)=null then � UniformInRegion(R);

else � Normal(H*X(Source(b),Time(b)),� b);

Figure 5: BLOG model for radar tracking of multi-
ple targets. X (a; t) is the state of aircraft a at time
t, while Z (b) is the observed position of blip b.

raw ASCII citation strings. These strings contain no object
identi�ers and include errors of syntax, spelling, punctua -
tion, and content, which lead in turn to errors in the ex-
tracted databases. For example, in 2002, CiteSeer reported
over 120 distinct books written by Russell and Norvig.

A generative model for this domain (Fig. 4) connects an
underlying, unobserved world to the observed strings: ther e
are researchers, who have names; researchers write papers,
which have titles; people cite the papers, combining the au-
thors' names and the paper's title (with errors) into the tex t
of the citation according to some grammar. Given citation
strings as evidence, a multi-author version of this model,
trained in an unsupervised fashion, had an error rate 2 to 3
times lower than CiteSeer's on four standard test sets [24].
The inference process in such a vertically integrated model
also exhibits a form of collective, knowledge-driven disam-
biguation: the more citations there are for a given paper, th e
more accurately each of them is parsed, because the parses
have to agree on the facts about the paper.

Multitarget tracking : Given a set of unlabeled data points
generated by some unknown, time-varying set of objects, the
goal is to detect and track the underlying objects. In radar
systems, for example, each rotation of the radar dish pro-
duces a set of blips. New objects may appear, existing ob-
jects may disappear, and false alarms and detection failures
are possible. The standard model (Fig. 5) assumes indepen-
dent, linear{Gaussian dynamics and measurements. Exact

#SeismicEvents � Poisson(T* � e);
Natural(e) � Boolean(0.999);
Time(e) � UniformReal(0,T);
Magnitude(e) � Exponential(log(10));
Depth(e) if Natural(e) then � UniformReal(0,700) else = 0;
Location(e) if Natural(e) then � SpatialPrior()

else � UniformEarthDistribution();
#Detections(event=e, phase=p, station=s)

if IsDetected(e,p,s) then = 1 else = 0;
IsDetected(e,p,s) �

Logistic(weights(s,p),Magnitude(e), Depth(e), Distanc e(e,s));
#Detections(site = s) � Poisson(T* � f (s));
OnsetTime(d,s)

if (event(d) = null) then � UniformReal(0,T)
else = Time(event(d)) + Laplace(� t (s), � t (s)) +

GeoTT(Distance(event(d),s),Depth(event(d)),phase(d));
Amplitude(d,s)

if (event(d) = null) then � NoiseAmplitudeDistribution(s)
else � AmplitudeModel(Magnitude(event(d)),

Distance(event(d),s),Depth(event(d)),phase(d));
: : : and similar clauses for azimuth, slowness, and phase type.

Figure 6: The NET-VISA model (see text).

Figure 7: Location estimates for the DPRK nuclear
test of February 12, 2013: UN CTBTO Late Event
Bulletin (green triangle); NET-VISA (blue square).
The tunnel entrance (black cross) is 0.75km from
NET-VISA's estimate. Contours show NET-VISA's
posterior location distribution.

inference is provably intractable, but MCMC typically work s
well in practice. Perhaps more importantly, elaborations o f
the scenario (formation
ying, objects heading for unknown
destinations, objects taking o� or landing, etc.) can be han -
dled by small changes to the model without resorting to new
mathematical derivations and complex programming.

Nuclear treaty monitoring : Verifying the Comprehen-
sive Nuclear-Test-Ban Treaty requires �nding all seismic e vents
on Earth above a minimum magnitude. The UN CTBTO
maintains a network of sensors, the International Monitor-
ing System (IMS); its automated processing software, based
on 100 years of seismology research, has a detection failure
rate of about 30%. The NET-VISA system [2], based on an
OUPM, signi�cantly reduces detection failures.

The NET-VISA model (Fig. 6) expresses the relevant geo-
physics directly. It describes distributions over the numb er
of events in a given time interval (most of which are natu-
rally occurring) as well as over their time, magnitude, dept h,

and location. The locations of natural events are distribut ed
according to a spatial prior trained (like other parts of the
model) from historical data; man-made events are, by the
treaty rules, assumed to occur uniformly. At every station s,
each phase (seismic wave type)p from an event e produces
either 0 or 1 detections (above-threshold signals); the detec-
tion probability depends on the event magnitude and depth
and its distance from the station. (\False alarm" detection s
also occur according to a station-speci�c rate parameter.)
The measured arrival time, amplitude, and other properties
of a detection d depend on the properties of the originating
event and its distance from the station.

Once trained, the model runs continuously. The evidence
consists of detections (90% of which are false alarms) ex-
tracted from raw IMS waveform data and the query typically
asks for the most likely event history, or bulletin, given the
data. For reasons explained in Section 5.2, NET-VISA uses
a special-purpose inference algorithm. Results so far are en-
couraging; for example, in 2009 the UN's SEL3 automated
bulletin missed 27.4% of the 27294 events in the magnitude
range 3{4 while NET-VISA missed 11.1%. Moreover, com-
parisons with dense regional networks show that NET-VISA
�nds up to 50% more real events than the �nal bulletins pro-
duced by the UN's expert seismic analysts. NET-VISA also
tends to associate more detections with a given event, lead-
ing to more accurate location estimates (see Fig. 7). The
CTBTO has recommended adoption of NET-VISA to its
council of member states.

Remarks on the examples.
Despite super�cial di�erences, the three examples are stru c-

turally similar: there are unknown objects (papers, aircra ft,
earthquakes) that generate percepts according to some phys-
ical process (citation, radar detection, seismic propagation).
The same structure and reasoning patterns hold for areas
such as database deduplication and natural language un-
derstanding. In some cases, inferring an object's existence
involves grouping percepts together|a process that resem-
bles the clustering task in machine learning. In other cases,
an object may generate no percepts at all and still have its
existence inferred|as happened, for example, when obser-
vations of Uranus led to the discovery of Neptune. Allowing
object trajectories to be nonindependent in Fig. 5 enables
such inferences to take place.

5.2 Inference
By Equation (1), the probability P (� j e) for a closed query

sentence � given evidence e is proportional to the sum of
probabilities for all worlds in which � and e are satis�ed,
with the probability for each world being a product of model
parameters as explained in Section 5.

Many algorithms exist to calculate or approximate this
sum of products for Bayes nets. Hence, it is natural to con-
sider grounding a �rst-order probability model by instanti-
ating the logical variables with \all possible" ground term s
in order to generate a Bayes net, as illustrated in Fig. 3;
then, existing inference algorithms can be applied.

Because of the large size of these ground networks, exact
inference is usually infeasible. The most general method
for approximate inference is Markov chain Monte Carlo.
MCMC methods execute a random walk among possible
worlds, guided by the relative probabilities of the worlds v is-
ited and aggregating query results from each world. MCMC

algorithms vary in the choice of neighborhood structure for
the random walk and in the proposal distribution from which
the next state is sampled; subject to an ergodicity conditio n
on these choices, samples will converge to the true poste-
rior in the limit. MCMC scales well with network size, but
its mixing time (the time needed before samples re
ect the
true posterior) is sensitive to the quantitative structure of
the conditional distributions; indeed, hard constraints m ay
prevent convergence.

BUGS [10] and MLNs [29] apply MCMC to a precon-
structed ground network, which requires a bound on the
size of possible worlds and enforces a propositional \bit-
vector" representation for them. An alternative approach i s
to apply MCMC directly on the space of �rst-order possible
worlds [30, 25]; this provides much more freedom to use, for
example, a sparse graph or even a relational database [18]
to represent each world. Moreover, in this view it is easy
to see that MCMC moves can not only alter relations and
functions but also add or subtract objects and change the
interpretations of constant symbols; thus, MCMC can move
among the open-universe worlds shown in Fig. 1(a).

As noted in Section 5, a typical BLOG model has in�nitely
many possible worlds, each of potentially in�nite size. As a n
example, consider the multitarget tracking model in Fig. 5:
the function X (a; t), denoting the state of aircraft a at time
t, corresponds to an in�nite sequence of variables for an
unbounded number of aircraft at each step. Nonetheless,
BLOG's MCMC inference algorithm converges to the correct
answer, under the usual ergodicity conditions, for any well -
formed BLOG model [19].

The algorithm achieves this by sampling not completely
speci�ed possible worlds but partial worlds, each correspond-
ing to a disjoint set of complete worlds. A partial world is a
minimal self-supporting instantiation 6 of a subset of therele-
vant variables, i.e., ancestors of the evidence and query vari-
ables. For example, variables X (a; t) for values of t greater
than the last observation time (or the query time, whichever
is greater) are irrelevant so the algorithm can consider just
a �nite pre�x of the in�nite sequence. Moreover, the algo-
rithm eliminates isomorphisms under object renumberings
by computing the required combinatorial ratios for MCMC
transitions between partial worlds of di�erent sizes [21].

MCMC algorithms for �rst-order languages also bene�t
from locality of computation [26]: the probability ratio be-
tween neighboring worlds depends on a subgraph of constant
size around the variables whose values are changed. More-
over, a logical query can be evaluated incrementally in each
world visited, usually in constant time per world, rather th an
recomputing it from scratch [30, 18].

Despite these optimizations, generic inference for BLOG
and other �rst-order languages remains too slow. Most real-
world applications require a special-purpose proposal distri-
bution to reduce the mixing time. A number of avenues are
being pursued to resolve this issue:
{ Compiler techniques can generate inference code that is
speci�c to the model, query, and/or evidence. Microsoft's
infer.net uses such methods to handle millions of variables.
Experiments with BLOG show speedups of over 100x.
{ Special-purpose probabilistic hardware|such as Analog De-
vices' GP5 chip| o�ers further constant-factor speedups.
{ Special-purpose samplersjointly sample groups of variables

6An instantiation of a set of variables is self-supporting if
the parents of every variable in the set are also in the set.

that are tightly constrained. A library of such samplers may
render most user programs e�ciently solvable.
{ Static analysis can transform programs for e�ciency [5,
15] and identify exactly solvable submodels [7].

Finally, the rapidly advancing techniques of lifted infer-
ence[28] aim to unify probability and logic at the inferential
level, borrowing and generalizing ideas from logical theorem
proving. Such methods, surveyed in [31], may avoid ground-
ing and take advantage of symmetries by manipulating sym-
bolic distributions over large sets of objects.

5.3 Learning
Generative languages such as BLOG and BUGS naturally

support Bayesian parameter learning with no modi�cation:
parameters are de�ned as random variables with priors and
ordinary inference yields posterior parameter distributi ons
given the evidence. For example, in Fig. 6 we could add a
prior � e � Gamma(3; 0:1) for the seismic rate parameter � e

instead of �xing its value in advance; learning proceeds as
data arrive, even in the unsupervised case where no ground-
truth events are supplied. A \trained model" with �xed pa-
rameter values can be obtained by, for example, choosing
maximum a posteriori values. In this way many standard
machine learning methods can be implemented using just a
few lines of modelling code. Maximum-likelihood parameter
estimation could be added by stating that certain param-
eters are learnable, omitting their priors, and interleavi ng
maximization steps with MCMC inference steps to obtain a
stochastic online EM algorithm.

Structure learning |generating new dependencies and new
predicates and functions|is more di�cult. The standard
idea of trading o� degree of �t and model complexity can
be applied, and some model search methods from the �eld
of inductive logic programming can be generalized to the
probabilistic case, but as yet little is known about how to
make such methods computationally feasible.

6. PROBABILITY AND PROGRAMS
Probabilistic programming languages or PPLs [17] repre-

sent a distinct but closely related approach for de�ning ex-
pressive probability models. The basic idea is that a ran-
domized algorithm, written in an ordinary programming lan-
guage, can be viewed not as a program to be executed, but
as a probability model: a distribution over the possible ex-
ecution traces of the program, given inputs. Evidence is
asserted by �xing any aspect of the trace and a query is any
predicate on traces. For example, one can write a simple
Java program that rolls three six-sided dice; �x the sum to
be 13; and ask for the probability that the second die is even.
The answer is a sum over probabilities of complete traces;
the probability of a trace is the product of the probabilitie s
of the random choices made in that trace.

The �rst signi�cant PPL was Pfe�er's IBAL [27], a func-
tional language equipped with an e�ective inference engine.
Church [11], a PPL built on Scheme, generated interest in
the cognitive science community as a way to model com-
plex forms of learning; it also led to interesting connectio ns
to computability theory [1] and programming language re-
search. Fig. 8 shows the burglary/earthquake example in
Church ; notice that the PPL code builds a possible-world
data structure explicitly. Inference in Church uses MCMC,
where each move resamples one of the stochastic primitives
involved in producing the current trace.

(define num-regions (mem (lambda () (uniform 1 3))))
(define-record-type region (fields index))
(define regions (map (lambda (i) (make-region i))

(iota (num-regions)))
(define num-houses (mem (lambda (r) (uniform 0 4))))
(define-record-type house (fields fault-region index))
(define houses (map (lambda (r)

(map (lambda (i) (make-house r i))
(iota (num-houses r)))) regions)))

(define earthquake (mem (lambda (r) (flip 0.002))))
(define burglary (mem (lambda (h) (flip 0.003))))
(define alarm (mem (lambda (h)

(if (burglary h)
(if (earthquake (house-fault-region h))

(flip 0.9) (flip 0.8))
(if (earthquake (house-fault-region h))

(flip 0.4) (flip 0.01))))

Figure 8: A Church program that expresses the bur-
glary/earthquake model in Equations 4, 5, and 6.

Execution traces of a randomized program may vary in
the new objects they generate; thus, PPLs have an open-
universe
avor. One can view BLOG as a declarative, rela-
tional PPL, but there is a signi�cant semantic di�erence: in
BLOG, in any given possible world, every ground term has
a single value; thus, expressions such asf (1) = f (1) are true
by de�nition. In a PPL, on the other hand, f (1) = f (1) may
be false if f is a stochastic function, because each instance of
f (1) corresponds to a distinct piece of the execution trace.
Memoizing every stochastic function (via memin Fig. 8) re-
stores the standard semantics.

7. PROSPECTS
These are early days in the process of unifying logic and

probability. Experience in developing models for a wide
range of applications will uncover new modeling idioms and
lead to new kinds of programming constructs. And of course,
inference and learning remain the major bottlenecks.

Historically, AI has su�ered from insularity and fragmen-
tation. Until the 1990s, it remained isolated from �elds suc h
as statistics and operations research, while its sub�elds|
especially vision and robotics|went their own separate way s.
The primary cause was mathematical incompatibility : what
could a statistician of the 1960s, well-versed in linear regres-
sion and mixtures of Gaussians, o�er an AI researcher build-
ing a robot to do the grocery shopping? Bayes nets have
begun to reconnect AI to statistics, vision, and language re-
search; �rst-order probabilistic languages, which have bo th
Bayes nets and �rst-order logic as special cases, will extend
and broaden this process.

8. ACKNOWLEDGMENTS
My former students Brian Milch, Hanna Pasula, Nimar

Arora, Erik Sudderth, Bhaskara Marthi, David Sontag, Danie l
Ong, and Andrey Kolobov contributed to this research, as
did NSF, DARPA, the Chaire Blaise Pascal, and ANR.

9. REFERENCES
[1] N. Ackerman, C. Freer, and D. Roy. On the

computability of conditional probability. arXiv
1005.3014, 2013.

[2] N. S. Arora, S. Russell, and E. Sudderth. NET-VISA:
Network processing vertically integrated seismic
analysis. Bull. Seism. Soc. Amer. , 103, 2013.

[3] F. Bacchus. Representing and Reasoning with
Probabilistic Knowledge. MIT Press, 1990.

[4] J. S. Breese. Construction of belief and decision
networks. Computational Intelligence , 8:624{647, 1992.

[5] G. Claret, S. K. Rajamani, A. V. Nori, A. D. Gordon,
and J. Borgstr •om. Bayesian inference using data
ow
analysis. In FSE-13, 2013.

[6] N. N. Dalvi, C. R�e, and D. Suciu. Probabilistic
databases.CACM , 52(7):86{94, 2009.

[7] B. Fischer and J. Schumann. AutoBayes: A system for
generating data analysis programs from statistical
models. J. Functional Programming , 13, 2003.

[8] H. Gaifman. Concerning measures in �rst order
calculi. Israel J. Mathematics , 2:1{18, 1964.

[9] H. Gaifman. Concerning measures on Boolean
algebras. Paci�c J. Mathematics , 14:61{73, 1964.

[10] W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. A
language and program for complex Bayesian
modelling. The Statistician , 43:169{178, 1994.

[11] N. D. Goodman, V. K. Mansinghka, D. Roy,
K. Bonawitz, and J. B. Tenenbaum. Church: A
language for generative models. In UAI-08 , 2008.

[12] T. Hailperin. Probability logic. Notre Dame J. Formal
Logic, 25(3):198{212, 1984.

[13] J. Y. Halpern. An analysis of �rst-order logics of
probability. AIJ , 46(3):311{350, 1990.

[14] C. Howson. Probability and logic. J. Applied Logic ,
1(3{4):151{165, 2003.

[15] C.-K. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel.
Slicing probabilistic programs. In PLDI-14 , 2014.

[16] D. Jain, B. Kirchlechner, and M. Beetz. Extending
Markov logic to model probability distributions in
relational domains. In KI-07 , 2007.

[17] D. Koller, D. A. McAllester, and A. Pfe�er. E�ective
Bayesian inference for stochastic programs. In
AAAI-97 , 1997.

[18] A. McCallum, K. Schultz, and S. Singh. FACTORIE:
Probabilistic programming via imperatively de�ned
factor graphs. In NIPS 22, 2010.

[19] B. Milch. Probabilistic Models with Unknown Objects.
PhD thesis, UC Berkeley, 2006.

[20] B. Milch, B. Marthi, D. Sontag, S. J. Russell, D. Ong,
and A. Kolobov. BLOG: Probabilistic models with
unknown objects. In IJCAI-05 , 2005.

[21] B. Milch and S. J. Russell. General-purpose MCMC
inference over relational structures. In UAI-06 , 2006.

[22] N. J. Nilsson. Probabilistic logic. AIJ , 28:71{87, 1986.
[23] M. Paskin. Maximum entropy probabilistic logic.

Tech. Report UCB/CSD-01-1161, UC Berkeley, 2002.
[24] H. Pasula, B. Marthi, B. Milch, S. J. Russell, and

I. Shpitser. Identity uncertainty and citation
matching. In NIPS 15, 2003.

[25] H. Pasula and S. J. Russell. Approximate inference for
�rst-order probabilistic languages. In IJCAI-01 , 2001.

[26] J. Pearl. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann, 1988.

[27] A. Pfe�er. IBAL: A probabilistic rational
programming language. In IJCAI-01 , 2001.

[28] D. Poole. First-order probabilistic inference. In
IJCAI-03 , 2003.

[29] M. Richardson and P. Domingos. Markov logic
networks. Machine Learning , 62(1{2):107{136, 2006.

[30] S. J. Russell. Expressive probability models in science.
In Second International Conference on Discovery
Science, Tokyo, Japan, 1999. Springer Verlag.

[31] G. Van den Broeck. Lifted Inference and Learning in
Statistical Relational Models . PhD thesis, Katholieke
Universiteit Leuven, 2013.

