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Abstract

In recent work we showed how to implement a new atomic keyword as an extension
to the Java programming language. It allows a program to perform a series of heap
accesses atomically without needing to use mutual exclusion locks. We showed that
data structures built using it could perform well and scale to large multi-processor
systems. In this paper we extend our system in two ways. Firstly, we show how to
provide an explicit ‘abort’ operation to abandon execution of an atomic block and to
automatically undo any updates made within it. Secondly, we show how to perform
external I/O within an atomic block. During our work we found it was surprisingly
difficult to support these operations without opening loop-holes through which the
programmer could subvert language-based security mechanisms. Our final design is
based on a ‘external action’ abstraction, allowing code running within an atomic
block to request that a given pre-registered operation be executed outside the block.

Key words: Atomic blocks, exceptions, non-blocking synchronization, software
transactional memory.

1 Introduction

Recently, along with other research groups, we have been investigating the
design and implementation of new programming language features for con-
currency control (1). In our system, developed as an extension to the Java
programming language, we introduced a new keyword atomic which allows
a group of statements to execute atomically with respect to the operation
of other threads. As well as updating objects’ fields, these statements can
perform a wide range of operations including invoking methods and instanti-
ating new objects. We also allow atomic statements to be guarded by boolean
conditions, with execution blocking until the condition is satisfied. Figure 1
illustrates this by showing the implementation of a single-cell shared buffer.
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class Buffer {

private boolean full;

private int value;

public void put(int new_value)

throws InterruptedException

{

atomic (!full) { // Wait until buffer is empty

full = true;

value = new_value;

}

}

public int get() throws InterruptedException

{

atomic (full) { // Wait until buffer is full

full = false;

return value;

}

}

}

Fig. 1. A single-cell shared buffer implemented using atomic blocks.

Atomic blocks are an attractive alternative to using locks, primarily because
they make thread-safe operations composable. For example, consider a hash
table that supports thread-safe insert and delete operations. Now suppose that
we want to delete one item A from table t1, and insert it into table t2; but
the intermediate state (in which neither table contains the item) must not be
visible to other threads. Using locks, unless the implementor of the hash table
anticipates this need, there is simply no way to satisfy this requirement. Even
if the programmer anticipates this need, all that can be done is to expose
methods such as LockTable and UnlockTable – but as well as breaking the
hash-table abstraction, they invite lock-induced deadlock, depending on the
order in which the client takes the locks. In contrast, using atomic blocks, the
insert and delete operations can simply be composed in sequence in a single
block in the same way as in a single-threaded system.

Although constructs like atomic blocks have been proposed since at least
1977 (2), our implementation is the first to offer scalable performance for
multi-processor machines. In particular, we mean that threads executing non-
conflicting atomic blocks can generally run concurrently without synchroniza-
tion. Furthermore, our implementation is non-blocking meaning that it does
not suffer from low-level lock-induced deadlocks or priority inversion.
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In this paper we address two problems which exist with our existing form of
atomic blocks: what happens when an exception reaches the edge of an atomic
block, and what happens when a thread attempts to perform I/O operations
within an atomic block? As we discuss in Section 2, the solutions we have
developed carry over to other designs beyond our own.

The problem raised by exceptions is whether to undo updates made in the
atomic block or whether to retain them and propagate the exception. Unfor-
tunately there is a Catch-22 situation: if we roll back the updates then the
exception object itself could be lost, leaving nothing to propagate (or worse,
creating a dangling pointer if its allocation is rolled back). We discuss this
in Section 3 and propose a hybrid model in which certain exceptions cause
atomic blocks to be aborted and in which the exception thrown outside the
block behaves as if it is a deep copy of the exception raised within it.

The problem with I/O operations is that they will generally become immedi-
ately visible to other threads, destroying the illusion of atomicity. In Section 4
we discuss a number of alternative ways to support I/O and propose a model in
which communication libraries must be adapted for use within atomic blocks.
This places an onus on the library’s implementer but, we argue, allows better
performance and scalability than a generic mechanism.

Our solutions to both of these problems are based on a single ‘external action’
abstraction which we introduce in Section 5. These actions provide a form of
inter-transaction-context method calls, in which an external action exports an
operation which can be invoked from within an atomic block but which is
directly executed outside it. This provides a way to marshall exceptions that
leave atomic blocks and to perform situation-specific buffering when building
atomic I/O. We discuss our experience with this approach in Section 6.

Finally, Section 7 discusses related work and Section 8 concludes, highlight-
ing a number of areas for future work along with dead-ends we explored in
developing the ‘external action’ abstraction.

In the remainder of this introduction we briefly review the intended seman-
tics of atomic blocks in Section 1.1 and outline their implementation over a
software transactional memory in Section 1.2.

1.1 Intended semantics of atomic blocks

The semantics of atomic blocks are defined by (i ) specifying their behaviour
when executed by a single thread running in isolation and (ii ) requiring that,
in a multi-threaded system, they behave as-if the executing thread ran in
isolation while within the block.
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For non-nesting blocks, there are two cases to consider based on whether or
not the atomic block contains a guard condition. If there is no guard condition
then the following two code fragments are equivalent:

atomic {

S; { S; }

}

Similarly, if a guard condition is present then the following two code fragments
behave equivalently after blocking until the guard E is presciently known to
yield true or terminate with an exception:

atomic (E) {

S; { E; S; }

}

Nested atomic blocks are considered to be flattened into the blocks that enclose
them, with the entire assembly of blocks appearing to run at a point where all
of the guard conditions executed will yield true or terminate with an exception.

These definitions have three major consequences. Firstly, they mean that if
a system is genuinely single-threaded then the contents of an atomic block
can be executed directly when its guard is satisfied. Secondly, these definitions
lead to the semantics for exception propagation in our original paper – that
is, if E or S terminates with an exception then the updates made up to that
point are retained (1). Thirdly, these definitions allow the guard expression E

to have side effects – this may be important in practice if, for example, the
guard accesses a self-organizing data structure such as a splay tree (3).

There are numerous Java-specific subtleties which we elide here. These include,
interruption while waiting, the interaction between class-loading and atomic
block execution, thread creation within atomic blocks and the use of condition
variables within atomic blocks. These issues are ones which would need to be
considered carefully if incorporating atomic blocks into the design of a new
language.

1.2 Implementation overview

Although we define the semantics of atomic blocks in terms of single-threaded
execution it is not necessary to actually serialise them. Instead, we use a
software transactional memory (STM) which allows groups of memory accesses
to be performed within transactions which commit atomically.
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boolean done = false;

while (!done) {

STMStart ();

try {

statements;

done = STMCommit ();

} catch (Throwable t) {

done = STMCommit ();

if (done) {

throw t;

}

}

}

Fig. 2. Translation of atomic { statements; } into STM operations.

The particular STM used in our Java prototype allows transactions to execute
in parallel so long as the addresses accessed by different transactions do not
collide under a hash function which forms part of the STM’s implementation
– in general this means that they execute in parallel unless they attempt
conflicting operations.

The STM is implemented in C as part of a modified Java Virtual Machine
and provides operations for starting a new transaction (STMStart), abort-
ing the current transaction (STMAbort), committing the current transaction
(STMCommit), reading a word within the context of the current transaction
(STMRead) and updating a word within the context of the current transac-
tion (STMWrite). There are two further operations to validate transactions
and to block threads while waiting for conditions to become true – these are
not relevant to the current paper, but are described in detail in our earlier
work (1).

The higher layer of the implementation maps the atomic keyword onto a series
of STM operations. For example, entering an atomic block requires STMStart
to be invoked, and accesses to shared fields within a block require that STMRead
and STMWrite be used in place of direct heap accesses. This translation is
implemented in the source-to-bytecode compiler (for transaction management
operations) and the bytecode-to-native compiler (for individual field accesses).
Of course, the bytecode-to-native compiler must also ensure that appropriate
STM operations are used in methods called from within atomic blocks. This
is done by dynamically producing specialised versions of those methods.

As an example, Figure 2 summarises how a basic non-nesting atomic block
without a guard condition may be expressed in terms of these explicit trans-
action management operations. Again, our previous paper describes these two
levels more thoroughly (1).
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2 Programming abstractions for atomic operations

There are several recent proposals for alternative abstractions for concurrent
programming and alternative implementation techniques for building them.

Herlihy et al designed an object-based software transactional memory for Java
which, unlike our design, works with an unmodified JVM (4). Transaction
management operations are made through a library that the STM provides
and the objects manipulated in transactions must be explicitly opened for
transactional access before the first time they are used. Fraser designed a
similar system as a library for programs written in C (5).

In a series of papers, Welc et al showed how existing Java programs using
synchronized blocks can be executed using STM-like techniques, either form-
ing per-thread logs of updates that they propose to make to the shared heap,
or per-thread roll-back logs of updates that need to be undone if conflicts are
detected (6; 7). This allows existing programs to be executed without being
re-written to use alternative constructs like atomic.

Our techniques for dealing with exceptions and I/O are applicable to both of
these approaches because they share a common strategy of optimistic execu-
tion in which threads execute potentially-conflicting operations while allowing
their tentative updates to be aborted. If an operation completes without con-
flict then its tentative updates can be made permanent. Otherwise, if a conflict
may have occurred, it can discard its tentative updates and re-try its oper-
ation. This means that, as in our system. operations with externally visible
effects (such as output) must be deferred until the eventual commit / roll-back
decision is made.

Welc et al suggest an alternative implementation method when the program-
mer describes concurrency control using mutual exclusion locks: if an opera-
tion with external I/O side-effects is attempted then the optimistic execution
scheme can be disabled for the locks that are held (7). In their design this
means that it is no longer necessary to support roll-back for those locks and
so the I/O operations can be executed directly. This works well when using
existing code, but it is not directly applicable using only atomic blocks rather
than explicit synchronization.

A further alternative, which we have been exploring in ongoing work with the
Haskell programming language, is to completely forbid I/O operations within
atomic transactions (8). In Haskell we use the type system to distinguish op-
erations that may have transactional side effects on the heap from operations
that may have unrestricted side effects. The Haskell type we give to atomic

guarantees that it contains only transactional operations and pure computa-
tion. This provides a robust guarantee that I/O will not be attempted.
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3 Managing exceptions

The semantics defined in Section 1.1 mean that if an atomic block termi-
nates with an exception, then any heap updates made within the block are
retained and the exception is propagated. This allows single-threaded code to
be directly re-used in a multi-threaded environment by inserting atomic blocks
around related accesses to the heap, without having to think about whether
automatic roll-back would be correct.

However, as Shinnar et al have argued, there are many examples where it
is more convenient for the system to undo any updates that have led to an
exception being raised: this reduces the need for programmers to write error-
recovery code which is often intricate and difficult to test (9).

For illustration, consider code to move an object between two collections in
which the source provides a remove method and the destination provides an
add method. The add method throws an exception if the target collection
cannot hold the item supplied. Figure 3 shows how a move operation can be
implemented using an atomic block. The code is not elegant; the programmer
must manually implement fix-up operations if the destination cannot contain
the item supplied. In fact, in a full solution, it would be necessary to consider
exceptions raised by the compensating add if the object is rejected by both
collections. Furthermore, although the compensating operation means that the
abstract state of the two collections is unchanged, the physical representation
in memory is subject to numerous updates. This is a problem in concurrent
systems because it increases contention in the memory hierarchy: the aborted
move ends up forming an expensive no-op which may impede other threads’
operation.

Of course, these same observations would hold if the move method was im-
plemented using mutual exclusion locks. However, building the system over a
STM allows the more convenient option of replacing the compensating opera-
tion with a request that the STM simply discards any heap updates performed
within the atomic block.

However, there are problems with simply using the STMAbort operation that
to roll back an atomic block before propagating an exception. The main prob-
lem is that aborting would undo all of the updates made in the transaction: we
cannot roll back the creation of the exception object because we may need it
to signal the kind of problem that arose. Even worse, if we roll back the instan-
tiation of the exception object then we would be left with a dangling pointer
if we then tried to propagate it – this could happen with hardware implemen-
tations of transactions in which all operations, including those performed in
allocation functions, would be logged by the processor (10; 11; 12).
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boolean move(Collection s, Collection d, Object o)

{

atomic {

if (!s.remove(o)) { /* Try to remove object */

return false; /* Could not find object */

} else {

try {

d.add(o); /* Add to target collection */

} catch (RuntimeException e) {

s.add(o); /* Compensating add */

return false; /* Move failed */

}

return true; /* Move succeeded */

}

}

}

Fig. 3. A collection-to-collection move using manual roll back.

Unfortunately, retaining the exception object while reverting other changes is
not a viable alternative: what if the exception object refers to objects instanti-
ated in the atomic block? What if it refers to objects that have been modified
in the atomic block? What if the object thrown is actually a pre-existing one
that is modified in the atomic block before being thrown? In general, the
exception object could be interlinked with other data structures, making it
unclear which modifications to retain and which to discard.

We avoid this problem by using object serialization to define what happens
when aborting a block while retaining the exception object which triggered the
abort. This is because the serialized byte-array form of an object is meaningful
between JVMs and therefore meaningful between an atomic block and its
enclosing context. If a block terminates by throwing an exception e whose
serialized representation would be a byte-array b then the effect of executing
the block is equivalent to de-serializing a byte-array with the same contents as
b and then throwing the resulting exception. Of course, this ‘as if’ definition
allows the exception object to be retained and thrown directly if static analysis
can show that the behaviour is equivalent.

A further problem is that if all exceptions trigger roll back then it precludes
alternative implementations of atomic blocks which, unlike our STM, do not
produce the logging information necessary to abort a transaction – this might
be true of a scheme based on automatic locking rather than an STM, or a
scheme which includes optimizations for single-threaded use.

Our approach is to introduce a new AtomicAbortException class and to have
instances of that, or its subclasses, trigger roll back. This is a checked exception
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boolean move(Collection s, Collection d, Object o)

{

try {

atomic {

try {

if (!s.remove(o)) { /* Try to remove object */

return false; /* Could not find object */

} else {

d.add(o); /* Add to target collection */

return true; /* Move succeeded */

}

} catch (RuntimeException e) {

throw new AtomicAbortException(e);

}

}

} (catch AtomicAbortException e2) {

return false; /* Move failed */

}

}

Fig. 4. A collection-to-collection move using automatic roll back.

class and so the programmer must indicate where it may be thrown, allowing
a non-abortable implementation to be used for blocks where these exceptions
are not present.

Figure 4 shows how an atomic collection-to-collection move could be imple-
mented using roll back: it is no longer necessary to include explicit compen-
satory code, and failed moves will lead to aborted lower-level transactions,
reducing contention. As is typical, the AtomicAbortException which crosses
the boundary of the atomic block carries the original exception raised by
remove in order to indicate the root cause of the failure.

4 Managing I/O operations

The second area which we consider in this paper is how to support atomic

blocks with external side effects. In our original design we prohibited blocks
from invoking any native method – that is, any method that is not imple-
mented in Java bytecode. This ultimately precludes the availability of most
I/O operations.

Unfortunately, it is not possible to allow native methods to be called from
atomic blocks by trapping heap accesses made across the Java Native Interface
(JNI). That would provide no control over system calls invoked from native
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void serverLoop(ServerSocket s) {

while (true) {

Socket c = s.acceptConnection(); /*M1*/

Thread t = new Thread() {

public void run() {

atomic {

try {

dealWithClient(c); /*M2*/

} catch (Throwable t) {

// Roll back updates made by clients

// whose actions cause exceptions

throw new AtomicAbortException(t);

}

}

}

};

t.start();

}

}

Fig. 5. Stylized server execution using an atomic block to isolate each client – in
practice the run method would need to handle the AtomicAbortException and
perhaps close down the client’s connection, log errors and so on.

methods, or on code within the JVM which uses internal lower-level interfaces
to bypass JNI.

Of course, there are some operations for which the JVM cannot guarantee
atomicity. For example, the programmer may define an atomic block to swap
the names of two files by a series of renameTo method calls. Operating system
support would be needed to make these operations appear atomic to other
processes; all that can reasonably be provided is atomicity in the sense that
either all of the operations in the block appear to occur, or none of them occurs.
Again, this is consistent with our intended ‘as-if single threaded’ semantics
from Section 1.1.

Furthermore, different behaviour is appropriate for different kinds of I/O oper-
ation. For instance, consider the highly stylized server loop shown in Figure 5.
Connections from clients are received at method call M1 and each is dealt with
in an atomic block in a separate thread at M2. If an exception occurs in M2 then
the effect of the atomic block is discarded. In this case it may be appropriate
for the external interactions performed between the client and the server to
be carried out directly while executing the block and for the roll back to only
discard updates to the state within the server: the exception may indicate an
internal error in the server or one that has been triggered by a maliciously
formed request from a client.
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public class ExampleOutput {

static PrintStream out =

new PrintStream(

new AtomicOutputStream(System.out));

static void print_sum(int x, int y) {

atomic {

int result = x + y;

out.println ("Result is " + result);

}

}

}

Fig. 6. Using an AtomicOutputStream to buffer output from an atomic block.

Rather than directly supporting unmodified native methods, the approach we
take is to provide a set of Java-based interfaces with which an I/O library
can implement appropriate buffering semantics. These allow a thread to de-
termine whether it is in an atomic block and to register call-backs for when
the transaction underlying the block attempts to commit or abort.

This allows a wide range of behaviour to be implemented. For instance, an
output library can perform its own buffering of the deferred output, register
a callback on commit to flush the output and register a callback on abort to
discard the buffered state. Similarly, a library performing input can register
a callback on abort to re-buffer the input which had been presented to the
aborted transaction. This approach allows device-specific forms of buffering
to be used – for example, to distinguish between stream-based input which
cannot be re-ordered and datagram-based input in which datagrams may be
re-ordered.

For console I/O we have implemented simple wrapper classes which provide
example buffering layers for use above the ordinary I/O streams. Figure 6
shows an example of how such an AtomicOutputStream can be used. If these
I/O features were integrated fully into the environment then these wrappers
could be provided as the default I/O streams.

Of course, such application-agnostic approaches only work for simple situa-
tions in which the input received by the block does not depend on the output
that it generates. More complex cases would require call-backs to engage in a
distributed commit protocol, or to perform compensation actions using tech-
niques like BPEL (13).
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Fig. 7. Permitted (O1-O2) and forbidden (O4-O3) inter-context references. The
instantiation of O3 may be buffered in transaction-private logs for T3, and so the
reference would appear dangling from the point of view of T1.

5 External actions

In this section we introduce the ‘external action’ abstraction with which we
implement our exception propagation model and I/O support libraries. In
Sections 5.1 and 5.2 we discuss two ways of exposing external actions to pro-
grammers; we have implemented the first of these options and, although we
have a thorough design for the second option, we have not yet tested it in
practice.

External actions provide a controlled way in which code within an atomic

block can temporarily perform operations directly on the heap rather than
within the context of the current transaction. External actions are used in
propagating exceptions in order to marshal the exception object so that it is
available after the transaction is aborted. External actions are used during
I/O to invoke native operations and to perform device-specific buffering to
give transactional behaviour.

The behaviour of external actions is defined in terms of contexts which rep-
resent the different views that threads may have on the heap at any given
moment. Contexts are hierarchical and a single global context exists as the
root. Heap updates are said to occur within a given context, meaning that
they are guaranteed to be visible to threads executing in that context, or ex-
ecuting within any context nested inside it. Conversely, updates made in one
context are not guaranteed to be visible outside the context – for instance, they
may be buffered in a thread-local log, as with our STM-based implementation.

When a thread enters an atomic block it creates a new context nested within
its current one. When a thread leaves an atomic block then the nested context
is discarded after promoting any heap updates made within it up to its parent
context.

Figure 7 illustrates a set of nested contexts. Thread T1 is executing in the
global context G. Thread T2 is executing in context H within G. Thread T3
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is executing within context J, nested two levels deep. Objects allocated in one
context can only contain references to objects allocated in enclosing contexts,
for instance O1 can refer to O2, but O4 cannot refer to O3.

This rule ensures that a thread following a pointer is guaranteed to be exe-
cuting in a context which can see the referent. The key challenge in Java in
designing a mechanism for temporarily ‘stepping outside’ the current context
is making it impossible to create references which circumvent this rule.

We deal with this problem by representing external actions as designated
ExternalAction objects and ensuring that (i ) actions are executed in the
context within which the object is instantiated, and (ii ) actions’ parameters
are passed by serialization. The first property ensures that free variables oc-
curring within an action’s definition will refer to data that is accessible in
the context within which the action executes. The second property ensures
that any incoming parameters received by the action have been copied and
re-created within the context that the action executes.

We expose contexts to Java programmers as immutable Context objects which
uniquely identify an active context and allow traversal from it to its enclosing
context object. A static method returns the caller’s current context. A thread
can register a ContextListener with any context that is contained within its
current one. Context listeners receive three call-backs:

boolean validToCommit(Context c);

void actionOnCommit(Context c);

void actionOnAbort(Context c);

These three operations are used to perform a two-phase commit of updates
that external actions have associated with a context. The first of these opera-
tions, validToCommit, is called when deciding whether the context should be
destroyed or whether, at the end of an atomic block, updates made within
it should be merged into its parent context. If any context listener returns
false then the context must be destroyed. The second and third call-backs
are called to inform the listener of the outcome of this voting.

External actions are implemented by extending the STM interface with two
context-control operations: a method for setting the current transactional con-
text used by STM operations and a method for doing an inter-context copy of
arrays of bytes when serializing parameters to external actions. The remainder
of the implementation is Java-based; the STMCommit operation becomes a Java
method which calls validToCommit on any ContextListener objects before
attempting to commit the underlying STM transaction.

The two context-control operations are available only to trusted code because
they may be used to create outer-to-inner inter-context references. We have

13



public class ExampleActionCall {

static int x = 0;

static VoidExternalAction printX =

new VoidExternalAction() {

public void action(Context caller_context) {

System.out.println(" x=" + x);

}};

static void increment_x() {

atomic {

printX.doAction();

}

}

}

Fig. 8. An example code fragment defining and invoking an external action.

investigated two ways of building safe mechanisms through which to expose
them to applications and libraries. The first of these, which we describe in
Section 5.1, allows a single operation to be defined at a time. The second
design, in Section 5.2, exports a whole interface of external actions: it is
more verbose for short examples but is more convenient for non-trivial cases.

5.1 Operation-based external actions

The first way of defining external actions uses a simple mechanism in which the
action is defined by overriding an action method on an ExternalAction class.
A separate trusted doAction method uses the context-control extensions to
marshal parameters for the action and to invoke it in the appropriate context.

Figure 8 illustrates this: an anonymous subclass of VoidExternalAction is
created with an action method that outputs the value of x. When doAction

is called from the context created in increment x, the action is executed in
the global context that was active when printX was initialized.

Variable-length argument lists can simplify the infrastructure for defining this
form of external actions by avoiding the proliferation of separate kinds of
action class. Similarly, aside from actions with void return type, a single
parametric definition would suffice.

However, with this operation-based approach, defining external actions which
can throw checked exceptions remains problematic: we cannot represent the re-
lationship between the set of exceptions that can be raised in the user’s action
method and the set of exceptions that may result from the call to doAction.
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When defining and calling these actions, we often needed to use inelegant
techniques such as hiding checked exceptions within unchecked wrappers.

5.2 Interface-based external actions

The second way of defining external actions is more suitable for use in larger
examples where the entire set of existing methods on an object are to be
encapsulated as external actions. The approach is to allow an object to be
exported from one context and for all method invocations on it to be made
via stubs which behave as external actions.

The need for this kind of interface-based design became particularly apparent
while creating wrappers for use around the Java Transaction API in which
large numbers of boilerplate actions otherwise had to be written to wrap ex-
isting implementations of interfaces such as UserTransaction, Connection
and PreparedStatement.

Figure 9 illustrates how the earlier increment x example from Figure 8 could
be expressed in this alternative form. As before, the example ultimately prints
the contents of a field x in the global context. This operation is performed
by (i ) providing an interface printXIfc which defines the signatures of the
methods to be exported as external actions, (ii ) defining an implementation
of these operations to be exported, (iii ) invoking ExternalAction.export()

to produce a set of stubs to perform the inter-context calls.

The stubs are constrained to implement an identical interface to one imple-
mented by the original, retaining throws clauses for checked exceptions as
well as the details of return types and parameters.

6 Implementation experience

In this section we consider the use of external actions in providing a mecha-
nism for managing exceptions (Section 6.1) and for performing external I/O
operations (Section 6.2).

6.1 Propagating exceptions

The exception-propagation mechanism proposed in Section 3 can be imple-
mented by a single external action that takes the exception object created
within the atomic block and returns a deep copy of it created in the global
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//...........................................................

//

// Definition of interface exported

interface printXIfc {

public void printX();

}

//...........................................................

//

// Signature of export operation. This is parameterized

// by F which is expected to be an interface implemented by

// the exported object.

public class ExternalAction {

static <F> F export(F imp) {

...

}

}

//...........................................................

//

// Construction and invocation of an external action

public class ExampleActionCall {

static int x = 0;

// Implementation of the external action

static printXIfc printer =

(printXIfc) ExternalAction.export(

new printXIfc() {

public void printX() {

System.out.println(" x=" + x);

}

});

// Atomic call to the external action

static void increment_x() {

atomic {

printer.printX();

}

}

}

Fig. 9. An external action defined using an interface.
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context. In fact, the actual copying of the exception object to the global con-
text is performed by the marshaling of the exception object when it is passed
to the external action.

The design in Figure 2 for implementing an atomic block using STM opera-
tions is extended to propagate exceptions by adding an exception handler of
type AtomicAbortException and having this promote the exception, abort
the transaction and then re-throw the copy the exception.

The definition of the action is therefore simply:

static ObjectExternalAction promoteException =

new ObjectExternalAction() {

public Object action

(Context caller_context,

Serializable aae) {

return aae;

}

};

Programmers defining sub-classes of AtomicAbortException need to be aware
that, by default, they will receive a deep clone of the exception and the objects
reachable from it. This means that they must either ensure that all of these
object are themselves serializable – they may find that, for instance, instances
of a singleton class may not be. If they need finer control then they can, of
course, define custom serialization methods – for instance, if they wish to
preserve references to a unique instance of a singleton class then they can do
so when deserializing the exception.

We do not believe this to be a problem in practice where exceptions are used
to signal error conditions and rarely carry data other than stack-traces and
error messages.

6.2 Performing I/O

I/O operations are implemented using external actions to perform any native
method invocations necessary for the I/O and using ContextListener call-
backs to trigger re-buffering of unused input (when rolling back a transaction
that has performed input) or to trigger the actual output of buffered data
(when committing a transaction that has performed output).

For example, when reading from standard input, an external action is used
to perform the read. It calls a native read method from within the global
context and buffers the value read, again within the global context. In this
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case a context listener is registered to re-buffer the data if the atomic block
is aborted, or to discard the buffer if the atomic block completes successfully.

We define a set of utility classes which simplify the implementation of abstrac-
tions such as the AtomicOutputStream wrapper. These hold ordered collec-
tions of objects that are buffered until an atomic block commits, and collec-
tions of input items that have been received by an atomic block and must be
held for potential re-buffering in case the block aborts.

Integration with external database transactions is not so straightforward. We
have built a prototype system based on the Java Open Transaction Manager
(JOTM) 1 , although this relies on modifications to the JOTM implementation
rather than being made through the established Java Transaction API (14).
The fundamental problem is that both the STM and the JOTM system want
to make the final decision of whether or not to commit a set of operations;
neither allows the other to perform a separate ‘prepare’ phase. We chose to
extend JOTM’s UserTransaction interface with an additional prepare()

operation.

7 Related work

This atomic construct builds on designs for Conditional Critical Regions
(CCRs) (15) and on the concurrency control features of languages such as
DP (16), Edison (17), Lynx (18) and Argus (19).

The Real-Time Specification for Java (RTSJ) defines a way of allocating ob-
jects within ‘scoped memory areas’ in order to allow storage reclamation with-
out a run-time garbage collector (20). Scoped memory areas must obey similar
constraints to the Context objects proposed here: objects within one area may
not refer to objects in less permanent areas.

Stack-like memory usage disciplines have been investigated in several other
settings, most notably region-based memory management (21). Regions have
been proposed as an alternative or adjunct to traditional garbage collection,
allowing objects to be allocated within a stack of regions and allowing space
to be reclaimed by removing an entire region from the top of the stack. Safety
requires that references do not occur from more permanent regions into less
permanent ones.

There are three main areas in which differences exist between our scheme,
regions and scoped memory areas. The first is in whether the prevention of

1 http://jotm.objectweb.org
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illegal references is done statically or dynamically: our system, as with conven-
tional region-based ones, takes the former approach whereas RTSJ takes the
latter. The second point of comparison is the direction in which contexts are
entered: our system must support transitions both from an outer context to
an enclosed one (by entering an atomic block) and from an enclosed context
to an outer one (by invoking an external action). The final point is that the
stack of Context objects in our system should be viewed as ‘overlays’ on the
same heap, with objects at one layer being shadowed by objects at enclosed
layers, whereas the identities of objects in different regions or scoped areas are
considered distinct.

8 Conclusions and future work

This paper has shown how we have extended our atomic regions for concur-
rent Java programs to support explicit abort operations and I/O. The design
presented here introduces a notion of nested execution contexts and an ab-
straction for performing inter-context method calls. In this final section we
highlight a number of dead-ends we followed in earlier designs (Section 8.1)
and a number of extensions for future work (Section 8.2).

8.1 Early dead-ends

Although these final abstractions are individually simple, designing them high-
lighted a number of problems which we had not originally foreseen. These all
relate to the need to be careful about passing object references into a context
in which the initialisation of the objects’ fields will not have been visible.

The original design we sketched proposed control methods through which reads
or writes could be performed outside the current software transaction (22).
This approach is not safe with respect to the language-based protection pro-
vided by Java: for example, final fields are intended to be constant once
initialised, but using these methods a programmer could cause the initialisa-
tion to happen within a transactional context and subsequent accesses to take
place outside that context and therefore without the initializations visible.

In subsequent designs we considered introducing a form of ‘global action’ which
would always execute in the global context. As with our method-based design
for external actions, these would be defined by instantiating an anonymous
inner class, for example:

19



atomic {

final String s = new String("Erroneous example");

GlobalAction g = new GlobalAction() {

public void doAction(Context caller_context) {

System.out.println ("s=" + s); /*P1*/

}};

g.doAction();

}

Unfortunately if P1 is executed in the global context then the initialization of
the fields in the object s refers to is not visible – for instance, the updates may
still be buffered in transaction-local storage. Note how our decision to execute
external actions within the context within which they are instantiated avoids
this problem without the need for dynamic checks. It also deals naturally with
the case of nested contexts.

8.2 Future work

The key direction for future work is evaluating the practical utility of the
techniques that we have developed: we have now considered atomic blocks with
an armoury of features, but we have not exercised these features in earnest in
a large system.

Object finalizers still pose a problem: if an object is instantiated in an atomic

block and that block is subsequently rolled back by an exception then should
finalizer methods be invoked on the objects that are lost? What happens
if those methods loop or invoke external actions? There appear to be two
options: the first is to consider the destruction of the atomic block’s context
to entirely undo the creation of the objects and therefore to not run finalizers
on them. The second option is to execute the finalizers within the context that
the objects were instantiated – i.e. to execute them just before destroying the
context. These two options have different behaviour if the finalizers loop or
perform external actions. We favour the first option because it is simpler to
implement and because it is consistent with the semantics of Section 1.1.

A further point for future investigation will be the relationship between this
work and the java.util.concurrent library 2 of J2SE 1.5. For instance, once
there are benchmarks targeting JSR-166 features, then it will be interesting
to compare the implementation of collections and queues built using atomic

blocks with those built using the virtual machine’s existing abstractions. We
hope that our work is an excellent counterpart to JSR-166 and that the combi-
nation of well-engineered high-level abstractions and an effective mechanism

2 JSR-166, http://www.jcp.org/en/jsr/detail?id=166
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for extending them to provide aggregate atomic operations may encourage
more wide-scale adoption of concurrency in applications.
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