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Abstract

This paper explores a new point in the design space of formal rea-
soning systems - part programming language, part logical frame-
work. The system is built on a programming language where
the user expresses equality constraints between types and the type
checker then enforces these constraints. This simple extension to
the type system allows the programmer to describe properties of his
program in the types of witness objects which can be thought of as
concrete evidence that the program has the property desired. These
techniques and two other rich typing mechanisms, rank-N polymor-
phism and extensible kinds, create a powerful new programming
idiom for writing programs whose types enforce semantic proper-
ties.

A language with these features is both a practical programming lan-
guage and a logic. This marriage between two previously separate
entities increases the probability that users will apply formal meth-
ods to their programming designs. This kind of synthesis creates
the foundations for the languages of the future.

1 Introduction

There is a huge semantic gap between what the programmer knows
about his program and the way he has to express this knowledge to
a system for reasoning about that program. While many reasoning
tools are built on the Curry-Howard isomorphism, it is often hard
for the programmers to conceptualize how they can put this ab-
straction to work. We propose the design of a language that makes
this important isomorphism concrete – proofs are real objects that
programmers can build and manipulate without leaving their own
programming language. Such proofs can express important seman-
tic properties of their programs. We believe that this increases by
orders of magnitude the probability that programmers will actually
construct programs that they reason about, and this will make mea-
surable differences in the quality of the code produced. It is not that

∗Supported by NSF CCR-0098126.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA 2004 October 24-28, 2004, Vancouver, B.C., Cananda.
Copyright 2004 ACM ...$5.00

programmers cannot reason about their programs; rather, it is that
they find the barriers to entry so high that they would rather not.

The semantic gap between formal tools and implementation lan-
guages prevents the application of formal methods to software de-
sign on all but the most important applications. If we are ever to
build systems that we can trust on a large scale, we must develop
programming languages that narrow this semantic gap. The pro-
gramming languages of the future will have the following proper-
ties.

• They will allow programmers to describe and reason about se-
mantic properties of programs from within the programming
language itself, mainly by using powerful type systems. But,
the languages will be designed to interoperate with other ex-
ternal reasoning or testing systems as well.

• The languages will be within reach of the majority of pro-
grammers. Using the reasoning capability of the language
will not be too time consuming, nor will the learning curve
for learning how to use such features be too high.

• They will be practical, supporting all the capabilities we now
expect in a programming language. But, they may organize
these capabilities in new ways that better control potentially
unsafe features. They will use static analyses to separate pow-
erful but risky features from the rest of the program, and will
clearly mark the boundaries between the two. They will spell
out the obligations required to control the risk, and support
and track how these obligations can be met.

• They will be efficiently implementable, but perhaps in new
and novel ways. Rather than relying on a strict compile-
time/run-time distinction to perform a single heroic optimiza-
tion, they will provide a flexible hierarchy of stages from
within the programming language. Staging will deal uni-
formly with notions of compile-time, link-time, run-time, and
run-time code generation. This will allow the computation
system to take advantage of important contextual information
no matter when it becomes available. The staging separation
will also track semantic properties across stages. It will be
possible to know that a stage i program always builds a stage
i+1 program with some known property p.

In this paper we explore a new point in the design space of for-
mal reasoning systems: the development of the language Ωmega.
Ωmega is both a practical programming language and a logic.
These sometimes irreconcilable goals are made possible by embed-
ding the Ωmega logic in a type system based on equality qualified
types[7]. This design supports the construction, maintenance, and
propagation of semantic properties of programs using powerful old
ideas about types in novel new ways.



Theorem provers and logical frameworks have many of the same
goals, but we believe there are qualitative differences between them
and our work.

First, Ωmega is a practical programming language. It supports prac-
tical programming features such as input/output and side-effects,
but uses its type system to cleanly separate these potentially dan-
gerous features from the core language of the logic.

Second, Ωmega uses a single computational model for both its logic
and its programming. It uses a strict functional model with monads
[38, 37, 36] to separate effects from computation. This model suf-
fices to describe both programs and properties. Contrast this with
logical frameworks where programs are purely functional and the
logic employs prolog style back chaining (Elf), or higher order pat-
tern matching (Twelf). A similar dichotomy arises in LCF style
theorem provers such as Coq. In such systems, programs must be
extracted from proofs, which are themselves constructed in highly
unnatural ways using tactics and proof combinators. We believe
that this two model paradigm is unnatural, and that the single model
of Ωmega is easier to learn and use by ordinary programmers. We
discuss this in more detail in Section 3.

Third, Ωmega incorporates several powerful extension mecha-
nisms. In Coq and other related systems, proofs correspond to
programs. In Ωmega proofs are programs (with equality qualified
types). More efficient implementations can often be extracted from
proofs by a form of type erasure. Unlike Coq[33], and Isabelle[20]
where type erasure is fixed and inflexible, type erasure in Ωmega
is implemented by the use of explicit staging. The conjunction of
staging and logical systems provides a powerful new tool. By us-
ing staging, extraction of efficient programs from proofs is under
the control of the programmer, and can be targeted at any object-
language. Staging can also be used to perform specialization and
partial evaluation. A second extension mechanism is Ωmega’s abil-
ity to reflect representations of its types into the value world and
to perform arbitrary computations on these representations in a
type safe manner. Because the logic of Ωmega is embedded in its
type system, the sound reflection mechanism supports extension of
Ωmega’s logic to deal with a wide variety of properties, both logical
(semantic), and physical (resource usage).

Ωmega’s design has been heavily influenced by a set of recent
advances in the programming language community. The ability
to combine type inference with type checking and arbitrary rank
polymorhism[12, 14, 27]; the semantics of staged computation
systems[5, 32, 26, 30]; and the use of simplified form of depen-
dent typing called indexed types[44, 6, 7] have combined to create
a powerful new way to embed properties of programs in their types.

Ωmega is clearly descended from functional programming lan-
guages – Its syntax and type system are similar to Haskell, but its
approach to combining reasoning and programming in a single sys-
tem makes it of interest to all programmers. Ωmega opens intrigu-
ing possibilities for the design, exploration, and implementation of
programs with semantic properties. We believe exploring this point
in the design space of programming languages and reasoning sys-
tems makes is an important step in the direction towards the pro-
gramming languages of the future.

2 How Types Capture Properties

An important role of type systems in programming languages is
to guarantee the property that programs do not use data (including
functions) in inappropriate ways. But types can also be used to en-

sure much more sophisticated properties. Types have been used to
ensure the safety of low level code such as Java Byte Code[28, 3]
or typed assembly language[16, 17]. These systems use types to
model the shape of the stack or register bank to ensure that low level
code sequences are used properly (e.g. no stack underflow). Types
have also been used to model information flow[23, 35, 18] to ensure
security properties of systems. Types have been used to track re-
source control, such as the possibility of non-termination [13], or to
place upper bounds on the time consumed by a computation[8, 34].
Types have been used as a means of removing dynamic error tests –
for example, to enforce data structure invariants[43] (such as ensur-
ing red-black trees are well formed) or to make code more efficient
by removing unnecessary run-time array bounds checks[44]. Fi-
nally, types have been used to track access control, which allows
removing (or minimizing) stack inspection overhead as a means of
managing capabilities[39, 4].

As far as the author can tell from the literature, each of these sys-
tems was built using a general purpose programming language.
While the properties of these systems could be modelled by a for-
mal system such as a logical framework or theorem prover such
as Coq[33], Isabelle[20], or Twelf[22], the properties are a meta-
logical property of the program and external to the implementation.
In Ωmega they could be a property of the implementation, which
could thus be enforced by the programming language. Rather than
model an existing application in a formal system, or use a formal
system to build a model of an as-yet-unimplemented application
and then derive or generate an implementation from this model, we
can both implement and reason in a single paradigm with Ωmega.

While formal reasoning systems are very good at what they do, they
were not designed to be programming languages. These tools are
too expressive. They trade usabilty for expressiveness. There is
something to be gained by being selective, choosing features wisely,
and maintaining the pragmatic properties of a system. Powerful
tools are very useful and have their place in system design, but there
is a missing point in the continuum of tools between practical and
formal, and Ωmega is designed to fill this gap. By doing so wisely,
much is to be gained, in terms of ease of use, a more gradual learn-
ing curve, and increased interoperability with other systems.

We have coined a new slogan for the process of designing reliable
systems: Mostly types – just a little theorem proving. We argue that
many properties that can be modeled in a theorem prover or log-
ical framework, can also be modelled more straightforwardly in a
programming language whose type system has been strengthened
in just a few simple ways. This allows properties of systems to be
modelled in a more light-weight manner, yet still be completely for-
mal. Adding rank-N polymorphism, equality qualified types, exten-
sible kinds, and staging support makes this light-weight formality
possible. Programmers already familiar with the use of a theorem
prover or logical framework will find that many of the powerful
ideas behind these tools have been moved to a practical program-
ming language and have become more widely applicable. Thus, we
can save the power and frustration of using a theorem prover for
when we really need it.

3 An Introduction to Ωmega

In this section we introduce Ωmega. We use a simple applica-
tion which has a semantic invariant captured by the type system of
Ωmega. The example is sequences of elements with the semantic
property that the length of the sequence is encoded in its type. For
example the sequence [a1,a2,a3] has type (Seq a 3), and the type
of the Cons operator that adds an element to the front of a sequence



kind Nat = Z | S Nat

data Sum w x y
= Base where w=Z , x=y
| exists m n . Step (Sum m x n)

where w=S m, y=S n

data Seq a n
= Nil where n = Z
| exists m . Cons a (Seq a m) where n = S m

app :: Sum n m p -> Seq a n -> Seq a m -> Seq a p
app Base Nil ys = ys
app (Step p) (Cons x xs) ys = Cons x (app p xs ys)

Figure 1. An Ωmega/ encoding of lists whose types record their
lengths.

value | type | kind
5 :: Int :: *0

Nat

Z :: Nat

Succ :: Nat Nat
Seq :: *0 Nat *0

Sum :: Nat Nat Nat *0

Nil :: Seq α Z :: *0
Cons :: α → Seq α n → Seq α (Sn) :: *0

Base :: Sum Z n n :: *0

Step :: Sum m n o →Sum(Sm) n (So) :: *0

Figure 2. Classification of values(Nil,Cons,Base,and Step),
types (Z,Succ,Sum, and Seq), and kinds (Nat) defined in Fig-
ure 3

would be a → Seq a n → Seq a (n + 1). The type of the append
operator would be Seq a n → Seq a m → Seq a (n+m). In order to
type such functions it is necessary to do arithmetic at the type level.
In Figure 3 is an Ωmega program that captures this specifcation.
The code introduces two new types (Sum and Seq), a new function
(app), and a new kind (Nat). The new kind Nat introduces two new

type constructors Z and S which encode the natural numbers at the
type level.

Kinds are similar to types in that, while types classify values, kinds
classify types. We indicate this by the classifies relation (::). For
example: 5 :: Int :: *0 . We say 5 is classified by Int, and
Int is classified by *0 (star-zero). *0 is the kind that classifies all
types that classify values (things we actually can compute). *0 is
classified by *1, etc. We sometimes write * as a shorthand for *0.
There is an infinite hierarchy of classifications. We call this hier-
archy the strata. In fact this infinite hierarchy is why we chose
the name Ωmega. The first few strata are: values and expressions
that are classified by types, types that are classified by kinds, and
kinds that are classified by sorts, etc. In Figure 2 We illustrate the
relationship between the values, types, and kinds introduced in Fig-
ure 3.

Constructor functions (Nil, Cons, Base, and Step) construct ele-
ments of data types. The type of a constructor function is described
in the data declaration. For example, the clause in the Seq decla-
ration: exists m.Cons a (Seq a m) where n = S m intro-
duces the Cons constructor function. Without the where qualifica-
tion, the constructor function Cons would have type (Cons::a ->
Seq a m -> Seq a n). Equality Qualification (indicated by the
where in the clauses for Nil, Cons, Base, and Step) and existential
quantification (indicated by exists in the clauses for Cons, and
Step) help encode semantic properties. The where qualifies Cons’

type, in effect saying (Cons::a -> Seq a m -> Seq a n) pro-
vided n=S m. We capture this formally by writing Cons::(forall
a n m.(n=S m)=>a -> Seq a m -> Seq a n). The equations
behind the fat arrow (=>) are equality qualifications. Since n is a
universally quantified type variable, there is only one way to solve
the qualification n=S m (by making n equal to S m). Because of
this unique solution, Cons also has the type (forall a m.a ->
Seq a m -> Seq a (S m)). This type guarantees that Cons can
only be applied in contexts where n=S m. Existential quantification
of the type variable m names the intermediate length of the sublist
of Cons, which if not introduced in this way would appear as an
unbound type variable.

Equality constrained types are a relatively new feature in the world
of programming languages, and were only recently introduced by
Hinze and Cheney[7]. We can use the mechanism to model rela-
tions between types, other than equality, by defining witness types.
A witness is a value constructed by the constructor functions (like
Base and Step) of some data definition (like Sum). The type of
such a value encodes the property. The very existence of the wit-
ness (i.e. a non bottom value with the given type) implies that the
property must be true. Witnesses to untrue properties cannot be
constructed since such values would be ill-typed. A value of type
(Sum m n o) witnesses the ternary arithmetic relation m+n=o.

Ωmega’s types are used to enforce the property that the length of
appending two lists is the sum of the length of the two lists ap-
pended (app::Sum n m p -> Seq a n -> Seq a m -> Seq a
p). The first argument to app is a witness to the crucial property.
Consider the first clause defining the append function app Base
Nil ys = ys – how is this typed? We know app’s type, so the
first argument Base must have type (Sum n m p), and the second
argument Nil must have type Seq a n, and the third argument ys
must have type (Seq a m). The right-hand-side of the equation
should then have type (Seq a p). But, since the right-hand-side is
the same as the second argument, this clause appears ill-typed. In
short we write:
{Base :: Sum n m p, Nil :: Seq a n, ys :: Seq a m} ⊢ ys :: Seq a p
The key to type checking this clause, is to recognize that the con-
structor functions Nil and Base have equality qualified types. In
particular when they were constructed it must have been the case
that n=Z (from Nil) and that n=Z and m=p (from Base). So the com-
plete typing judgment becomes:
{Base :: Sum n m p, Nil :: Seq a n, ys :: Seq a m, n = Z, m = p} ⊢
ys :: Seq a p
which is easily shown to be true.

The propagation and solving of equality qualifications is handled
by the compiler and type checker. The user is simply required
to introduce equalities by using the where clause in data defini-
tions, and stating the type of the function by giving its type signa-
ture (i.e. app::Sum n m p -> Seq a n -> Seq a m -> Seq a
p) and the compiler does the rest. If a type signature is not supplied,
the compiler will attempt to infer a Hindley-Milner polymorphic
type for the function. Hindley-Milner inference for app would fail
since it uses polymorphic recursion. The important thing to note is
that Ωmega uses a combination of type inference and type check-
ing. The presence of type signatures indicates that a function should
be type checked. We do not believe that supplying type signatures
for such functions is overly burdensome. Since the types encode
properties of the object-language, the user ought to know what type
his functions have, since it corresponds to the properties he is trying
to model. If the function type checks, then the user has a proof that
the program has the property described by the equalities between
types.



Inductive nat : Set := Z : nat | S : nat -> nat.

Definition plus : nat->nat->nat :=
Fix plus

{plus [n:nat] : nat->nat :=
[m:nat]Cases n of

Z => m
| (S p) => (S (plus p m))
end}.

Inductive Seq [A:Set] : nat -> Set :=
Nil : (Seq A Z)

|Cons : (n:nat; x:A; xs : (Seq A n))(Seq A (S n)).

Definition app [A:Set] : (m,n:nat)
(Seq A m) -> (Seq A n) -> (Seq A (plus m n)).

Intros. Induction H. EApply H0. Simpl.
Apply (Cons A (plus n0 n) x HrecH). Defined.
Coq encoding
elem : type.
e1 : elem.

nat : type.
z : nat.
s : nat -> nat.

plus : nat -> nat -> nat -> type.
base : plus z Y Y.
step : plus (s X) Y (s Z)

<- plus X Y Z.

seq : nat -> type.
nil : (seq z).
cons : elem -> (seq A) -> (seq (s A)).

app : (plus A B C) -> (seq A) ->
(seq B) -> (seq C) -> type.

app_1 : app base nil X X.
app_2 : app (step P) (cons X XS) YS (cons X ZS)

<- app P XS YS ZS.
Twelf encoding
Figure 3. Coq and Twelf programs for comparison to Ωmega.

A Comparison of Formal Reasoning Systems. In the Coq and
Twelf encodings in Figure 3 we see a similar encoding of natural
numbers at the type level, and an encoding of sequences with en-
coded lengths. In Coq the definition of plus is defined by structural
induction over nat types, but the definition of append is given by
a series of commands (Introduction, EApply, Simpl etc.) that
guide the Coq theorem prover to construct a proof object with the
given type. The append function is then extracted (not shown) from
this proof object. In the Twelf encoding the plus function and the
append function are encoded as logic programs.

The big advantage of the Ωmega approach is that the program is
the logic. There is no translation between programming notation to
some external reasoning tool. Second, there is no need to switch
gears when reasoning about the system. Rather than thinking in
terms of our implementation programming language, in Coq we
must think in terms of proof tactics, and in Twelf (given that the
vast majority of programs are not written in Prolog) we must think
in terms of logic programs.

To be fair, we point out two caveats to the above arguments we ad-
dress later. First, in Ωmega we must implement the Sum witness
in a logical style. This style is closer to Twelf’s logical style than
Coq’s functional style, so in Ωmega it appears we must think log-
ically rather than functionally (at least at the type level). This is a
consequence of the mechanism used to solve equality constraints.
Second, (this will probably only make sense to those familiar with

Coq) we could have defined append as a set, rather than a propo-
sition, and then defined it by induction as we did in Ωmega. Had
we done so we could no longer extract an efficient program from
this definition. By combining the programming language and the
logic we believe we can address both these issues. In Section 5 we
discuss extracting efficient programs. Removing the relational bias
from the type level is beyond the scope of this short note.

4 Example: A Type-Safe and Statically-
Scoped While-language

We now turn to a richer example: modelling a simple imperative
While language with semantic properties of static scoping and type
safety[19, 21]. Every While-program represented as an Ωmega data
structure is a proof that every variable in that program refers to
some binding site (static scoping), and that the program is also well
typed. The power of Ωmega is that modelling these static semantic
properties requires approximately the same amount of time and in-
tellectual effort one uses to model context free syntactic properties
using other means. In addition any Ωmega program that manip-
ulates a While-program data structure, is guaranteed to maintain
these properties. Ωmega programs that do not maintain the scop-
ing and typing are statically determined to be ill-typed and are thus
rejected.

In Figure 4 we introduce data structures to represent the While lan-
guage. The data declarations introduce three new parameterized
types V, Exp and Com for variables, expressions, and commands.
These are type constructors, and an actual element of the new types
will have types like (V (Int,Bool) Bool), (Exp (Int,Bool)
Int), or (Com (Int,Bool)). We interpret (Exp s t) as an ex-
pression with type t in store s. The type of a store captures the
types of the variables currently in scope. A similar interpretation is
given to variables (V s t). Commands don’t have result types, but
are interpreted in the store (Com s). The declarations also intro-
duce constructor functions Z, S, IntC, BoolC, etc. whose types are
given as comments in Figure 4. Readers familiar with type systems
will notice that the types of the constructor functions look a lot like
typing judgments. We have used the equality constrained types to
encode and reason about these inference rules in the programming
language.

An observation about the type parameters of Ωmega type con-
structors. The parameters of type constructors in the While-
language play a qualitatively different role than type parameters
in other data structures. Consider the declaration for a binary tree
datatype:

data Tree a = Tip a | Fork (Tree a) (Tree a).
In this declaration the type parameter a is used to indicate that there
are sub components of Trees that are of type a. In fact, Trees are
polymorphic. Any type of value can be placed in the “sub com-
ponent” of type a. The type of the value placed there is reflected
in the Tree’s type. Contrast this with (Com s). Here there are no
sub components of type s. Instead, the parameter s is used to stand
for an abstract property (the types of the statically reachable object-
variables). The where qualifications restrict the legal instances of
s. Type parameters used in this way are sometimes called index
types[42, 44].

Manipulating While-programs. In Figure 5 a small interpreter
for the While-language is given. Expressions are interpreted by the
function eval::Exp s t -> s -> t. The function eval, given a
term of type (Exp s t) producers a function from s to t. eval
gives meaning to the term. Given store::s, a data structure which
stores values for the expression’s variables, then we can produce



data V s t
= exists m . Z where s = (t,m) -- x0 V (t,m) t
| exists m x . S (V m t) where s = (x,m) -- xn V m t -> V (x,m) t

data Exp s t
= IntC Int where t = Int -- 5 Int -> Exp s Int
| BoolC Bool where t = Bool -- True Bool -> Exp s Bool
| Plus (Exp s Int) (Exp s Int) where t = Int -- x + 3 Exp s Int -> Exp s Int -> Exp s Int
| Lteq (Exp s Int) (Exp s Int) where t = Bool -- x <= 3 Exp s Int -> Exp s Int -> Exp s Bool
| Var (V s t) -- x V s t -> Exp s t

data Com s
= exists t . Set (V s t) (Exp s t) -- x := e V s t -> Exp s t -> Com s
| Seq (Com s) (Com s) -- { s1; s2; } Com s -> Com s -> Com s
| If (Exp s Bool) (Com s) (Com s) -- if e then x else y Exp s Bool -> Com s -> Com s -> Com s
| While (Exp s Bool) (Com s) -- while e do s Exp s Bool -> Com s -> Com s
| exists t . Declare (Exp s t) (Com (t,s)) -- { int x = 5; s } Exp s t -> Com (t,s) -> Com s

Figure 4. Typed, statically scoped, abstract syntax for the While language. The left hand column illustrates the Ωmega code that
introduces data structures that represent the new object-language, and the middle column (following the comment token --) suggests
a concrete syntax that the abstract syntax represents. The right hand column gives the type of the constructor function as described
in the text below.

the value of the expression by applying eval to the expression and
store. The type of the store models the types of the reachable
variables in the object-program. Variables are integers (using a de
Bruijn-like notation), and stores are nested pairs. The nested pairs
have the following shape (0,(1,(2, ...))) where the 0, 1, and 2
indicate the index of the variable that “reaches” to the correspond-
ing location in the nested pair. Because of the natural number-like
definition of the type (V s t)we see that (Var Z) models the vari-
able with index 0, (Var (S Z)) models the variable with index 1,
and (Var (S (S Z))) models the variable with index 2, etc. Thus
if the type of the store is (Int,(Bool,a)) then variable with index
0 has type Int and the variable with index 1 has type Bool.

Under this interpretation it is easy to understand the functions
update, eval, and exec. Consider: (update (S Z) False
(12,(True,0)). This should return a new nested pair where the
location of the index ((S Z) which is 1) has been replaced by False
giving (12,(False,0)). This proceeds by
(update (S Z) False (12,(True,0)) −→ (12,update Z
False (True,0)) −→ (12,(False,0)). Note how pattern
matching chooses the correct clause to execute.

In a similar fashion the eval function when applied to a vari-

able (Var i) “extracts” the ith value from a nested pair. (eval
(Var (S Z)) (12,(True,0)) −→ (eval (Var Z) (True,0))
−→ True. The execution function for commands (exec::Com s
-> s -> s) is a store transformer, transforming the store accord-
ing to the assignments executed in the command.

Since the properties of the object-programs are captured in their
types, respecting these types ensures that the meta-programs main-
tain the properties of the object programs. For example given that
the meta-level variables x and sum are defined by sum = Z (the
variable with index 0) and x = S Z (the variable with index 1) ,
observe:
prog :: Com (Int,(Int,a))
prog = Seq (Set sum (Int 0))

(Seq (Set x (Int 1))
(While (Lteq (Var x) (Int 5))

(Seq (Set sum (Plus (Var sum)(Var x)))
(Set x (Plus (Var x)(Int 1))))))

-- { sum = 0;
-- x = 1;
-- while (x <= 5)

-- { sum = sum + x;
-- x = x + 1; } }
The term prog has a meta-level type that states that it is well-typed
at the object-level, only if the object-level store has an Int at in-
dexes 0 and 1. If one tries to create an ill-typed object-level term
a static type checking error occurs. For example consider the com-
mand (if x then x := 0 else x := 1) where the variable x
needs to be typed as both an Int and a Bool.

badIf = If (Var x) (Set x (IntC 0)) (Set x (IntC 1))

In the expression: Set x (IntC 0)
the result type: Com (a,(Int,b))
was not what was expected: Com (a,(Bool,c))

Int does not unify with Bool

Possible Enhancements. Enhancing object-languages with type
safety can be accomplished in two dimensions: a richer language
or a richer type system. We have done both. We have also mod-
elled several different styles of language semantics other than the
big-step style given for the While-language. One of our most inter-
esting semantics consisted of a typed small step semantics. Since
this small step semantics is typed, it amounts to a machine checked
subject reduction proof[41].

5 Staging Supports Efficient Implementations

Staged programs proceed in stages. Each stage “writes” a program
that is executed in the next stage. Practical examples of staged sys-
tems include run-time code generation, dynamic compilation, and
program generators. Staging is the key technology that supports
efficient implementations without interpretive overhead.

Staging is an programming language interface to code generation.
We have built two large sophisticated systems that implement stag-
ing. MetaML[25], a system with run-time code generation, and
Template Haskell[26], a system with compile-time code generation
(think macros, quasi-quotes, and type safety). In Figure 8 we use
the staging mechanism of Ωmega. It consists of the annotations
brackets ([| |]) and escape ($( )). Brackets introduce a new
code template and specify that the expression inside the brackets
should be generated as a program for the next stage. Within brack-
ets, escape specifies a hole within a template. The escaped expres-
sion is executed (resulting in a piece of code), and the resultant
code is spliced into that hole. Staging makes a perfect comple-



update :: (V s t) -> t -> s -> s
update Z n (x,y) = (n,y)
update (S v) n (x,y) = (x,update v n y)

eval :: Exp s t -> s -> t
eval (IntC n) s = n
eval (BoolC b) s = b
eval (Plus x y) s = (eval x s) + (eval y s)
eval (Lteq x y) s = (eval x s) <= (eval y s)
eval (Var Z) (x,y) = x
eval (Var (S v)) (x,y) = eval (Var v) y

exec :: (Com st) -> st -> st
exec (Set v e) s = update v (eval e s) s
exec (Seq x y) s = exec y (exec x s)
exec (If test x1 x2) s =

if (eval test s) then exec x1 s else exec x2 s
exec (While test body) s = loop s

where loop s = if (eval test s)
then loop (exec body s)
else s

exec (Declare e body) s = store
where (_,store) = (exec body (eval e s,s))

Figure 5. Interpreters for the While-language. These functions illustrate pattern matching over constructor functions, and seman-
tics preserving meta-functions. All of update, eval, and exec manipulate While-programs in a way that respects their semantic
properties. In fact, because all While-programs are well typed these interpreters are tagless[31], and they return values whose types
correspond to the types of the While-programs.

Typed

Object-code String String
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AST

Typed

Object-code
marshall unmarshallInternet check

Code producer Code consumer

Figure 6. Proof carrying code process

data TyAst = I | B | P TyAst TyAst

data ExpAst
= IntCA Int
| BoolCA Bool
| PlusA ExpAst ExpAst
| LteqA ExpAst ExpAst
| VarA Int TyAst

-- Equality Proofs and Type representations
data Eq a b = EqProof where a=b

data TypeR t
= IntR where t = Int
| BoolR where t = Bool
| exists a b . PairR (TypeR a) (TypeR b)

where t = (a,b)

match :: TypeR a -> TypeR b -> Maybe (Eq a b)
match IntR IntR = succeed EqProof
match BoolR BoolR = succeed EqProof
match (PairR a b) (PairR c d) =

do { EqProof <- match a c
; EqProof <- match b d
; succeed EqProof }

match _ _ = fail "match fails"

-- Judgments for Types
data TJudgment = exists t . TJ (TypeR t)

checkT :: TyAst -> TJudgment
checkT I = TJ IntR
checkT B = TJ BoolR
checkT (P x y) =

case (checkT x,checkT y) of
(TJ a, TJ b) -> TJ(PairR a b)

-- Judgments for Expressions
data EJudgment s = exists t . EJ (TypeR t) (Exp s t)

checkE :: ExpAst -> TypeR s -> Maybe (EJudgment s)
checkE (IntCA n) sr = succeed(EJ IntR (IntC n))
checkE (BoolCA b) sr = succeed(EJ BoolR (BoolC b))
checkE (PlusA x y) sr =

do { EJ t1 e1 <- checkE x sr
; EqProof <- match t1 IntR
; EJ t2 e2 <- checkE y sr
; EqProof <- match t2 IntR
; succeed(EJ IntR (Plus e1 e2))}

checkE (VarA 0 ty) (PairR s p) =
do { TJ t <- succeed(checkT ty)

; EqProof <- match t s
; succeed(EJ t (Var Z))}

checkE (VarA n ty) (PairR s p) =
do { EJ t’ (Var v) <- checkE (VarA (n-1) ty) p

; TJ t <- succeed(checkT ty)
; EqProof <- match t t’
; succeed(EJ t’ (Var (S v)))}

Figure 7. Implementing the check function for the proof carrying code example.



x = Z
y = S Z
e1 = Lteq (Plus (Var x)(Var y)) (Plus (Var y) (IntC 1))

data Store s = M (Code s)
| forall a b . N (Code a) (Store b) where s = (a,b)

test e = [| \ (x,(y,z)) ->
$(eval2 e (N [|x|](N[|y|](M[|z|])))) |]

eval2 :: Exp s t -> Store s -> Code t
eval2 (IntC n) s = lift n
eval2 (BoolC b) s = lift b
eval2 (Plus x y) s = [| $(eval2 x s) + $(eval2 y s) |]
eval2 (Lteq x y) s = [| $(eval2 x s) <= $(eval2 y s) |]
eval2 (Var Z) (N a b) = a
eval2 (Var (S v)) (N a b) = eval2 (Var v) b

-- test e1 ---> [| \ (x,(y,z)) -> x + y <= y + 1 |]

app3 :: Sum n m p -> Code(Seq a n) ->
Code(Seq a m) -> Code(Seq a p)

app3 Base xs ys = ys
app3 (Step p) xs ys =

[| case $xs of Cons z zs -> Cons z $(app3 p [|zs|] ys) |]

test2 :: Sum u v w -> Code (Seq a u -> Seq a v -> Seq a w)
test2 witness = [| \ xs ys -> $(app3 witness [|xs|] [|ys|]) |]

-- test2 (Step (Step Base)) --->
-- [| \ xs ys ->
-- case xs of
-- (Cons z zs ) ->
-- Cons z (case zs of
-- (Cons w ws) -> Cons w ys) |]
Figure 8. Illustrating Staging, removal of interpretive overhead
(top), and witness removal (bottom).

ment to equality qualified types for two reasons. First, many ap-
plications can be encoded as domain specific languages (DSLs).
Such languages can be given meaning by writing a simple inter-
preter (like the eval and exec functions from Figure 5). Staging an
interpreters produces an efficient compiler as the interpretive over-
head or traversing the abstract syntax is removed. This is illustrated
in the top of Figure 8 for the Exp fragment of the while-language.

Second, staging can implement program extraction from proofs.
Both Coq and to some extent Isabelle support program extraction
from proofs. These features are limited because the target lan-
guages are hardwired and the generated programs must conform to
the type system of the target language. This often requires discard-
ing important information about the source program, or run time
passing of static information. If we consider the app function from
Figure 3 as a proof (because it takes a witness Sum type as well as
two lists) staging can remove the witness in an early stage, result-
ing in a new piece of code which can rely on all the (now) static
information encoded in the witness. Note how once given the wit-
ness (Step (Step Base)) the staged function app3 can unroll the
loop. So not only is the witness removed in the second stage, but
the resulting program is no longer even recursive!

The ability to control extraction is important. Two different pro-
grams extracted from the same proof object may have very different
physical properties (i.e. heap space usage). Staging allows users to
extract programs in a manner that fits their needs.

6 Example: Proof Carrying Code

Peter Lee, on his web site states[15]: Proof-Carrying Code (PCC)
is a technique by which a code consumer (e.g., host) can verify that
code provided by an untrusted code producer adheres to a prede-
fined set of safety rules ... The key idea behind proof-carrying code
is that the code producer is required to create a formal safety proof
that attests to the fact that the code respects the defined safety pol-
icy. Then, the code consumer is able to use a simple and fast proof
validator to check, with certainty, that the proof is valid and hence
the foreign code is safe to execute.

In Figure 6 we illustrate how this might be implemented using
Ωmega. The code producer produces code whose safety policy is
embedded in the type of the object-code as we have illustrated in the
previous section. The producer than marshalls (pretty prints) this
code into some flat untyped representation that can be transported
over the Internet (a String in the figure). On the consumer side,
the consumer unmarshalls (parses) this string into an untyped anno-
tated abstract syntax tree. The check is a dynamic (i.e. at run-time)
attempt to reconstruct the typed object-code (a static property) from
the annotated untyped AST. If this succeeds then the consumer has
a proof that the object code has the desired safety property, since all
well typed object-programs have the safety property. The only dif-
ficult step in this process is the reconstruction of the typed object-
code from the untyped annotated AST. In order to describe how
this is done we introduce additional features of Ωmega, polymor-
phic kinds and representation types. We apply these features to the
dynamic construction of the statically typed Exp datatype from the
While-program example (Figure 5).

In Figure 7 we define two untyped algebraic datatypes TyAst and
ExpAst that we will use as our annotated abstract syntax types. The
type TypeR is a representation type. It reflects objects that live in
the type world (Int, Bool, and pairs) into the value world. Note
how IntR::(TypeR Int) is a value, but its type completely dis-
tinguishes what value it is. This notion has been called singleton
types[29, 24], but we think representation types is a more appro-
priate name. Writing a program that manipulates representation
types allows the programmer to encode operations that the type
system (with its limited computation mechanism – essentially solv-
ing equalities between types) cannot. It cannot be over-emphasized
how important this ability is. Typing problems that cannot be solved
by the type system can be programmed by the user when necessary.

We choose to represent Int, Bool and pairs because these types ei-
ther appear as type indexes to Exp and Com or describe the shape
of the store as a nested pair. The key to dynamic reconstruction of
static type information is the Eq data type. The Eq type construc-
tor has a polymorphic kind (Eq::forall (k:*1) (k1:*1) . k
∼> k1 ∼> *0). This kind means that the arguments to Eq can
range over any two types classified by k and k1 that are themselves
classified by *1. This includes types like Int and Bool, as well as
type constructors like Tree and List.

The constructor function (EqProof::forall (k:*1) (u:k)
(v:k).(u = v) => Eq u v)) is a first-class (dynamic) witness to
the fact that the static types u and v are equal. Equality witnesses
can be created in a static context where u is equal to v then passed
around as data to a new context where this information is needed.
One way to create these witnesses is the use of the function
match::forall u v.TypeR u -> TypeR v -> Maybe(Eq u
v). The function match dynamically tests whether two representa-
tion types are equal. If they are, rather than return a boolean value,
it returns either a successful equality witness or it returns a failure.



The witness can be used in a pattern matching context to guard an
expression with this new piece of static information (that u=v). For
example, given that x has the type Eq u v, in the case expression:
(case x of { Eq -> ... }), the case arm indicated by ...
can be type checked under the static assumption that u=v.

The standard typing rules for equality qualified types provide this
mechanism. There is nothing new here, only a new way of using
the old techniques. The datatypes EJudgment and TJudgment are
forms of TypeR and Exp that use existential types to hide some of
the type indexes to those type constructor functions. EJudgment
also includes a representation of the type t.

The functions match, checkT, and checkE are examples of partial
functions. They might succeed, producing some result ans, but they
also might fail. In Ωmega this is indicated by a result type (Maybe
ans). They are programmed using the do notation which makes it
easy to program partial functions that are comprised of sub com-
putations that might also fail. A sequence of partial computations
do { p1 <- e1; ... ; pn <- en } succeeds only if all the ei

succeed. If any of them fails then the whole sequence fails. If the
ei succeeds with a structured data object, then the pi can be used to
pattern match against the result if it is successful. If the ei is suc-
cessful but the object returned doesn’t match against the pi then the
whole sequence fails as well.

We explain one clause of the definition of checkE. Consider
checkE (PlusA x y) sr = ... First, recursively check the sub-
term of the annotated AST, x. This returns a judgment encapsulat-
ing a typed term (e1::Exp s a) and a representation of its type
(t1::TypeR a) where a is an existentially quantified type vari-
able. Test if this representation matches IntR. If it succeeds the
witness (EqProof::Eq Int a) is pattern matched and the rest of
the computation can proceed under the static assumption that a is
equal to Int. In a similar fashion check and then test y, and finally
succeed with a new judgment.

Possible Enhancements. We believe this technique can be ex-
tended to the full While-language including the Com language. In
that case, the judgment for commands must include representations
for stores in the way that the judgment for expressions contained
representations for types. The same techniques can be used to in-
fer well typed object-code terms from untyped abstract syntax trees
without annotations, but the details become more complicated. The
reflection of the type world into the value world is a powerful idea.
It lets the user dynanmically construct objects with static properties
that the static type system may not be able to infer with its limited
computational mechanism.

7 Example: A Language with Temporal
Safety Properties

Many systems depend upon communication occurring according to
a temporal protocol. For example a file must be opened before it
can be written to. Once opened, a file shouldn’t be opened again
until after it has been closed. A closed file should never be written
to. Such protocols are naturally expressed as finite state automata.
The DFA in Figure9 captures this protocol precisely.

A language can express and enforce such protocols quite naturally
using its type system. To illustrate this we have augmented the
While-language with commands for opening, closing , and writing
to a single file (we discuss removing this restriction later).

kind State = Open | Closed

prog2 :: Com (Int,(Int,a)) Open Open
prog2 =
Seq (Set sum (Int 0))

(Seq (Set x (Int 1))
(While (Lteq (Var x) (Int 5))

(Seq (Set sum (Plus (Var sum)(Var x)))
(Seq (Writef (Var x))

(Set x (Plus (Var x) (Int 1)))))))

data Com st x y
= forall t . Set (V st t) (Exp st t) where x=y
| forall a . Seq (Com st x a) (Com st a y)
| If (Exp st Bool) (Com st x y) (Com st x y)
| While (Exp st Bool) (Com st x y) where x = y
| forall t . Declare (Exp st t) (Com (t,st) x y)
| Openf where x = Closed, y = Open
| Closef where x = Open, y = Closed
| Writef (Exp st Int) where x = Open, y = Open

Closed Open

open

close

write

Figure 9. The While-language augmented with commands for
manipulating a file, and a DFA illustreating the protocol.

In Figure 9 we have defined a new kind State with types Open
and Closed, and augmented the command data structure with three
new constructor functions: Openf, Closef, and Writef. The Com
type now takes two additional type parameters. Interpret the type
(Com st x y) as a command in store st, starting execution in state
x and ending in state y. The types of the new constructors en-
force the protocol: (Openf::Com st Closed Open), (Closef::
Com st Open Closed), and (Writef::Exp st Int -> Com st
Open Open). The type of a command such as prog2 from Figure
9 describes precisely in which states of the protocol the command
resides. Commands with polymorphic starting and ending states,
essentially carry a proof that they do no IO at all!

Possible Enhancements. It is easy to imagine richer protocols with
DFA’s with more than two states. Accommodating such protocols
simply requires enriching the State kind, and adding new com-
mands for each transition. If the host language has a notion of typed
procedures it isn’t necessary to add new constructor functions to
Com for each transition in the DFA. Languages with multiple proto-
cols, or with more than 1 file can be accommodated by specifying
the starting and ending state parameters of Com be structured types
with more than one component.

7.1 Example: A Language with Multi-Level
Security

Our next example concerns a language with multi-level security do-
mains. A multi-level security language is meant to ensure confiden-
tiality of information stored at higher levels of the security hierar-



Domain :: *1
kind Domain = High | Low -- High,Low::Domain

D :: Domain ˜> *
data D t

= Lo where t = Low -- Lo::D Low
| Hi where t = High -- Hi::D High

data Dless x y
= LH where x = Low, y = High
| LL where x = Low, y = Low
| HH where x = High, y = High

data P x y = P

data V s d t
= forall s0 d0 . Z (D d)

where s = P (D d,d0) (t,s0)
| forall a b t1 d1 . S (V (P a b) d t)

where s = P (d1,a) (t1,b)

eval :: Exp (P a s) d t -> s -> t
exec :: (Com d (P a st)) -> st -> st

Exp :: * ˜> Domain ˜> * ˜> *
data Exp s d t

= Int Int where t = Int
| Bool Bool where t = Bool
| Plus (Exp s d Int) (Exp s d Int) where t = Int
| Lteq (Exp s d Int) (Exp s d Int) where t = Bool
| forall d2 . Var (V s d2 t) (Dless d2 d)

Com :: Domain ˜> * ˜> *
data Com d st

= forall t d1 d2 .
Set (V st d2 t) (Exp st d1 t)

(Dless d1 d2) (Dless d d2)
| Seq (Com d st) (Com d st)
| If (Exp st d Bool) (Com d st) (Com d st)
| While (Exp st d Bool) (Com d st)
| forall t d2 a b .

Declare (D d2) (Exp st d2 t)
(Com d (P (D d2,a) (t,b)))

where st = P a b

update :: (V (P a s) d t) -> t -> s -> s
update (Z d) n (x,y) = (n,y)
update (S v) n (x,y) = (x,update v n y)

Figure 10. Security Domains

chy. In such a language data is partitioned into security domains,
for example a two level domain might have two distict levels High
and Low.

The key semantic property is to insure that the value of data at
higher levels never influences the value of data at lower levels. This
is tricky because control flow decisions, predicated on high secu-
rity information, can cause information to leak to lower levels. The
example below has this problem:

{ high int x;
low int y;
if (x==0)

then y := 0
else y := 1

}

To reason about confidentiality we need an object-language in
which we can reason about information flow. In Figure 10 we de-
fine such a language based on similar languages from the literature
[35, 23].

The kind declaration in Figure 10 introduces a new kind, Domain,
and two new types, High and Low. The data declaration for D intro-
duces a new type constructor with an interesting kind: (D::Domain
 *). Like other data declarations its also introduces new values
Hi and Lo. The type D reflects the structure of the kind Domain into
the value world, and the type of Hi and Lo are indexed by the types
(High and Low) they represent: (Lo::D Low) and (Hi::D High).

The security language is closely related to the While-language. The
main difference is the introduction and use of domains. This neces-
sitates a change in the way we type stores. In the While-language
the type of a store was a nested tuple encoding the types of the
variables in scope. In the security language, the types of the vari-
ables is not enough – we must also encode the Domain of each
variable. This is the role of the type constructor P (think of (P
x y) as a special kind of pair). In the While-language a command
typed as (Com (Int,(Bool,a))) would be typed as (Com (P (D
High,(D Low,b)) (Int,(Bool,a)))) in the security language.

The type parameter to Exp and Com describing stores is now a P
pair. The second component of the pair is exactly as in the While-
language, and the first component of the pair is a parallel structure
(with the same nesting shape as the second) but storing representa-
tions of the Domain of variables rather than their types.

The interpretation of a command with type (Com d s) is a com-
mand in store s executing in a control thread in domain d. A
similar interpretation applies to expressions with types (Exp s d
t) except that a expression also returns a value of type t. Se-
curity in the language is enforced by the Dless witnesses in Var
and Set constructors. Consider: (Var::V s d2 t -> Dless d2
d -> Exp s d t), a variable expression is well formed only if the
domain of the variable (d2) is less than the thread of execution
(d). Information can flow from Low variables into High threads,
but not the other way around. For the assignments constructor
function we have (Set::V s d2 t -> Exp s d1 -> Dless d1
d2 -> Dless d d2 -> Com s d). The thread of the expression
being assigned (d1) must be less than the domain of the variable
being assigned to (d2). Anyone can assign to High variables, but
only expressions in Low threads can assign to Low variables. In ad-
dition the thread of the assignment command (d) must be less than
the thread of the variable (d2). This prevents the problem illustrated
above of control flow predicated on High information being used to
leak information into Low variables.

Given a semantics for this language (similar to the eval and exec
commands for the While-language) it is easy to state and prove that
the type system prevents adverse information flow. The proof is cast
as a separation argument. Given a a well-typed command (c::Com
d (P ds st)) then its meaning ((exec c)::st -> st) is a func-
tion from stores to stores, and values of low variables in the output
store never depend on the values of the high variables in the input
store.

8 Related Work

Expressing that two types are equal in a manner controllable by
the programmer is the key to embedding semantic properties of



object-programs. The first work expressing equality between types
in a programming language was based on the idea of using Leib-
niz equality to build an explicit witness of type equality. In Ωmega
we would write (data Eq a b = Witness (forall f.f a ->
f b)). The logical intuition behind this definition is that two types
are equal if, and only if, they are interchangeable in any context
(the arbitrary type constructor f). Note how this relies heavily on
the use of higher rank polymorphism. The germ of this idea origi-
nally appeared in 2000[40], and was well developed two years later
in 2002[1, 10]. Programming with witnesses requires building ex-
plicit casting functions C[a] → C[b] for different contexts type C.
This is both tedious and error prone. Programming with witnesses
has some problems for which no solution is known1 . Using type
equality became practical with the introduction of equality quali-
fied types by Hinze and Cheney[7]. The implementation of Ωmega
is based on this key idea. We know that a type system built on top
of equality constrained types is sound because of their work.

The use of kinds to classify types has a long history[2, 11, 16].
Adding extensible kinds (and higher classifications) to a practical
programming language like Ωmega was a natural next step. Duggan
makes use of kinds in his work on dynamic typing[9] in a manner
reminiscent of our work, but the introduction of new kinds is tied to
the introduction of types.

9 Conclusion

We have explored a new point in the design space for formal rea-
soning systems. Our choice is closer to the world of programming
languages than many other reasoning systems. We see this as a
positive benefit and conjecture that programming languages of the
future will be built along similar lines.

The logic of the system is embedded in the type system. Semantic
properties of programs, which before could only be expressed at a
meta-logical level (and were thus necessarily external to the world
of the programmer) can now be expressed in the programming lan-
guage.

The system supports a reflective mechanism that enables inten-
sional analysis of reflected types, and thus allows programmers to
write tactic level proof scripts at the value level on these reflec-
tions. The tactics can then be reflected back into the type system
in a sound manner. Staging can be used to build efficient imple-
mentations by exploiting contextual invariants, it can also be used
to extract efficient programs from proof like objects. We conjecture
that a programming language with these features can lead to more
reliable programs.
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