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Abstract

This paper explores a new point in the design space of formal rea-
soning systems - part programming language, part logical frame-
work. The system is built on a programming language where
the user expresses equality constraints between types and the type
checker then enforces these constraints. This simple extension to
the type system allows the programmer to describe properties of his
program in the types of witness objects which can be thought of as
concrete evidence that the program has the property desired. These
techniques and two other rich typing mechanisms, rank-N polymor-
phism and extensible kinds, create a powerful new programming
idiom for writing programs whose types enforce semantic proper-
ties.

A language with these features is both a practical programming lan-
guage and a logic. This marriage between two previously separate
entities increases the probability that users will apply formal meth-
ods to their programming designs. This kind of synthesis creates
the foundations for the languages of the future.

1 Introduction

Today’s languages have two glaring problems. These problems are
the semantic gap and the temporal gap.

• The Semantic Gap. There is a huge semantic gap between
what the programmer knows about his program and the way
he has to express this knowledge to a system for reasoning
about that program. Languages which can narrow this gap are
sorely needed

• The Temporal Gap. Systems are configured with new
knowledge at many different times compile-time, link-time,
run-time. We express this knowledge with an amazing mish
mash of systems and ad-hoc machinery – autoconf, make,
macros, configuration files, scripting languages, and embed-
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ded interpreters. Such approaches create huge impedance
mismatches, and are often hard to understand, but failure to
address the temporal gap often leads to unacceptable perfor-
mance bottlenecks. Languages which could handle all these
issues in a uniform manner are sorely needed.

If we are ever to build systems that we can trust on a large scale,
we must develop programming languages that narrow these gaps.
The programming languages of the future will have the following
properties.

• They will allow programmers to describe and reason about se-
mantic properties of programs from within the programming
language itself, mainly by using powerful type systems. But,
the languages will be designed to interoperate with other ex-
ternal reasoning or testing systems as well.

• The languages will be within reach of the majority of pro-
grammers. Using the reasoning capability of the language
will not be too time consuming, nor will the learning curve
for learning how to use such features be too high.

• They will be practical, supporting all the capabilities we now
expect in a programming language. But, they may organize
these capabilities in new ways that better control potentially
unsafe features. They will use static analyses to separate pow-
erful but risky features from the rest of the program, and will
clearly mark the boundaries between the two. They will spell
out the obligations required to control the risk, and support
and track how these obligations can be met.

• They will be efficiently implementable, but perhaps in new
and novel ways. Rather than relying on a strict compile-
time/run-time distinction to perform a single heroic optimiza-
tion, they will provide a flexible hierarchy of stages from
within the programming language. Staging will deal uni-
formly with notions of compile-time, link-time, run-time, and
run-time code generation. This will allow the computation
system to take advantage of important contextual information
no matter when it becomes available. The staging separation
will also track semantic properties across stages. It will be
possible to know that a stage i program always builds a stage
i+1 program with some known property p.

In this paper we explore a new point in the design space of program-
ming languages and formal reasoning systems: the development of
the language Ωmega. Ωmega is both a practical programming lan-
guage and a logic. Ωmega also addresses the temporal gap by the
use of explicit staging.

The sometimes irreconcilable goals of being both a programming
language and a logic, are made possible by embedding the Ωmega
logic in a type system based on equality qualified types[9]. This
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is done by making a very small (backward compatible) change to
the notion of Algebraic Datatypes as supported in languages such
as O’Caml and Haskell. We call these new types Generalized Al-
gebraic Datatypes (GADTs). They support the construction, main-
tenance, and propagation of semantic properties of programs using
powerful old ideas about types (the Curry-Howard Isomorphism) in
surprisingly easy to understand new ways.

The semantic gap between formal tools and implementation lan-
guages prevents the application of formal methods to software de-
sign on all but the most important applications. It is necessary to
narrow this gap so that these techniques can be applied to a much
broader set of applications. One way to reason about program prop-
erties is to use Curry-Howard isomorphism. This states that pro-
grams are proofs of the properties expressed in their types. It is
often hard for the programmers to conceptualize how they can put
this abstraction to work. GADT’s make this isomorphism concrete
– proofs are real objects that programmers can build and manipu-
late without leaving their own programming language. Such proofs
can express important semantic properties of their programs. We
believe that this increases by orders of magnitude the probability
that programmers will construct programs that they actually reason
about, and this will make measurable differences in the quality of
the code produced. It is not that programmers cannot reason about
their programs; rather, it is that they find the barriers to entry so
high that they would rather not.

Theorem provers and logical frameworks have many of the same
goals, but we believe there are qualitative differences between them
and our work. First, Ωmega is designed foremost to be a pro-
gramming language. It supports practical programming features
such as input/output and side-effects, but uses its type system to
cleanly separate these potentially dangerous features from the core
language of the logic.

Second, Ωmega uses a single computational model for both its logic
and its programming. It uses a strict functional model with monads
[46, 45, 44] to separate effects from pure computation. This model
suffices to describe both programs and properties. Contrast this
with logical frameworks where programs are purely functional and
the logic employs prolog style back chaining (Elf), or higher order
pattern matching (Twelf). A similar dichotomy arises in LCF style
theorem provers such as Coq. In such systems, programs must be
extracted from proofs, which are themselves constructed in highly
unnatural ways using tactics and proof combinators. We believe
that this two model paradigm is unnatural, and that the single model
of Ωmega is easier to learn and use by ordinary programmers. We
discuss this in more detail in Section 7.

Third, Ωmega tries to maintain a strict distinction between values,
types, and kinds. Since these classifications usually indicate a phase
distinction between compile-time and run-time, understood by most
programmers, we believe this makes it easier for programmers to
use Ωmega than systems which do not make these distinctions.

Fourth, Ωmega incorporates staging annotations. In Coq and other
related systems, proofs correspond to programs. More efficient im-
plementations can often be extracted from proofs by a form of type
erasure. In Ωmega proofs are programs (with equality qualified
types), and unlike Coq[41], and Isabelle[27] where type erasure is
fixed and inflexible, type erasure in Ωmega is implemented by the
use of explicit staging. The conjunction of staging and logical sys-
tems provides a powerful new tool. By using staging, extraction of
efficient programs from proofs is under the control of the program-
mer, and can be targeted at any object-language. Staging can also

be used to perform specialization and partial evaluation.

Fifth, GADTs allow Ωmega to reflect representations of its types
into the value world. These reflections exactly mirror the type
world, but are first class values. Each reflected value has a unique
(singleton) type. The reflection mechanism ensures that only sound
computations can be performed on reflected values. A reflected
value can be reified back into the type world, and the system can
rely on its soundness. This allows programmers to write programs
that perform type-level computations in the value world for type
checking problems that are too hard for the type checker (with its
limited computation mechanism - usually based upon unification)
to figure out. This allows the programmer to construct programs
that effortlessly slip between static and dynamic property checking,
and allow the programmer to capture a wide variety of properties,
both logical (semantic), and physical (resource usage) in the types
of programs.

While formal reasoning systems are very good at what they do, they
were not designed to be programming languages. These tools are
too expressive. They trade usability for expressiveness. There is
something to be gained by being selective, giving up some expres-
siveness in order to maintain the pragmatic properties of a system.
Powerful tools are very useful and have their place in system de-
sign, but there is a missing point in the continuum of tools between
practical and formal, and Ωmega is designed to fill this gap. By
doing so wisely, much is to be gained, in terms of ease of use, a
more gradual learning curve, and increased interoperability with
other systems.

2 How Types Capture Properties
An important role of type systems in programming languages is
to guarantee the property that programs do not use data (including
functions) in inappropriate ways. But types can also be used to en-
sure much more sophisticated properties. There are many examples
of this in the literature. Types have been used to ensure the safety
of low level code such as Java Byte Code[36, 5] or typed assembly
language[23, 24]. These systems use types to model the shape of
the stack or register bank to ensure that low level code sequences
are used properly (e.g. no stack underflow). Types have also been
used to model information flow[31, 43, 25] to ensure security prop-
erties of systems. Types have been used to track resource control,
such as the possibility of non-termination [20], or to place upper
bounds on the time consumed by a computation[11, 42]. Types
have been used as a means of removing dynamic error tests – for
example, to enforce data structure invariants[51] (such as ensuring
red-black trees are well formed) or to make code more efficient
by removing unnecessary run-time array bounds checks[52]. Fi-
nally, types have been used to track access control, which allows
removing (or minimizing) stack inspection overhead as a means of
managing capabilities[47, 6].

We have modelled the important ideas in each of these systems
using Ωmega. While the properties of these systems could have
been modelled by a formal system such as a logical framework
(Twelf[30]) or theorem prover (Coq[41] or Isabelle[27]), the prop-
erties would be a meta-logical property of the program and external
to the implementation. In Ωmega they are a property of the imple-
mentation, which is enforced by Ωmega’s type checker. Rather than
model an existing application in a formal system, or use a formal
system to build a model of an as-yet- unimplemented application
and then derive or generate an implementation from this model, in
Ωmega, we implement and reason in a single paradigm. We illus-
trate this with simple examples later in the paper.
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What is a proof?

Am I  
odd or  
even?

3 is  odd,  if 

2 is  even,  if 

1 is  odd,  if 

0 is  even 

Requirements for a legal proof

• Even is always stacked above odd

• Odd is always stacked below even

• Numeral decreases by one in each stack

• Every stack ends with 0

Figure 1. Proofs are logical arguments which use well-formed
reasoning.

We have coined a new slogan for the process of designing reliable
systems in this way: Mostly types – just a little theorem proving. We
argue that many properties that can be modeled in a theorem prover
or logical framework, can also be modelled more straightforwardly
in a programming language whose type system has been strength-
ened in just a few simple ways. This allows properties of systems to
be modelled in a more light-weight manner, yet still be completely
formal. Generalizing the notion of algebraic datatypes, adding type
checking for rank-N polymorphism, extensible kinds, and staging
support makes this light-weight formality possible. Programmers
already familiar with the use of a theorem prover or logical frame-
work will find that many of the powerful ideas behind these tools
have been moved to a practical programming language and have
become more widely applicable. Thus, we can save the power and
frustration of using a theorem prover for when we really need it.

3 What is a proof?

What is a proof? Consider the question asked in Figure 1. How
can we tell if the integer 3 is odd or even? Given the “fact” that 0
is even, we can reason that 1 is odd, and then that 2 is even, and
finally that 3 is odd. Such arguments follow strict rules about how
they are constructed. The notion that we can “construct” proofs
leads us to a powerful analogy – proofs are just data structures that
are constructed in precise, well-formed ways.

We illustrate this in Figure 2. Here each step is a “lego” block
with different shape “snaps”. Odd steps have triangular teeth on
the bottom, and square teeth on top. Even steps have square teeth
on the bottom, and triangular teeth on top. Like a jigsaw puzzle,
this prevents steps from being “snapped” together in bad ways. In
addition to the protection provided by the puzzle piece protocol,
the invariant that the numeral being tested decreases by one as we
ascend the stack must also be ensured. The top of the proof stack is
a fact. Notice how it has no teeth on top. It is from simple “facts”
(like 0 is even) that proofs get started.

We capture this puzzle like behavior by using types. We provide an
abstract interface to the creation of well-formed odd/even proofs.
Let Z be the fact that 0 is even. And let E construct a proof that m+1
is even when snapped underneath a proof that m is odd, and finally
O creates odd proofs by snapping them onto even proofs. This is
captured by the interface below:

3 is odd
3 – 1 = 2

2 is even
2 – 1 = 1

1 is odd
1 – 1 = 0

0 is even

Figure 2. Proofs are data that fit together in precise ways.

Z:: Even 0
E:: Odd m -> Even (m+1)
O:: Even m -> Odd (m+1)

So to construct a proof that 3 is odd we simply snap together
the right pieces O(E (O Z)) :: Odd (1+1+1+0). Note how the
types of the functions that comprise the interface to the odd/even
proof abstraction prevent us from constructing proofs of invalid
facts. It is this property of well defined proof abstractions that
make them so valuable. How will we go about designing such ab-
stractions? We can build them by generalizing the well understood
abstraction of algebraic datatypes.

4 Generalized Algebraic Datatypes

Algebraic data types are an abstraction available in many functional
languages (such as Haskell, ML, or O’Caml) that allow users to
define inductively formed structured data. They generalize other
forms of structuring data such as enumerations, records, and tagged
variants. For example, in Haskell we might write:

-- An enumeration type
data Color = Red | Blue | Green
-- A record structure
data Address = MakeAddress Number Street Town
-- A tagged Variant
data Person = Teacher [Class] | Student Major

Each definition introduces a new structured datatype (Color,
Address, Person), and a set of constructors. Some are constants
(Red, Blue, Green), others are constructor functions (MakeAdress,
Teacher, Student). Types are used to prevent the construction
of ill-formed data. This is done by giving each constructor a type
which ensures that it can only be “snapped” together in well formed
ways. For example:

Red :: Color
Blue :: Color
Green :: Color
MakeAddress :: Number -> Sreet -> Town -> Address
Teacher :: [Class] -> Person
Student :: Major -> Person
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Fork (Fork (Node 5) Tip) Tip

Fork

Fork

Node Tip

Tip

5

Figure 3. Constructor functions provide an abstract interface
to heap data. Every shape represents an internal node in the
tree constructed by a different constructor.

Two valuable extensions to this mechanism are the ability to param-
eterize a data definition to construct polymorphic data structures,
and the ability to construct recursive data structures. For example:

Data Tree a
= Fork (Tree a) (Tree a)
| Node a
| Tip

Defines the polymorphic Tree type constructor. Example tree types
include (Tree Int) and (Tree Bool). In fact the type construc-
tor Tree can be applied to any type whatsoever. Note how the
constructor functions (Fork, Node) and constants (Tip) are given
polymorphic types. This enables the same constructor functions to
construct trees of many different types.

Fork :: Tree a -> Tree a -> Tree a
Node :: a -> Tree a
Tip :: Tree a

Values of the new datatype are constructed solely by the application
of these constructors. For example, the tree illustrated in Figure 3 is
constructed by the following expression (Fork (Fork (Node 5)
Tip) Tip). Constructors abstract away from explicit heap alloca-
tion and the use of pointers. These mechanisms are hidden from the
programmer and are built into the constructor function implemen-
tations that are automatically generated by the compiler.

Data stored in algebraic datatypes is accessed by the use of pat-
tern matching, which allows abstract, high-level (yet still efficient)
inspection of the values stored inside the structure. Pattern match-
ing, like constructor functions, abstract pointers and heap alloca-
tion, and give a declarative feel to data access. We illustrate this be
defining the sum of function which adds up all the values stored in
tree whose “slots” are filled with integers.

sum_of :: Tree Int -> Int
sum_of Tip = 0
sum_of (Node x) = x
sum_of (Fork m n) = sum_of m + sum_of n

An annoying restriction. When we define a parameterized alge-
braic datatype, the formation rules enforce the following restriction.
The range of every constructor function, and the type of every con-
structor constant must be a polymorphic instance of the new type
constructor being defined. Notice how the constructors for Tree all
have range (Tree a) with a polymorphic type variable a.

Fork :: Tree a -> Tree a -> Tree a
Node :: a -> Tree a
Tip :: Tree a

By generalizing algebraic datatypes so they are no longer subject
to this restriction we can construct proof-like objects, and the type
system of the language will enforce that only well-formed proofs
are ever constructed. We can encode the odd/even abstraction as a
three constructors (Z,E, and O) from two different types (Even and
Odd) which have non-polymorphic ranges.

Z:: Even 0
E:: Odd m -> Even (m+1)

O:: Even m -> Odd (m+1)

The only complication with this approach is what to make of the
type parameters to Even and Odd. These appear to be integers rather
than types.

5 New Kinds

Kinds are similar to types in that, while types classify values, kinds
classify types. We indicate this by the classifies relation (::). For
example: 5 :: Int :: *0 . We say 5 is classified by Int, and
Int is classified by *0 (star-zero). The kind *0 classifies all types
that classify values (things we actually can compute). A kind dec-
laration introduces new types and their associated kinds (just as a
data declaration introduces new values (the constructors) and their
associated types). Types introduced by a kind declaration have
kinds other than *0. For example, the Nat declaration introduces
two new type constructors Z and S which encode the natural num-
bers at the type level.

kind Nat = Z | S Nat

The type Z has kind Nat, and S has kind Nat ˜> Nat. The type S
is a type constructor, so it has a higher-order kind. We indicate this
using the classifies relation as follows:

Z :: Nat
S :: Nat ˜> Nat
Nat :: *1

The classification Nat::*1 indicates that Nat is at the same “level”
as *0 — they are both classified by *1. There is an infinite hierarchy
of classifications. *0 is classified by *1, *1 is classified by *2, etc.
We call this hierarchy the strata. In fact this infinite hierarchy is
why we chose the name Ωmega. The first few strata are: values and
expressions that are classified by types, types that are classified by
kinds, and kinds that are classified by sorts, etc. We illustrate the
relationship between the values, types, and kinds in Figure 4.

From this discussion we see that the integer arguments to the type
constructors Even and Odd are really the natural numbers imple-
mented at the type level by the kind declaration for Nat.
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5

Int

*0

*1

[5]

[ Int ]

*0

[ ]

*0 ~> *0

Succ

Nat ~> Nat

Zero

Nat

*2

values

types

kinds

sorts

Figure 4. The classification hierarchy. An arrow from a to b
means b::a. Note how only values are classified by types that
are classified by *0, and how type constructors (like [] and S)
have higher order kinds.

Z::Even 0 Z::Even Z
E::Odd m -> Even (m+1) E::Odd m -> Even (S m)

O::Even m -> Odd (m+1) O::Even m -> Odd (S m)

O(E(O Z))::Odd 3 O(E(O Z))::Odd(S(S(S Z)))

In the rest of this paper when we use Arabic numerals at the type
level, we are using them simply as a notational convenience. For
example we may write: (Odd 3) instead of (Odd (S(S(S Z)))).

6 Equality Qualified Types

Removing the range restriction from algebraic datatypes can be ex-
plained in terms of equality qualified types. We provide two differ-
ent ways to introduce a new type using a data declaration. Both
support the definition of algebraic datatypes without the range re-
striction. The first is by the use of explicit constructor function dec-
laration, and the second is by the use of equality restrictions. We
illustrate both forms below for the Even/Odd proofs.

-- explicit constructor function declaration
data Even::Nat ˜> *0 where
Z :: Even Z
E :: Odd m -> Odd (S m)

data Odd::Nat ˜> *0 where
O :: Even m -> Odd (S m)

-- equivalent declaration using equality restrictions
data Even n
= Z where n=Z
| exists m . E (Odd m) where n=S m

data Odd n =
exists m . O (Even m) where n=S m

The explicit declaration form follows from our earlier discussion.
Just list the full types for each constructor. We are free to make
the range type of each constructor be any instance of the type being
defined. This form can be easily translated into the second form
that explains the range restriction in terms of the well studied and

understood idea of qualified types.

In the equality qualified syntax we use the original syntax for data
declaration, but now allow every constructor to be followed by a
where clauses which lists a set of type equalities that must hold for
that constructor.

Constructor functions (Z, E, and O) construct elements of data types
Even and Odd. The type of a constructor function is described in
the data declaration. For example, the clause in the Even dec-
laration: exists m.E (Odd m) where n=S m introduces the E
constructor function. Without the where qualification, the construc-
tor function E would have type (E::Odd m -> Even n). Equality
Qualification (indicated by the where in the clauses for Z, E, and O)
and existential quantification (indicated by exists in the clauses
for E, and O) help encode semantic properties. The where qualifies
E’s type, in effect saying (E:: Odd m -> Even n) provided n=S
m. We capture this formally by writing E::(forall n m.(n=S
m)=> Odd m -> Even n. The equations behind the fat arrow (=>)
are equality qualifications. Since n is a universally quantified type
variable, there is only one way to solve the qualification n=S m (by
making n equal to S m). Because of this unique solution, E also has
the type (forall m.Odd m -> Even (S m)). This type guaran-
tees that Cons can only be applied in contexts where n=S m. This is
the same type we would have written using the explicit constructor
declaration method.

The existential quantification of the type variable m names the inter-
mediate predecessor of the sub-proof of E, which if not introduced
in this way would appear as an unbound type variable. Every decla-
ration in the explicit form can be translated into one in the equality
qualified form. So the first can be defined as a shorthand for the
second. The first form is more concise and sometimes easier to
use, but the second form can be explained semantically in terms of
the well known and well studied idea of qualified types. Equality
qualified types are a relatively new feature in the world of program-
ming languages, and were only recently introduced by Hinze and
Cheney[9]. Ωmega is based upon this work.

7 An Introduction to Ωmega
In this section we introduce Ωmega. We use a simple applica-
tion which has a semantic invariant captured by the type system of
Ωmega. The example is sequences of elements with the semantic
property that the length of the sequence is encoded in its type. For
example the sequence [a1,a2,a3] has type (Seq a 3), and the type
of the Cons operator that adds an element to the front of a sequence
would be a → Seq a n → Seq a (n +1). A map function with type
(a → b) → Seq a n → Seq b n encodes a proof that map does not
alter the length of the sequence it is applied to.

The type of the append operator would be Seq a n → Seq a m →
Seq a (n +m). In order to type such functions it is necessary to do
arithmetic at the type level. In Figure 5 is an Ωmega program that
captures this specification. The code introduces a new type (Seq),
two new functions (map and app), and a new type function (plus).
Equality qualified types can encode powerful static invariants about
data. For example the type of map provides a proof that map returns
a list of the same length as its input list.

Tracking equality constraints. When type-checking an expres-
sion, the Ωmega type checker keeps two sets of equality constraints:
obligations and assumptions.

Obligations. The first set of constraints is a set of obligations. Obli-

ACM SIGPLAN Notices                                                       123                                                             Vol. 39(12), Dec 2004



data Seq a n
= Nil where n = Z
| exists m . Cons a (Seq a m) where n = S m

-- equivalently in explicit constructor format
-- data Seq:: *0 ˜> Nat ˜> *0 where
-- Nil::Seq a Z
-- Cons:: a -> Seq a m -> Seq a (S m)

map::(a -> b) -> Seq a n -> Seq b n
map f Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)

{plus Z y} = y
{plus (S x) y} = S{plus x y}

app::Seq a n -> Seq a m -> Seq a {plus n m}
app Nil ys = ys
app (Cons x xs) ys = Cons x (app p xs ys)

Figure 5. An Ωmega encoding of lists whose types record their
lengths.

gations are generated by the type-checker when (a) the program
constructs data-values with constructors that contain equality con-
straints; or (b) an explicit type signature in a definition is encoun-
tered; or (c) when type functions are used (see Type functions in
Ωmega below).

We will explain how these are used by considering the functions
and types defined in Figure 5. There we provide the declaration
for Seq in both formats. The explicit format is more direct for the
programmer, but the equality qualified format is easier to use when
explaining the typing rules.

Consider type-checking the expression Nil. Using the equality
qualified form, the constructor Nil is assigned the type forall
a n.n=Z => Seq a n, thus Nil::Seq a n but also generates the
obligation n=Z. Since Nil is polymorphic in a and n, the type vari-
able n can be instantiated to Z. Instantiating n to Z makes the equal-
ity constraint obligation Z=Z, which can be trivially discharged by
the type checker. After discharging this constraint the type of Nil
is exactly the type provide in the explicit form.

Assumptions. The second set of constraints is a set of assumptions
or facts. Whenever, a constructor based pattern appears in a binding
position, and the constructor was defined using a where clause, the
type equalities in the where clause are added to the current set of
assumptions in the scope of the pattern. These assumptions can be
used to discharge obligations. The equality qualified form is espe-
cially helpful in explaining the type checking of pattern matching.

For example, consider type checking the definition of map. Recall
map::(a->b)->Seq a n->Seq b n. In the first equation, the pat-
tern Nil of type Seq a n introduces the assumption n=Z because of
Nil’s qualified type forall a n.n=Z => Seq a n. On the right-
hand-side, the use of the Nil constructor generates the obligation
that n=Z. The assumption generated by the pattern on the left is
used to discharge obligations incurred on the right.

Now, consider the second equation map f (Cons x xs) = Cons
(f x) (map f xs). We know map’s type, so the second pattern
(Cons x xs) must have type (Seq a n). This implies x::a and
xs::Seq a m provided n = S m. This equation is added to the
list of assumptions when typing the right-hand-side of the second
equation: Cons (f x) (map f xs). This right-hand-side should have

type (Seq b n) (the range of map’s type). Since xs::Seq a m we
can compute (map f xs)::Seq b m, Since x::a we can compute
(f x)::b, thus it appears (Cons (f x) (map f xs)):: Seq b
(S m). But given the equality constraint n=S m the right hand side
has type Seq b n as expected.

Type functions in Ωmega. The append function should have type
Seq a n -> Seq a m -> Seq a (n+m). In order to type such
functions it is necessary to do arithmetic at the type level. This
means defining functions over types. In Ωmega we do this by writ-
ing equations over types. We surround type-function application by
braces (e.g. {sum x x y} to distinguish it from type-constructor
application (e.g. List Int). We also define the type-function sum
and the value-function append of static sequences. The app can
be typed using reasoning similar to the reasoning used when type-
checking the map function. An additional complication is the use
of the type function sum to rewrite type-level terms into normal
form when discharging obligations. To ensure that type-checking is
tractable we require type-functions to be exhaustive, and confluent.

An observation about the type parameters of Ωmega type con-
structors. The second parameter of the type constructor Seq plays a
qualitatively different role than type parameters in other data struc-
tures. Consider the declaration for a binary tree datatype:
data Tree a = Fork (Tree a) (Tree a) | Node a | Tip.
In this declaration the type parameter a is used to indicate that there
are sub components of Trees that are of type a. In fact, Tree s are
polymorphic. Any type of value can be placed in the “sub com-
ponent” of type a. The type of the value placed there is reflected
in the Tree’s type. Contrast this with the n in (Seq a n). Here
there are no sub components of type n. Instead, the parameter n is
used to stand for an abstract property (the statically known length
of the list). The where qualifications restrict the legal instances of
n. Type parameters used in this way are sometimes called index
types[50, 52], and will play an important role in what follows.

8 Comparing Formal Reasoning Systems

Ωmega uses a single computational model (strict functional rewrit-
ing) for both its logic and its programming. We claim that this is
easier for programmers to learn and to use than the dual computa-
tional model found in some other systems. To illustrate this point
we compare Ωmega to two other systems with similar goals: Coq
and Twelf.

In Figure 6 we see a similar encoding of natural numbers at the type
level, and an encoding of sequences with encoded lengths. In Coq
the definition of plus is defined by structural induction over nat
types, but the definition of append is given by a series of commands
(Introduction, EApply, Simpl etc.) that guide the Coq theorem
prover to construct a proof object with the given type. The append
function is then extracted (not shown) from this proof object. In
the Twelf encoding the plus function and the append function are
encoded as logic programs.

The big advantage of the Ωmega approach is that the program is
the logic. There is no translation between programming notation to
some external reasoning tool. Second, there is no need to switch
gears when reasoning about the system. Rather than thinking in
terms of our implementation programming language, in Coq we
must think in terms of proof tactics, and in Twelf (given that the
vast majority of programs are not written in Prolog) we must think
in terms of logic programs.
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Coq encoding
Inductive nat : Set := Z : nat | S : nat -> nat.

Definition plus : nat->nat->nat :=
Fix plus

{plus [n:nat] : nat->nat :=
[m:nat]Cases n of

Z => m
| (S p) => (S (plus p m))
end}.

Inductive Seq [A:Set] : nat -> Set :=
Nil : (Seq A Z)

|Cons : (n:nat; x:A; xs : (Seq A n))(Seq A (S n)).

Definition app [A:Set] : (m,n:nat)
(Seq A m) -> (Seq A n) -> (Seq A (plus m n)).

Intros. Induction H. EApply H0. Simpl.
Apply (Cons A (plus n0 n) x HrecH). Defined.

Twelf encoding
elem : type.
e1 : elem.

nat : type.
z : nat.
s : nat -> nat.

plus : nat -> nat -> nat -> type.
base : plus z Y Y.
step : plus (s X) Y (s Z)

<- plus X Y Z.

seq : nat -> type.
nil : (seq z).
cons : elem -> (seq A) -> (seq (s A)).

app : (plus A B C) -> (seq A) ->
(seq B) -> (seq C) -> type.

app_1 : app base nil X X.
app_2 : app (step P) (cons X XS) YS (cons X ZS)

<- app P XS YS ZS.

Figure 6. Coq and Twelf programs for comparison to Ωmega.

9 Witness Objects

GADT’s can model relations between types, other than equality, by
defining witness types. A witness is a value with a parameterized
type whose existence witnesses a relationship between its type pa-
rameters. The very existence of the witness (i.e. a non bottom value
with the given type) implies that the property must be true. Wit-
nesses to untrue properties cannot be constructed since such values
would be ill-typed.

The simplest witness is the Equal type constructor.

data Equal a b = Eq where a=b

A value of type Equal a b is a dynamic witness to the static prop-
erty that a = b. We will see some uses for this type later in the
paper. A value of type Sum n m p can only be constructed if the
Nat kinded parameters n, m, and p are in the following relationship:
n + m = p.

data Sum w x y
= Base where w=Z , x=y
| exists m n . Step (Sum m x n)

where w=S m, y=S n

This witness allows us to define an alternative append function for
static-length lists.

data Ans a n m = exists p . Ans (Sum n m p) (Seq a p)

append :: Seq a n -> Seq a m -> Ans a n m
append Nil ys = Ans Base ys
append (Cons x xs) ys = Ans (Step p) (Cons x zs)

where Ans p zs = append p xs ys

If we can’t statically determine the length of appending two lists,
we can dynamically compute both the new list and a witness to its
length.

10 Example: Type-Safety & Static Scoping
We now turn to a richer example: modelling a simple imperative
While language with semantic properties of static scoping and type
safety[26, 28]. Every while-program represented as an Ωmega data
structure is a proof that every variable in that program refers to some
binding site (static scoping), and that the program is also well typed.
The power of Ωmega is that modelling these static semantic prop-
erties requires approximately the same amount of time and intellec-
tual effort one uses to model context free syntactic properties using
other means. In addition any Ωmega program that manipulates a
while-program data structure, is guaranteed to maintain these prop-
erties. Ωmega programs that do not maintain the scoping and typing
are statically determined to be ill-typed and are thus rejected.

In Figure 7 we introduce data structures to represent the While lan-
guage. The data declarations introduce three new parameterized
types V, Exp and Com for variables, expressions, and commands.
These are type constructors, and an actual element of the new types
will have types like (V (Int,Bool) Bool), (Exp (Int,Bool)
Int), or (Com (Int,Bool)). We interpret (Exp s t) as an ex-
pression with type t in store s. The type of a store captures the
types of the variables currently in scope. A similar interpretation is
given to variables (V s t). Commands don’t have result types, but
are interpreted in the store (Com s). The declarations also intro-
duce constructor functions Z, S, IntC, BoolC, etc. whose types are
given as comments in Figure 7. Readers familiar with type systems
will notice that the types of the constructor functions look a lot like
typing judgments. We have used the equality constrained types to
encode and reason about these inference rules in the programming
language.

Manipulating while-programs. In Figure 8 a small interpreter for
the While-language is given. Expressions are interpreted by the
function eval::Exp s t -> s -> t. The function eval, given a
term of type (Exp s t) producers a function from s to t. eval
gives meaning to the term. Given store::s, a data structure which
stores values for the expression’s variables, then we can produce
the value of the expression by applying eval to the expression and
store. The type of the store models the types of the reachable
variables in the object-program. Variables are integers (using a de
Bruijn-like notation), and stores are nested pairs. The nested pairs
have the following shape (0,(1,(2, ...))) where the 0, 1, and 2
indicate the index of the variable that “reaches” to the correspond-
ing location in the nested pair. Because of the natural number-like
definition of the type (V s t)we see that (Var Z) models the vari-
able with index 0, (Var (S Z)) models the variable with index 1,
and (Var (S (S Z))) models the variable with index 2, etc. Thus
if the type of the store is (Int,(Bool,a)) then variable with index
0 has type Int and the variable with index 1 has type Bool.
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data V s t
= exists m . Z where s = (t,m) -- x0 V (t,m) t
| exists m x . S (V m t) where s = (x,m) -- xn V m t -> V (x,m) t

data Exp s t
= IntC Int where t = Int -- 5 Int -> Exp s Int
| BoolC Bool where t = Bool -- True Bool -> Exp s Bool
| Plus (Exp s Int) (Exp s Int) where t = Int -- x + 3 Exp s Int -> Exp s Int -> Exp s Int
| Lteq (Exp s Int) (Exp s Int) where t = Bool -- x <= 3 Exp s Int -> Exp s Int -> Exp s Bool
| Var (V s t) -- x V s t -> Exp s t

data Com s
= exists t . Set (V s t) (Exp s t) -- x := e V s t -> Exp s t -> Com s
| Seq (Com s) (Com s) -- { s1; s2; } Com s -> Com s -> Com s
| If (Exp s Bool) (Com s) (Com s) -- if e then x else y Exp s Bool -> Com s -> Com s -> Com s
| While (Exp s Bool) (Com s) -- while e do s Exp s Bool -> Com s -> Com s
| exists t . Declare (Exp s t) (Com (t,s)) -- { int x = 5; s } Exp s t -> Com (t,s) -> Com s

Figure 7. Typed, statically scoped, abstract syntax for the While language. The left hand column illustrates the Ωmega code that
introduces data structures that represent the new object-language, and the middle column (following the comment token --) suggests
a concrete syntax that the abstract syntax represents. The right hand column gives the type of the constructor function as described
in the text below.

Under this interpretation it is easy to understand the functions
update, eval, and exec. Consider: (update (S Z) False
(12,(True,0)). This should return a new nested pair where the
location of the index ((S Z) which is 1) has been replaced by False
giving (12,(False,0)). This proceeds by
(update (S Z) False (12,(True,0)) −→ (12,update Z
False (True,0)) −→ (12,(False,0)). Note how pattern
matching chooses the correct clause to execute.

In a similar fashion the eval function when applied to a vari-
able (Var i) “extracts” the ith value from a nested pair. (eval
(Var (S Z)) (12,(True,0)) −→ (eval (Var Z) (True,0))
−→ True. The execution function for commands (exec::Com s
-> s -> s) is a store transformer, transforming the store accord-
ing to the assignments executed in the command.

Since the properties of the object-programs are captured in their
types, respecting these types ensures that the meta-programs main-
tain the properties of the object programs. For example given that
the meta-level variables x and sum are defined by sum = Z (the
variable with index 0) and x = S Z (the variable with index 1) ,
observe:
prog::Com (Int,(Int,a))
prog = Seq (Set sum (Int 0))

(Seq (Set x (Int 1))
(While (Lteq (Var x) (Int 5))

(Seq (Set sum (Plus (Var sum)(Var x)))
(Set x (Plus (Var x)(Int 1))))))

-- { sum = 0;
-- x = 1;
-- while (x <= 5)
-- { sum = sum + x;
-- x = x + 1; } }
The term prog has a meta-level type that states that it is well-typed
at the object-level, only if the object-level store has an Int at in-
dexes 0 and 1. If one tries to create an ill-typed object-level term
a static type checking error occurs. For example consider the com-
mand (if x then x := 0 else x := 1) where the variable x
needs to be typed as both an Int and a Bool.

badIf = If (Var x) (Set x (IntC 0)) (Set x (IntC 1))

In the expression: Set x (IntC 0)
the result type: Com (a,(Int,b))
was not what was expected: Com (a,(Bool,c))

Int does not unify with Bool

Possible Enhancements. Enhancing object-languages with type
safety can be accomplished in two dimensions: a richer language
or a richer type system. We have done both. We have also mod-
elled several different styles of language semantics other than the
big-step style given for the While-language. One of our most inter-
esting semantics consisted of a typed small step semantics. Since
this small step semantics is typed, it amounts to a machine checked
subject reduction proof[49].

11 Staging and Efficient Implementations
Staged programs proceed in stages. Each stage “writes” a program
that is executed in the next stage. Practical examples of staged sys-
tems include run-time code generation, dynamic compilation, and
program generators. Staging is the key technology that supports
efficient implementations without interpretive overhead.

Staging is an programming language interface to code generation.
We have built two large sophisticated systems that implement stag-
ing. MetaML[33], a system with run-time code generation, and
Template Haskell[34], a system with compile-time code genera-
tion (think macros, quasi-quotes, and type safety). In Figure 11
we use the staging mechanism of Ωmega. It consists of the annota-
tions brackets ([| |]) and escape ($( )). Brackets introduce a
new code template and specify that the expression inside the brack-
ets should be generated as a program for the next stage. Within
brackets, escape specifies a hole within a template. The escaped
expression is executed (resulting in a piece of code), and the resul-
tant code is spliced into that hole. Staging makes a perfect com-
plement to equality qualified types for two reasons. First, many
applications can be encoded as domain specific languages (DSLs).
Such languages can be given meaning by writing a simple inter-
preter (like the eval and exec functions from Figure 8). Staging an
interpreters produces an efficient compiler as the interpretive over-
head or traversing the abstract syntax is removed. This is illustrated
in the top of Figure 11 for the Exp fragment of the while-language.

Second, staging can implement program extraction from proofs.
Both Coq and to some extent Isabelle support program extraction
from proofs. These features are limited because the target lan-
guages are hardwired and the generated programs must conform to
the type system of the target language. This often requires discard-
ing important information about the source program, or run time
passing of static information. If we consider the app function from
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update::(V s t) -> t -> s -> s
update Z n (x,y) = (n,y)
update (S v) n (x,y) = (x,update v n y)

eval::Exp s t -> s -> t
eval (IntC n) s = n
eval (BoolC b) s = b
eval (Plus x y) s = (eval x s) + (eval y s)
eval (Lteq x y) s = (eval x s) <= (eval y s)
eval (Var Z) (x,y) = x
eval (Var (S v)) (x,y) = eval (Var v) y

exec::(Com st) -> st -> st
exec (Set v e) s = update v (eval e s) s
exec (Seq x y) s = exec y (exec x s)
exec (If test x1 x2) s =

if (eval test s) then exec x1 s else exec x2 s
exec (While test body) s = loop s

where loop s = if (eval test s)
then loop (exec body s)
else s

exec (Declare e body) s = store
where (_,store) = (exec body (eval e s,s))

Figure 8. Interpreters for the While-language. These functions illustrate pattern matching over constructor functions, and semantics
preserving meta-functions. All of update, eval, and exec manipulate while-programs in a way that respects their semantic properties.
In fact, because all while-programs are well typed these interpreters are tagless[39], and they return values whose types correspond
to the types of the while-programs.

Typed

Object-code String String
Annotated

AST

Typed

Object-code
marshall unmarshallInternet check

Code producer Code consumer

Figure 9. Proof carrying code process

data TyAst = I | B | P TyAst TyAst

data ExpAst
= IntCA Int
| BoolCA Bool
| PlusA ExpAst ExpAst
| LteqA ExpAst ExpAst
| VarA Int TyAst

-- Equality Proofs and Type representations
data Eq a b = EqProof where a=b

data TypeR t
= IntR where t = Int
| BoolR where t = Bool
| exists a b . PairR (TypeR a) (TypeR b)

where t = (a,b)

match::TypeR a -> TypeR b -> Maybe (Eq a b)
match IntR IntR = succeed EqProof
match BoolR BoolR = succeed EqProof
match (PairR a b) (PairR c d) =

do { EqProof <- match a c
; EqProof <- match b d
; succeed EqProof }

match _ _ = fail "match fails"

-- Judgments for Types
data TJudgment = exists t . TJ (TypeR t)

checkT::TyAst -> TJudgment
checkT I = TJ IntR
checkT B = TJ BoolR
checkT (P x y) =

case (checkT x,checkT y) of
(TJ a, TJ b) -> TJ(PairR a b)

-- Judgments for Expressions
data EJudgment s = exists t . EJ (TypeR t) (Exp s t)

checkE::ExpAst -> TypeR s -> Maybe (EJudgment s)
checkE (IntCA n) sr = succeed(EJ IntR (IntC n))
checkE (BoolCA b) sr = succeed(EJ BoolR (BoolC b))
checkE (PlusA x y) sr =

do { EJ t1 e1 <- checkE x sr
; EqProof <- match t1 IntR
; EJ t2 e2 <- checkE y sr
; EqProof <- match t2 IntR
; succeed(EJ IntR (Plus e1 e2))}

checkE (VarA 0 ty) (PairR s p) =
do { TJ t <- succeed(checkT ty)

; EqProof <- match t s
; succeed(EJ t (Var Z))}

checkE (VarA n ty) (PairR s p) =
do { EJ t’ (Var v) <- checkE (VarA (n-1) ty) p

; TJ t <- succeed(checkT ty)
; EqProof <- match t t’
; succeed(EJ t’ (Var (S v)))}

Figure 10. Implementing the check function for the proof carrying code example.
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x = Z
y = S Z
e1 = Lteq (Plus (Var x)(Var y)) (Plus (Var y) (IntC 1))

data Store s = M (Code s)
| forall a b . N (Code a) (Store b) where s = (a,b)

test e = [| \ (x,(y,z)) ->
$(eval2 e (N [|x|](N[|y|](M[|z|])))) |]

eval2::Exp s t -> Store s -> Code t
eval2 (IntC n) s = lift n
eval2 (BoolC b) s = lift b
eval2 (Plus x y) s = [| $(eval2 x s) + $(eval2 y s) |]
eval2 (Lteq x y) s = [| $(eval2 x s) <= $(eval2 y s) |]
eval2 (Var Z) (N a b) = a
eval2 (Var (S v)) (N a b) = eval2 (Var v) b

-- test e1 ---> [| \ (x,(y,z)) -> x + y <= y + 1 |]

app3::Sum n m p -> Code(Seq a n) ->
Code(Seq a m) -> Code(Seq a p)

app3 Base xs ys = ys
app3 (Step p) xs ys =

[| case $xs of Cons z zs -> Cons z $(app3 p [|zs|] ys) |]

test2::Sum u v w -> Code (Seq a u -> Seq a v -> Seq a w)
test2 witness = [| \ xs ys -> $(app3 witness [|xs|] [|ys|]) |]

-- test2 (Step (Step Base)) --->
-- [| \ xs ys ->
-- case xs of
-- (Cons z zs ) ->
-- Cons z (case zs of
-- (Cons w ws) -> Cons w ys) |]
Figure 11. Illustrating Staging, removal of interpretive over-
head (top), and witness removal (bottom).

Figure 6 as a proof (because it takes a witness Sum type as well as
two lists) staging can remove the witness in an early stage, result-
ing in a new piece of code which can rely on all the (now) static
information encoded in the witness. Note how once given the wit-
ness (Step (Step Base)) the staged function app3 can unroll the
loop. So not only is the witness removed in the second stage, but
the resulting program is no longer even recursive!

The ability to control extraction is important. Two different pro-
grams extracted from the same proof object may have very different
physical properties (i.e. heap space usage). Staging allows users to
extract programs in a manner that fits their needs.

12 Example: Proof Carrying Code
Peter Lee, on his web site states[22]: Proof-Carrying Code (PCC)
is a technique by which a code consumer (e.g., host) can verify that
code provided by an untrusted code producer adheres to a prede-
fined set of safety rules ... The key idea behind proof-carrying code
is that the code producer is required to create a formal safety proof
that attests to the fact that the code respects the defined safety pol-
icy. Then, the code consumer is able to use a simple and fast proof
validator to check, with certainty, that the proof is valid and hence
the foreign code is safe to execute.

In Figure 9 we illustrate how this might be implemented using
Ωmega. The code producer produces code whose safety policy is
embedded in the type of the object-code as we have illustrated in the
previous section. The producer than marshalls (pretty prints) this
code into some flat untyped representation that can be transported

over the Internet (a String in the figure). On the consumer side,
the consumer unmarshalls (parses) this string into an untyped anno-
tated abstract syntax tree. The check is a dynamic (i.e. at run-time)
attempt to reconstruct the typed object-code (a static property) from
the annotated untyped AST. If this succeeds then the consumer has
a proof that the object code has the desired safety property, since all
well typed object-programs have the safety property. The only dif-
ficult step in this process is the reconstruction of the typed object-
code from the untyped annotated AST. In order to describe how
this is done we introduce additional features of Ωmega, polymor-
phic kinds and representation types. We apply these features to the
dynamic construction of the statically typed Exp datatype from the
while-program example (Figure 8).

In Figure 10 we define two untyped algebraic datatypes TyAst and
ExpAst that we will use as our annotated abstract syntax types. The
type TypeR is a representation type. It reflects objects that live in
the type world (Int, Bool, and pairs) into the value world. Note
how IntR::(TypeR Int) is a value, but its type completely dis-
tinguishes what value it is. This notion has been called singleton
types[37, 32], but we think representation types is a more appro-
priate name. Writing a program that manipulates representation
types allows the programmer to encode operations that the type
system (with its limited computation mechanism – essentially solv-
ing equalities between types) cannot. It cannot be over-emphasized
how important this ability is. Typing problems that cannot be solved
by the type system can be programmed by the user when necessary.

We choose to represent Int, Bool and pairs because these types ei-
ther appear as type indexes to Exp and Com or describe the shape
of the store as a nested pair. The key to dynamic reconstruction of
static type information is the Eq data type. The Eq type construc-
tor has a polymorphic kind (Eq::forall (k:*1) (k1:*1) . k
∼> k1 ∼> *0). This kind means that the arguments to Eq can
range over any two types classified by k and k1 that are themselves
classified by *1. This includes types like Int and Bool, as well as
type constructors like Tree and List.

The constructor function (EqProof::forall (k:*1) (u:k)
(v:k).(u = v) => Eq u v)) is a first-class (dynamic) witness to
the fact that the static types u and v are equal. Equality witnesses
can be created in a static context where u is equal to v then passed
around as data to a new context where this information is needed.
One way to create these witnesses is the use of the function
match::forall u v.TypeR u -> TypeR v -> Maybe(Eq u
v). The function match dynamically tests whether two representa-
tion types are equal. If they are, rather than return a boolean value,
it returns either a successful equality witness or it returns a failure.
The witness can be used in a pattern matching context to guard an
expression with this new piece of static information (that u=v). For
example, given that x has the type Eq u v, in the case expression:
(case x of { Eq -> ... }), the case arm indicated by ...
can be type checked under the static assumption that u=v.

The standard typing rules for equality qualified types provide this
mechanism. There is nothing new here, only a new way of using
the old techniques. The datatypes EJudgment and TJudgment are
forms of TypeR and Exp that use existential types to hide some of
the type indexes to those type constructor functions. EJudgment
also includes a representation of the type t.

The functions match, checkT, and checkE are examples of partial
functions. They might succeed, producing some result ans, but they
also might fail. In Ωmega this is indicated by a result type (Maybe
ans). They are programmed using the do notation which makes it
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kind State = Open | Closed

prog2::Com (Int,(Int,a)) Open Open
prog2 =
Seq (Set sum (Int 0))

(Seq (Set x (Int 1))
(While (Lteq (Var x) (Int 5))

(Seq (Set sum (Plus (Var sum)(Var x)))
(Seq (Writef (Var x))

(Set x (Plus (Var x) (Int 1)))))))

data Com st x y
= forall t . Set (V st t) (Exp st t) where x=y
| forall a . Seq (Com st x a) (Com st a y)
| If (Exp st Bool) (Com st x y) (Com st x y)
| While (Exp st Bool) (Com st x y) where x = y
| forall t . Declare (Exp st t) (Com (t,st) x y)
| Openf where x = Closed, y = Open
| Closef where x = Open, y = Closed
| Writef (Exp st Int) where x = Open, y = Open

Closed Open

open

close

write

Figure 12. The While-language augmented with commands for
manipulating a file, and a DFA illustrating the protocol.

easy to program partial functions that are comprised of sub com-
putations that might also fail. A sequence of partial computations
do { p1 <- e1; ... ; pn <- en } succeeds only if all the ei
succeed. If any of them fails then the whole sequence fails. If the
ei succeeds with a structured data object, then the pi can be used to
pattern match against the result if it is successful. If the ei is suc-
cessful but the object returned doesn’t match against the pi then the
whole sequence fails as well.

We explain one clause of the definition of checkE. Consider
checkE (PlusA x y) sr = ... First, recursively check the sub-
term of the annotated AST, x. This returns a judgment encapsulat-
ing a typed term (e1::Exp s a) and a representation of its type
(t1::TypeR a) where a is an existentially quantified type vari-
able. Test if this representation matches IntR. If it succeeds the
witness (EqProof::Eq Int a) is pattern matched and the rest of
the computation can proceed under the static assumption that a is
equal to Int. In a similar fashion check and then test y, and finally
succeed with a new judgment.

Possible Enhancements. This technique can be extended to the
full While-language including the Com language. In that case, the
judgment for commands must include representations for stores in
the way that the judgment for expressions contained representations
for types. The same techniques can be used to infer well typed
object-code terms from untyped abstract syntax trees without anno-
tations, but the details become more complicated. The reflection of
the type world into the value world is a powerful idea. It lets the
user dynamically construct objects with static properties that the
static type system may not be able to infer with its limited compu-

tational mechanism.

13 Example: A Language with Temporal
Safety Properties

Many systems depend upon communication occurring according to
a temporal protocol. For example a file must be opened before it
can be written to. Once opened, a file shouldn’t be opened again
until after it has been closed. A closed file should never be written
to. Such protocols are naturally expressed as finite state automata.
The DFA in Figure12 captures this protocol precisely.

A language can express and enforce such protocols quite naturally
using its type system. To illustrate this we have augmented the
While-language with commands for opening, closing , and writing
to a single file (we discuss removing this restriction later).

In Figure 12 we have defined a new kind State with types Open
and Closed, and augmented the command data structure with three
new constructor functions: Openf, Closef, and Writef. The Com
type now takes two additional type parameters. Interpret the type
(Com st x y) as a command in store st, starting execution in state
x and ending in state y. The types of the new constructors en-
force the protocol: (Openf::Com st Closed Open), (Closef::
Com st Open Closed), and (Writef::Exp st Int -> Com st
Open Open). The type of a command such as prog2 from Figure
12 describes precisely in which states of the protocol the command
resides. Commands with polymorphic starting and ending states,
essentially carry a proof that they do no IO at all!

Possible Enhancements. It is easy to imagine richer protocols with
DFA’s with more than two states. Accommodating such protocols
simply requires enriching the State kind, and adding new com-
mands for each transition. If the host language has a notion of typed
procedures it isn’t necessary to add new constructor functions to
Com for each transition in the DFA. Languages with multiple proto-
cols, or with more than 1 file can be accommodated by specifying
the starting and ending state parameters of Com be structured types
with more than one component.

14 Example: Multi-Level Security

Our next example concerns a language with multi-level security do-
mains. A multi-level security language is meant to ensure confiden-
tiality of information stored at higher levels of the security hierar-
chy. In such a language data is partitioned into security domains,
for example a two level domain might have two distinct levels High
and Low.

The key semantic property is to insure that the value of data at
higher levels never influences the value of data at lower levels. This
is tricky because control flow decisions, predicated on high secu-
rity information, can cause information to leak to lower levels. The
example below has this problem:

{ high int x;
low int y;
if (x==0)

then y := 0
else y := 1

}

To reason about confidentiality we need an object-language in
which we can reason about information flow. In Figure 13 we de-
fine such a language based on similar languages from the literature
[43, 31].
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Domain :: *1
kind Domain = High | Low -- High,Low::Domain

D::Domain ˜> *
data D t

= Lo where t = Low -- Lo::D Low
| Hi where t = High -- Hi::D High

data Dless x y
= LH where x = Low, y = High
| LL where x = Low, y = Low
| HH where x = High, y = High

data P x y = P

data V s d t
= forall s0 d0 . Z (D d)

where s = P (D d,d0) (t,s0)
| forall a b t1 d1 . S (V (P a b) d t)

where s = P (d1,a) (t1,b)

eval :: Exp (P a s) d t -> s -> t
exec :: (Com d (P a st)) -> st -> st

Exp :: * ˜> Domain ˜> * ˜> *
data Exp s d t

= Int Int where t = Int
| Bool Bool where t = Bool
| Plus (Exp s d Int) (Exp s d Int) where t = Int
| Lteq (Exp s d Int) (Exp s d Int) where t = Bool
| forall d2 . Var (V s d2 t) (Dless d2 d)

Com :: Domain ˜> * ˜> *
data Com d st

= forall t d1 d2 .
Set (V st d2 t) (Exp st d1 t)

(Dless d1 d2) (Dless d d2)
| Seq (Com d st) (Com d st)
| If (Exp st d Bool) (Com d st) (Com d st)
| While (Exp st d Bool) (Com d st)
| forall t d2 a b .

Declare (D d2) (Exp st d2 t)
(Com d (P (D d2,a) (t,b)))

where st = P a b

update :: (V (P a s) d t) -> t -> s -> s
update (Z d) n (x,y) = (n,y)
update (S v) n (x,y) = (x,update v n y)

Figure 13. Security Domains

The kind declaration in Figure 13 introduces a new kind, Domain,
and two new types, High and Low. The data declaration for D intro-
duces a new type constructor with an interesting kind: (D::Domain
� *). Like other data declarations its also introduces new values
Hi and Lo. The type D reflects the structure of the kind Domain into
the value world, and the type of Hi and Lo are indexed by the types
(High and Low) they represent: (Lo::D Low) and (Hi::D High).

The security language is closely related to the While-language. The
main difference is the introduction and use of domains. This neces-
sitates a change in the way we type stores. In the While-language
the type of a store was a nested tuple encoding the types of the
variables in scope. In the security language, the types of the vari-
ables is not enough – we must also encode the Domain of each
variable. This is the role of the type constructor P (think of (P
x y) as a special kind of pair). In the While-language a command
typed as (Com (Int,(Bool,a))) would be typed as (Com (P (D
High,(D Low,b)) (Int,(Bool,a)))) in the security language.
The type parameter to Exp and Com describing stores is now a P
pair. The second component of the pair is exactly as in the While-
language, and the first component of the pair is a parallel structure
(with the same nesting shape as the second) but storing representa-
tions of the Domain of variables rather than their types.

The interpretation of a command with type (Com d s) is a com-
mand in store s executing in a control thread in domain d. A
similar interpretation applies to expressions with types (Exp s d
t) except that a expression also returns a value of type t. Se-
curity in the language is enforced by the Dless witnesses in Var
and Set constructors. Consider: (Var::V s d2 t -> Dless d2
d -> Exp s d t), a variable expression is well formed only if the
domain of the variable (d2) is less than the thread of execution
(d). Information can flow from Low variables into High threads,
but not the other way around. For the assignments constructor
function we have (Set::V s d2 t -> Exp s d1 -> Dless d1
d2 -> Dless d d2 -> Com s d). The thread of the expression
being assigned (d1) must be less than the domain of the variable
being assigned to (d2). Anyone can assign to High variables, but
only expressions in Low threads can assign to Low variables. In ad-
dition the thread of the assignment command (d) must be less than

the thread of the variable (d2). This prevents the problem illustrated
above of control flow predicated on High information being used to
leak information into Low variables.

Given a semantics for this language (similar to the eval and exec
commands for the While-language) it is easy to state and prove that
the type system prevents adverse information flow. The proof is cast
as a separation argument. Given a a well-typed command (c::Com
d (P ds st)) then its meaning ((exec c)::st -> st) is a func-
tion from stores to stores, and values of low variables in the output
store never depend on the values of the high variables in the input
store.

15 Related Work

Ωmega’s design has been influenced by work on Logical
Frameworks[16, 30, 29], Inductive Families[14, 10], Refinement
Types[15, 12], Practical Dependent Typing[1, 2], and Guarded Re-
cursive Datatype Constructors[52, 8]. But the work on Equality
Types[9] has allowed us to express many of these ideas as a sim-
ple extension (based upon qualified types) to the familiar notion
of Algebraic Datatypes. By combining type inference with type
checking for arbitrary rank polymorhism[19, 21, 35] and staging
annotations[7, 40, 34, 38]; we have created a powerful new way to
embed properties of programs in their types.

Expressing that two types are equal in a manner controllable by
the programmer is the key to embedding semantic properties of
object-programs. The first work expressing equality between types
in a programming language was based on the idea of using Leib-
niz equality to build an explicit witness of type equality. In Ωmega
we would write (data Eq a b = Witness (forall f.f a ->
f b)). The logical intuition behind this definition is that two types
are equal if, and only if, they are interchangeable in any context
(the arbitrary type constructor f). Note how this relies heavily on
the use of higher rank polymorphism. The germ of this idea origi-
nally appeared in 2000[48], and was well developed two years later
in 2002[3, 17]. Programming with witnesses requires building ex-
plicit casting functions C[a] → C[b] for different contexts type C.
This is both tedious and error prone. Programming with witnesses
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has some problems for which no solution is known1. Using type
equality became practical with the introduction of equality quali-
fied types by Hinze and Cheney[9]. The implementation of Ωmega
is based on this key idea. We know that a type system built on top
of equality constrained types is sound because of their work.

The use of kinds to classify types has a long history[4, 18, 23].
Adding extensible kinds (and higher classifications) to a practical
programming language like Ωmega was a natural next step. Duggan
makes use of kinds in his work on dynamic typing[13] in a manner
reminiscent of our work, but the introduction of new kinds is tied to
the introduction of types.

16 Conclusion

Ωmega is descended from functional programming languages – Its
syntax and type system are similar to Haskell, but it adds several
new features that make it possible to use algebraic datatypes to build
proof-like objects as illustrated above. This approach to combining
reasoning and programming in a single system makes it of interest
to all programmers. Ωmega opens intriguing possibilities for the
design, exploration, and implementation of programs with seman-
tic properties. We believe exploring this point in the design space
of programming languages and reasoning systems makes is an im-
portant step in the direction towards the programming languages
of the future. Our path in this exploration is closer to the world
of programming languages than the path of many other reasoning
systems. We see this as a positive benefit and conjecture that pro-
gramming languages of the future will be built along similar lines.

Ωmega supports a reflective mechanism that enables intensional
analysis of reflected types, and thus allows programmers to write
tactic level proof scripts at the value level on these reflections. The
tactics can then be reflected back into the type system in a sound
manner. Staging can be used to build efficient implementations by
exploiting contextual invariants, it can also be used to extract effi-
cient programs from proof like objects. Our sincere hope is that a
programming language with these features can lead to more reliable
programs.
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ACM SIGPLAN Notices                                                       131                                                             Vol. 39(12), Dec 2004



power of system F. ACM SIGPLAN Notices, 38(9):27–38,
September 2003.

[22] Peter Lee. Proof-carrying code. Available from
http://www-2.cs.cmu.edu/˜petel/papers/pcc/pcc.html.

[23] G. Morrisett, D. Walker, K. Crary, and N. Glew. From sys-
tem F to typed assembly language. ACM Transactions on
Programming Languages and Systems (TOPLAS), 21(3):528–
569, May 1999.

[24] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman,
Richard Samuels, Frederick Smith, David Walker, Stephanie
Weirich, and Steve Zdancewic. TALx86: A realistic typed
assembly language. ACM SIGPLAN Workshop on Compiler
Support for System Software, 1999.

[25] P. Ørbæk and J. Palsberg. Trust in the λ-calculus. Journal of
Functional Programming, 7(6):557–591, November 1997.

[26] Emir Pasalic, Walid Taha, and Tim Sheard. Tagless staged in-
terpreters for typed languages. In Proceedings of the Seventh
ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP-02)., pages 218–229, Pittsburgh, PA., Octo-
ber 4–6 2002. ACM Press.

[27] Lawrence C. Paulson. Isabelle: The next 700 theorem provers.
In P. Odifreddi, editor, Logic and Computer Science, pages
361–386. Academic Press, 1990.
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