
Generic Unification via Two-Level Types and
Parameterized Modules

[Functional Pearl]

Tim Sheard
Pacific Software Research Center

Oregon Graduate Institute

sheard@cse.ogi.edu

ABSTRACT
As a functional pearl, we describe an efficient, modularized
implementation of unification using the state of mutable ref-
erence cells to encode substitutions. We abstract our algo-
rithms along two dimensions, first abstracting away from
the structure of the terms to be unified, and second over the
monad in which the mutable state is encapsulated.
We choose this example to illustrate two important tech-

niques that we believe many functional programmers would
find useful. The first of these is the definition of recursive
data types using two levels: a structure defining level, and
a recursive knot-tying level. The second is the use of rank-2
polymorphism inside Haskell’s record types to implement a
form of type parameterized modules.

Keywords
Generic programs, unification, parameterized modules

1. INTRODUCTION
This pearl describes the modularization of a whole class

of algorithms that compare two instances of the same data
structure. This class contains algorithms for unification,
matching, and equality amongst others. Efficient implemen-
tations of many of these algorithms rely on mutable state.
We show how to modularize these algorithms using Haskell.
Our modularization is performed along two dimensions, ab-
stracting over the monad in which the mutable state resides,
and the structure of the terms being compared.
The pearl demonstrates two different techniques of inter-

est to serious functional programmers: generic programming
in standard Haskell (without using any extensions), and
type-parameterized modules (using higher-order kinds, and
the rank-2 polymorphism extension). Generic programming
is the construction of a single algorithm that works over mul-
tiple data structures. This allows the programmer to write
an algorithm once and to reuse it at many different types. A

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP’01, September 3-5, 2001, Florence, Italy.
Copyright 2001 ACM 1-58113-415-0/01/0009 ...$5.00.

type-parameterized module is a collection of (possibly poly-
morphic) algorithms or functions parameterized by a set of
types. This allows a single module to be reused, simply by
instantiating it at different types.
The work reported here has been influenced strongly by

two papers. Basic Polymorphic Type Checking[1] by Luca
Cardelli, and Using Parameterized Signatures to Express
Modular Structure[10] by Mark Jones.
Luca Cardelli’s paper describes how to implement Hindley-

Milner type inference for an ML-like language. The algo-
rithm uses destructive update to achieve an efficient imple-
mentation of unification over terms representing types. This
kind of unification algorithm is extremely versatile and use-
ful. The author of this paper has based literally dozens of
other implementations on it, unifying datatypes represent-
ing many different kinds of terms.
Mark Jones’ papers describes how to implement a mod-

ule system by using parameterized signatures. The idea is
to define functor-like operators, as defined by ML’s mod-
ule system[2], that use parameterization over types rather
than sharing constraints to express sharing[3]. The recent
addition of rank-2 polymorphism to the Hugs Haskell inter-
preter, and the GHC compiler, allows the encoding of mod-
ules as first class objects. Our experience with this encoding
provides strong evidence that type-parameterized modules
really work.

2. UNIFICATION
Unification of x and y is usually defined as finding a sub-

stitution σ such that σ x = σ y. The terms x and y may
contain variables, and a substitution is a partial function
from variables to terms (often represented as a list of pairs).
An efficient implementation of unification relies on rep-

resenting variables as pointers to terms. A substitution in
this case is represented by the global state of the pointers.
If a variable points to null, it is said to be unbound. If the
pointer is not null, then the variable is bound to the term it
points to. This can be implemented in Haskell by using the
state monad (ST)[12]. In what follows we assume the reader
has a rudimentary knowledge of Haskell, unification and the
ST monad. Some additional features of Haskell, perhaps un-
known to some readers can be found in Figure 2.
In Figure 1 we give a basic transcription of Cardelli’s uni-

fication algorithm into Haskell. The goal of this paper is
to abstract details from this implementation, and to modu-
larize it into several orthogonal components. Grasping the
details of this concrete instance of the algorithm, will make

86

type Ptr a = STRef a (Maybe (TypeExp a))

data TypeExp a

= MutVar (Ptr a)

| GenVar Int

| OperType String [TypeExp a]

prune :: TypeExp a -> ST a (TypeExp a)

prune t =

case t of

MutVar r ->

do { m <- readSTRef r

; case m of

Nothing -> return t

Just t2 ->

do { t’ <- prune t2

; writeSTRef r (Just t’)

; return t’}}

other -> return t

occursInType :: Ptr a -> TypeExp a -> ST a Bool

occursInType r t =

do { t’ <- prune t

; case t’ of

MutVar r2 -> return(r==r2)

GenVar n -> return False

OperType nm ts ->

do { bs <- mapM (occursInType r) ts

; return(or bs)

}

}

unifyType :: TypeExp a -> TypeExp a -> ST a ()

unifyType t1 t2 =

do { t1’ <- prune t1

; t2’ <- prune t2

; case (t1’,t2’) of

(MutVar r1, MutVar r2) ->

if r1==r2

then return ()

else writeSTRef r1 (Just t2’)

(MutVar r1, _) ->

do { b <- occursInType r1 t2’

; if b then error "occurs in"

else writeSTRef r1 (Just t2’) }

(_,MutVar _) -> unifyType t2’ t1’

(GenVar n,GenVar m) ->

if n==m then return() else error "different genvars"

(OperType n1 ts1,OperType n2 ts2) ->

if n1==n2

then unifyArgs ts1 ts2

else error "different constructors"

(_,_) -> error "different types"

}

where unifyArgs (x:xs) (y:ys) =

do { unifyType x y; unifyArgs xs ys }

unifyArgs [] [] = return ()

unifyArgs _ _ = error "different lengths"

instantiate :: [TypeExp a] -> TypeExp a -> TypeExp a

instantiate ts x =

case x of

MutVar _ -> x

OperType nm xs -> OperType nm (map (instantiate ts) xs)

GenVar n -> ts !! n

Figure 1: Basic unification modelled after the algorithm described in Luca Cardelli’s Basic Polymorphic Type
Checking. The algorithm is transcribed from Modula-2 into Haskell.

it easier to understand the abstract version we will produce.
We enumerate the important parts of Figure 1.

• In the ST monad, every function that accesses a muta-
ble variable (to either read, write, or create a new one)
has a range of type (ST a x). We say that such func-
tions have a monadic type. Each computation that ac-
cess a mutable variable takes place in some thread. It
is instructive to think of the type variable a in the type
signatures of the state mutating functions as represent-
ing this thread. Thus functions whose signature con-
tains several parameters with the same type variable
a, must manipulate these objects in the same thread.

• A TypeExp is either a variable (MutVar), a generic type
(GenVar, which is used for template variables, see the
last bullet of this enumeration), or a type constructor
applied to a list of types (OperType). For example Int
is represented by (OperType "Int" []) and [x] by
(OperType "[]" [x]).

• A pointer to a (TypeExp a) is a reference cell in the
ST monad that holds an object of type Maybe(TypeExp
a). Nothing represents the null pointer, and Just x

represents a pointer to x.

• Objects of type (TypeExp a) often contain long chains
of MutVar’s pointing to other MutVar’s. The function
prune follows such a chain, side-effecting each of the
pointers in the chain to point to the element at the
bottom of the chain. The value returned by prune

is this last element. This is sometimes called path
compression, and is illustrated below.

input �� MutVar(Just)
1 before (prune input)

MutVar(Just)
��

�����2

MutVar(Just)
��

�����3

OperType "T" [X, Y] �������������
4

MutVar(Just)
1 after (prune input)

MutVar(Just)
2

MutVar(Just)
3

output �� OperType "T" [X, Y]
�� ����

��
��
��
�

�������������
4

87

-- Monads in general

mapM :: Monad a => (b -> a c) -> [b] -> a [c]

mapM_ :: Monad a => (b -> a c) -> [b] -> a ()

-- References in the ST monad

readSTRef :: STRef a b -> ST a b

writeSTRef :: STRef a b -> b -> ST a ()

newSTRef :: a -> ST b (STRef b a)

-- Haskell’s Record Syntax

-- definition

data R = R { one :: Int, two :: Bool }

-- field selection

one(R {one = 5, two = False}) --> 5

-- partial construction

R { one = 5 } --> R {one =5, two = undefined}

-- field updating

x { one = 4 } --> R{one = 4, two = two x}

Figure 2: Types of Haskell library functions deal-
ing with monads in general, references and the ST

monad, and uses of Haskell record syntax.

• The function occursInType determines if a pointer ap-
pears somewhere inside another TypeExp. Note that
pointers may be changed by the call to prune. This
is why occursInType has a monadic type, indicating
that it might mutate state.

• The function unifyType first calls prune on its two
arguments to eliminate any chains of MutVar’s. The
resulting objects (t1’ and t2’) may still be MutVar’s,
but if they are, then they are guaranteed to be null
pointers (i.e. be references to Nothing). A simultane-
ous case analysis of the two resulting objects succeeds
if both have the same top-level constructor, or if at
least one is a variable.

If they are both the same variable, then there is noth-
ing to do. If two variables are matched, but are dif-
ferent variables, make the first variable point to the
second. This is how chains of variables are created. If
one is a variable, and the other is not, check if the vari-
able occurs in the other. If it does, this is an error. If
not, then make the variable point at the other object.

If they both have the same top-level constructor then
recursively analyze the substructures. This is the pur-
pose of the local function unifyArgs.

• The function instantiate behaves like a substitution
function, replacing every (GenVar n) with the n’th ele-
ment of the substitution list ts. The function instantiate

is the generic interface to templates. A template is a
GT object containing no MutVars. Templates are used
when one wants to unify one GT term with many other
GT terms. Once a MutVar becomes bound, it is difficult
to unbind it without jeopardizing the correctness of the
unification algorithm. If it is necessary to unify a sin-
gle term many times, then a template structure must
be used. A template structure contains template vari-
ables (GenVar) in place of MutVar variables. Each time
the template is to be used, it is instantiated by mak-

ing a copy of the template, replacing each template-
variable with fresh type variables. The instantiate

function provides this capability. The technique of us-
ing Int to represent template variables, and a list of
TypeExp as their instantiations derives from the paper
Typing Haskell in Haskell[11].

Unification using the state of updatable reference cells
to encode substitutions is hard to get right. On reason is
the algorithmic details of chasing and overwriting pointers.
Pointer chasing is necessary to ensure the invariant that a
pointer, and and the thing it points to, are in some sense
semantically equivalent. Every function that manipulates
TypeExps must maintain this invariant. One way to accom-
plish this is to use a “copying” algorithm that removes these
excess pointers as other computations are performed. Over-
writing a minimal number of pointers ensures that the time
behavior of the algorithm remains tractable, and adds to
the complexity. Because overwriting is a stateful operation,
everything must be in some appropriate monad.
As the datatype representing terms becomes more com-

plex, the control structure of the algorithm becomes more
sophisticated. Terms with complex sub-structure require
sophisticated control to make recursive calls on subterms
properly, and to combine the results of the recursive calls to
build a suitable overall result.
It would be nice to separate the pointer issues from the

control issues; get each one done right, and then combine
them. The pointer chasing could be abstracted over different
monads, and reused with multiple data structures represent-
ing different kinds of terms. The control structure could be
reused when defining additional algorithms over terms other
than unification. After all matching (where only one of the
terms can have variables), and equality testing have control
structure remarkably similar to unification.
In the rest of this paper we explain how this can be done

in Haskell.

3. MODULAR DATA
Separating the pointer algorithms from the algorithms

that deal with the structure of terms, requires splitting the
datatype TypeExp into several datatypes. This separates the
structure of terms and the use of variables into two differ-
ent datatypes. All kinds of terms which support unification
will have variables, but their structure will vary according to
what the terms are meant to represent. We separate terms
into two levels. The first level incorporates the two kinds of
variables encoded in the constructors MutVar and GenVar.
The second level incorporates the role played by the con-
structor OperType. It abstracts the structure of all the other
constructor functions of terms. The recursive structure of
terms will be split between the two levels.
We will make this more clear by applying our technique

to the same kinds of terms we used in Figure 1. We split
the definition of TypeExp into the two components S (for the
Structure of terms) and GT (for Generic Term).

-- Structure operator, hence "S"

data S x = OperType String [x]

-- Generic Terms, hence "GT"

-- "s" abstracts over structure, "r" over references

data GT s r

88

= S (s (GT s r))

| MutVar (r (Maybe (GT s r)))

| GenVar Int

type TypeExp a = GT S (STRef a)

We call S the structure operator because it captures the
structure of the terms we are manipulating. Note how it is
parameterized by x which appears in places where recursive
calls to TypeExp were placed in the original definition. This
is the first half of capturing the recursive structure of terms.
The structure of TypeExp is quite simple, so S only has one
constructor (OperType), but we will soon see examples where
the structure of terms is much richer.
The GT datatype incorporates the role of variables in terms:

template variables (GenVar), and normal variables (MutVar).
It abstracts over the rest of the structure of terms using the
parameter s. It is in the type of the S constructor function
that GT captures the second half of the recursive structure
of TypeExp. Note how a recursive call (GT s r) is passed to
the parameterized structure operator s.
It is important to note that the parameter s to GT is a type

constructor, not a type. The parameter r is also a type con-
structor. It abstracts over the type constructor constructing
mutable references. The type constructor GT is recursive in
both the MutVar and S constructor functions, forwarding the
recursion through the type constructors s and r.
The new version of TypeExp is an instantiation of GT,

choosing for its two parameters the structure operator S,
and the STRef type constructor for references from the ST

monad.
Values of type TypeExp are constructed in two levels. An

outer level consisting of one of the constructors of GT: S,
MutVar, or GenVar; and in the case of the constructor func-
tion S an inner level consisting of the constructor function
of the type constructor S: (OperType) (in general the type
constructor S may have many constructor functions). We
illustrate this in the table below.

New, two level examples
GenVar 4

S(OperType "Bool" [])

S(OperType "[]"

[S(OperType "Int" [])])

Old, one level examples

GenVar 4

OperType "Bool" []

OperType "[]"

[OperType "Int" []]

This pattern of prefixing every constructor of S with S to
construct a TypeExp is captured by employing a convention
that defines a new function for every constructor of S. These
functions have the same name as the constructor, except
their initial upper case letter is made lower case.

operType s ts = S(OperType s ts)

The benefit of employing this convention is that the pro-
grammer need not continually employ the type constructor
S every time a term is constructed.

3.1 Abstract Operations
How are functions over objects of type (GT s r) written if

s and r are unknown? One way to do this is to assume that

s and r are instances of some special classes that enumerate
their general operations. For s we have found the following
class useful.

class Sclass s where

mapS :: (x -> y) -> s x -> s y

accS :: (x -> y -> y) -> s x -> y -> y

seqS :: Monad m => s(m x) -> m(s x)

matchS :: s x -> s x -> Maybe[(x,x)]\

One way to understand these functions is to imagine ob-
jects of type (s x) as “boxes” labeled S, with compartments
of type x.

• The operation mapS applies a function of type (x ->

y) to each compartment, producing a box labeled s

with compartments of type y.

S

3 5

map(+1)−−−−−→ S

4 6

• The operation accS accumulates a “sum” by repeat-
edly applying a binary “addition” function to each of
the compartments and the previous “subtotal”.

S

3 5

λs. acc (+) s 0−−−−−−−−−→ 3 + 5 + 0

• The operation seqS produces a single m-effecting com-
putation that produces an object of type s x from a
box labeled s where the compartments are each filled
by smaller m-effecting computations, each of which pro-
duces an object of type x. It does this by ordering all
the sub-computations into one large computation.

S

do { print "x"
; return 0 }

do { print "y"
; return 1 }

seq−−→
do { print "x"

; print "y"

; return

(
S

0 1

)
}

• Finally, matchS compares the top level constructors of
two s boxes. If the constructors match (then both
boxes contain the same kind of “compartments”) it
returns Just applied to a list of pairs, pairing corre-
sponding compartments from each box. If the con-
structors do not match then it returns Nothing.

S

a b

S

c d




match−−−−→ Just [(a,c),(b,d)]

When s is the S datatype from our TypeExp example, we
can use the following instance.

89

instance Sclass S where

mapS f (OperType s xs) = OperType s (map f xs)

accS acc (OperType s xs) ans = foldr acc ans xs

seqS (OperType s xs) =

do {xs’ <- order xs; return(OperType s xs’)}

where order [] = return []

order (x:xs) = do { x’ <- x

; xs’ <- order xs

; return (x’:xs’) }

matchS (OperType s xs) (OperType t ys) =

if s==t && (length xs)==(length ys)

then Just(zip xs ys)

else Nothing

3.2 Using the abstract operations
It is now possible to write the instantiate function with-

out knowing the structure of s at all.

instantiate ::

Sclass s => [GT s r] -> GT s r -> GT s r

instantiate ts x =

case x of

S y -> S(mapS (instantiate ts) y)

MutVar _ -> x

GenVar n -> ts !! n

In the first clause of the case expression, the variable y

has type (S (TypeExp a)). The mapS function applies re-
cursive calls of instantiate to each of the compartments,
obtaining another object of type (S (TypeExp a)) that is
wrapped by S into the final answer with type (TypeExp a).
It is possible to write many functions over (GT s r) without
actually knowing the exact structure of its s substructure.
The type of instantiate, (Sclass s => [GT s r] -> GT

s r -> GT s r), makes precise the requirement that not
any structure operator will do. Only those s that are a
member of the class Sclass.
To write the functions occursInType and unifyType addi-

tional structure must be known about the type constructor
r. This can be captured using two additional classes, that
abstract over the operations on references.

class EqR r where

sameVarR :: r x -> r x -> Bool

class Monad m => Rclass r m where

writeVarR :: r x -> x -> m()

readVarR :: r x -> m x

newVarR :: x -> m(r x)

The class EqR captures that references must be compara-
ble for equality. The class Rclass aggregates the operations
that create, read, and write references into a single class
with a common multiparameter constraint. Rclass is mul-
tiparameter, because it relates two type constructors, r the
reference type constructor, and m the monad in which it op-
erates.
The function prune over GT s r objects can be defined

in exactly the same manner as it was over TypeExp objects.
The definition found in Figure 1 is identical to the new def-
inition, so we omit it here. This is possible because prune

returns a default action on all non-MutVar objects, so the
changes in the structure of terms is not noticed. Of course
it has a different type:

prune :: (Rclass r m) => GT s r -> m (GT s r)

With these classes in place the function occursInType can
be written in a generic manner.

occursInType :: (Rclass r m, Sclass s, EqR r) =>

r (Maybe (GT s r)) -> GT s r -> m Bool

occursInType r t =

do { t’ <- prune t

; case t’ of

MutVar r2 -> return(sameVarR r r2)

GenVar n -> return False

S x ->

do { bs <- seqS(mapS (occursInType r) x)

; return(accS (||) bs False) } }

To determine if reference r occurs in term t prune away any
leading chain of MutVar’s. If the result of the prune is MutVar
r2 then r occurs in t only if r and r2 are the same reference.
If the result is an S structure, x, then use the generic opera-
tors. First apply occursInType to all the compartments in
x. The operation mapS performs this task. This produces an
S structure filled with monadic computations, each of which
returns a Bool. Applying the seqS operation to the S struc-
ture produces a larger computation returning an S structure
filled with booleans. This structure is bound to bs. All the
Bools inside bs’s compartments can then be logically or-ed
together (using accS) to produce the final result.
The function unifyType can be made general in a similar

manner. Replace each call to reference equality with one
to sameVarR, readSTRef with readVarR, writeSTRef with
writeVarR, and newSTRef with newVarR. Finally, replace
the case clause that compares two OperType constructors
with some generic code written in terms of the operations of
the Sclass class. The important difference are summarized
here:

unifyType :: (Rclass r m, Sclass s, EqR r) =>

(GT s r, GT s r) -> m ()

unifyType (t1,t2) =

do { t1’ <- prune t1

; t2’ <- prune t2

; case (t1’,t2’) of

. . .

(S x, S y) ->

case matchS x y of

Nothing -> error "different constructors"

Just pairs -> mapM_ unifyType pairs

. . .

}

If we are unifying two S structures, determine if their top
level constructors are the same using matchS. If they don’t
match (Nothing is returned) then unification fails. If they
do match, then pairs is a list of corresponding subcompo-
nents. Recursively, unify each pair and succeed only if all
are successful. The function mapM :: Monad m => (b ->

m c) -> [b] -> m () is part of the standard monad library
and performs exactly the task necessary.

3.3 Comments about modularity and classes
The solution above makes heavy use of classes. So heavy,

in fact, that there are serious questions about its scalabil-
ity. The type of unifyType is cluttered with three class con-
straints: (Rclass r m, Sclass s, EqR r) => (GT s r, GT

90

s r) -> m (). And, this type doesn’t explicitly mention the
implicit constraint Monad m that is implied by Rclass r m.
When a function’s type is prefixed by too many class con-
straints it becomes hard for the programmer to grasp the
full meaning of the type.
Having many class constraints also has implications for

program maintainability. As a means of documentation, it
is standard practice for Haskell programmers to annotate
functions with their types, even though their types could be
inferred. Such annotations become hard to maintain if the
number of class constraints gets large.
We have built richer implementations than the one de-

scribed here. These implementations introduce recoverable
errors, add a return type for unifyType other than (), and
add a notion of generalization (a way of creating templates
from terms with unbound variables). Each of these exten-
sions adds an additional class or two. The types of our func-
tions become so constrained with these additional classes
that they become unreadable. The types also become so
general that type inference often fails to assign a unique
type to each function, requiring explicit typing annotations.
What is needed is one big “class-like” thing that abstracts

over all the types s, r and m, and all their operations at once.
Something like:

aBetterKindOfClass RSclass r m s where

sameVarR :: r x -> r x -> Bool

writeVarR :: r x -> x -> m()

readVarR :: r x -> m x

newVarR :: x -> m(r x)

seqS :: s(m x) -> m(s x)

mapS :: (x -> y) -> s x -> s y

accS :: (x -> y -> y) -> s x -> y -> y

matchS :: s x -> s x -> Maybe[(x,x)]

Unfortunately, in Haskell such a class is impossible to
define. The desire for type inference requires that every
method in every class mention all of the abstracted vari-
ables; in this example, all of r, m, and s, which is just not
the case. The recent suggestion[9] of using functional de-
pendencies to partially alleviate this restriction is still not
strong enough for the example above.
Doing without class constraint inference, and requiring ex-

plicit type annotations at every overloaded function, could
alleviate this problem. But class constraint inference is so
useful in other contexts, that this is hardly a credible solu-
tion. What is needed is something along the lines suggested
by Mark Jones in his paper Using Parameterized Signatures
to Express Modular Structure[10].
Fortunately, we need not wait for a new version of Haskell

with such a module system built in. We can build this func-
tionality ourselves using an existing extension to Haskell:
rank-2 polymorphism.
Without rank-2 polymorphism, universal quantification

must be completely “outside” all other types. For exam-
ple in the type of (++) :: forall a . [a] -> [a] ->

[a], the forall quantifies the whole type. With rank-2
polymorphism we can place the quantifier “inside” other
type constructors. For example: runST :: forall a .

(forall b. ST b a) -> a. Here the outermost quanti-
fier (forall a), quantifies the whole expression, but the
(forall b) quantifies only the back end of the arrow type.
Rank-2 polymorphism admits functions, like runST, that re-
quire (and make use of) polymorphic parameters. Of course

the type of such functions must be explicitly declared by the
programmer[13], as they cannot be inferred. These type dec-
larations are necessary since type inference of rank-2 poly-
morphic types is in general undecidable.
This extension also applies to constructor functions inside

of data declarations. They can be given polymorphic com-
ponents. Using this technique we can express the structure
we require.

data RSclass s r m = RSclass

{ sameVarRS :: forall x. r x -> r x -> Bool

, writeVarRS :: forall x. r x -> x -> m()

, readVarRS :: forall x. r x -> m x

, newVarRS :: forall x. x -> m(r x)

, seqRS :: forall x. s(m x) -> m(s x)

, mapRS :: forall x y. (x -> y) -> s x -> s y

, accRS::forall x y. (x -> y -> y) -> s x -> y -> y

, matchRS :: forall x. s x -> s x -> Maybe[(x,x)]

, errorRS :: forall x . String -> m x

}

The RSclass datatype definition plays the role of a type-
parameterized signature. It specifies an aggregation of (pos-
sibly polymorphic) functions parameterized by a set of types.
An object of type RSclass plays the role of a module. Ev-
ery such object will specialize the type parameters to some
concrete types. A function from RSclass to some other type-
parameterized signature plays the role of an ML-style func-
tor.
In RSclass we have added an errorRS field to the oper-

ations we have previously discussed. In Figure 1 the use of
Haskell’s error function makes aborting the program the
only possible response to errors. The errorRS field allows
the possibility that generic operations, such as unifyType

can handle errors in some more graceful manner.
Under this scheme, an instance declaration corresponds

to a value of type RSclass, instantiated at real types for s,
r, and m.

rs :: RSclass S (STRef a) (ST a)

rs = RSclass

{ sameVarRS = (==) :: STRef a b -> STRef a b -> Bool

, writeVarRS = writeSTRef

, readVarRS = readSTRef

, newVarRS = newSTRef

, seqRS = seqS

, mapRS = mapS

, accRS = accS

, matchRS = matchS

, errorRS = error

}

Here the “STRef” functions are the library functions whose
types were given in Figure 2, and seqS, mapS, accS, and
matchS are defined exactly as they were in the Sclass in-
stance for S in Section 3.1. We have instantiated errorRS

as error but other “instances” could use a different error
function.
The collection of functions we wish to generate in a generic

manner can also be aggregated into a data structure.

91

data GTstruct s r m =

B { unifyGT :: GT s r -> GT s r -> m ()

, occursGT :: Ptr s r -> GT s r -> m Bool

, instanGT :: [GT s r] -> GT s r -> m(GT s r)

, pruneGT :: GT s r -> m(GT s r)

}

Here the record fields of the GTstruct are populated with
generic versions of the functions UnifyType, OccursInType,
instantiate, and prune.
The aggregate GTstruct structure can be generated by a

function with type Monad m => RSclass s r m -> GTstruct

s r m. This function can be written once, and applied to
different RSclass objects to generate unification structures
for many different term types. It can also be instantiated on
different monads. We call such a function makeUnify, and a
skeleton for it is given below:

makeUnify ::

Monad m => RSclass s r m -> GTstruct s r m

makeUnify lib =

B { freshGT = freshVar

. . .

}

where freshVar = do { r <- newVarRS lib Nothing

; return (MutVar r) }

. . .
Note the explicit parameter lib of type RSclass to makeUnify,
and the explicit application of the field selector newVarRS to
lib. Using the class system, rather than encoding our own
type parameterized modules, allows this parameterization
and selection to be implicit, but allows only a single instance
at each type, and admits all the disadvantages enumerated
in Section 3.3. In Appendix A we have included the the
complete code for makeUnify. In the appendix we have also
enriched the GTstruct to include operations for matching,
equality, and several other generic operations as well.

4. A RICHER MONAD
In this section we illustrate how a different monad can

be used to instantiate the RSclass structure. A obvious
choice might be to use the IO monad, since it too supports
references. Instead we show how to extend the monad in a
different direction.
Many programs must recover from failed unification. We

can accommodate this in several ways. One way, that we do
not illustrate here, is to design generic unification algorithms
with type: term -> term -> M ans, where ans is some type
other than (). Thus unification can return an interesting
result, that indicates what happened. Types like Bool ,
[Failure], or Maybe ErrorMessage spring to mind. We
have done this, and it requires adding an answer type to the
type parameters of RSclass and adding several new opera-
tions to the class, as well as making slight modifications to
makeUnify.
A more interesting way to accommodate this is to de-

sign a richer monad that models failure, and to instantiate
makeUnify with an instance that uses this richer monad in-
stead of the ST a monad.

data Error = E String

newtype EM a x = EM (ST a (Either Error x))

instance Monad (EM a) where

return x = EM(return(Right x))

(>>=) (EM z) g =

EM(do { c <- z

; case c of

Left e -> return(Left e)

Right x -> let EM w = g x in w

})

runEM :: (forall b. EM b a) -> Either Error a

runEM x = let EM z = x in runST z

The (EM a) monad is a simple extension to the (ST a)

monad. The possibility of failure is accommodated by re-
turning Either an error (Left x) or a normal answer (Right
x). The bind (>>=) operator of the monad propagates failure
in its first argument without evaluating its second argument.
We lift the runST operation to the EM monad with the func-
tion runEM. We use the newtype declaration, rather than the
data declaration, when defining EM to avoid the extra level
of indirection that an actual constructor function EM would
introduce. When using a newtype the constructor function
is “virtual” and is only used to supply type inference anno-
tations.
We add two new operations to the (EM a) monad, raise,

and handle. The operation raise introduces an error, and
handle catches an error, and then begins a new computa-
tion.

raise :: String -> EM a x

raise s = EM(return(Left (E s)))

handle :: (EM a x) -> (EM a x) -> (EM a x)

handle (EM x) (EM y) =

EM (do { x’ <- x

; case x’ of

Left _ -> y

Right x -> return(Right x)

})

4.1 Using the richer monad
The RSclass aggregates nine separate operations. We can

define a partially defined RSclass object, where only the 5
reference and monad operations have been filled in. The
laziness of Haskell makes this possible. Later in the program
source we can construct many other instances of RSclass
objects, that fill in the holes with the missing operations.

readVar r =

EM(do { a <- readSTRef r; return(Right a) })

writeVar r x =

EM(do { a <- writeSTRef r x; return(Right ()) })

newVar x =

EM(do { r <- newSTRef x; return(Right r) })

emPartial :: RSclass s (STRef a) (EM a)

emPartial = RSclass

{ sameVarRS = (==)::STRef a b -> STRef a b -> Bool

, writeVarRS = writeVar

, readVarRS = readVar

, newVarRS = newVar

, errorRS = raise

}

92

Note that emPartial is still polymorphic in its s parame-
ter. We can use the field updating syntax of Haskell to make
more complete copies of emPartial at many different instan-
tiations of s. We do this in the definition of commandClass
in Section 5 below.

5. A RICHER TERM-STRUCTURE.
In this section we illustrate instantiating our general frame-

work on a type for representing terms. We consider a type
of terms representing commands in a simple imperative lan-
guage. We build the S structure operators for this type, in-
stantiate our general framework with the (EM a) monad of
the previous section and illustrate the use of the framework
to build a simple transformation system over commands.
data C x

= If Exp x x -- if e then s2 else s1

| While Exp x -- while e do s

| Begin x x -- { s1 ; s2 }

| Skip -- {}

| Assign Var Exp -- x := e

-- the lowercase constructor convention

ifc e x y = S(If e x y)

while e x = S(While e x)

begin x y = S(Begin x y)

skip = S Skip

assign v e = S(Assign v e)

type Command a = GT C (STRef a)

In Appendix B we give the definitions of the S structure op-
erators seqC, mapC, accC, and matchC. These are easy to
define, and in fact, could be generated automatically given
the right tools[4, 5]. To build an RSclass instance using
the (EM a) monad reference operators, we simply use the
record update syntax on the partially defined RSclass value
emPartial defined in the previous section.

commandClass :: RSclass C (STRef a) (EM a)

commandClass =

emPartial { seqRS = seqS

, mapRS = mapS

, accRS = accS

, matchRS = matchS

}

Our transformation system will implement simple rewrites
over terms. For example, rewrites like (if True then x

else y) −→ x. To build the machinery needed, generic ver-
sions of matching, instantiation, and the creation of fresh
variables will be needed. At this point we can conjure up
working examples of these and several other generic opera-
tors, simply by using the generic makeUnify function from
Appendix A.

B{ matchGT = match

, instanGT = instan

, freshGT = fresh

, tofixGT = toFix

, fromfixGT = fromFix

} = makeUnify commandClass

Two things to note here. First, when using a record pat-
tern on the left-hand-side of a binding, it is the variables to

the right of the equals (=) that are being defined. In this
example, those variables being bound are match, instan,
fresh, etc. Second, several of the field names in this exam-
ple are derived from the definition in Appendix A, rather
than the one in the running text.
A transformation system is defined by rewrite rules, and

an engine that applies those rules. A simple system for
the command language can be built succinctly using our
framework. First, define the structure of rules:

data Rule a = R Int (Command a) (Command a)

A rule is an Int and a pair of (Command a) objects. The
Int represents the number of template variables in the rule,
and the pair of (Command a) objects represent the left- and
right-hand sides of the rewrite rule it encodes. We use
this representation to simplify the implementation. The
(Command a) objects have template variables where the rule
may match any sub-command. We give some example rules
below.

(w,x,y,z) =(GenVar 0,GenVar 1,GenVar 2,GenVar 3)

r1,r2,r3,r4 :: Rule a

r1 = R 3 (begin w (begin x y)) (begin (begin w x) y)

r2 = R 2 (ifc True w x) w

r3 = R 2 (ifc False w x) x

r4 = R 1 (while False x) skip

To apply a rule we instantiate the template variables with
real variables, apply the matching procedure to the left-hand
side of the rule and the term being transformed. If the match
succeeds, then the instantiated right-hand side contains the
result of the match.

rewrite (R n lhs rhs) x =

handle (do { freshvs <-

sequence(take n (repeat fresh))

; lhs’ <- instan freshvs lhs

; match lhs’ x

; instan freshvs rhs

})

(return x)

If the matching fails, then the whole (do ...) fails.
The failure is captured by handle, and the original term is
returned unchanged.

6. ESCAPING THE MONAD
Monads (M) with mutable references have the unfortunate

problem that there is no simple way to transform a compu-
tation of type (M x) into a value of type x. This restriction
is imposed because it ensures that no reference escapes its
scope.
It first appears, that because generic types (GT s r) have

references inside them, that once inside the monad there
is no hope of ever escaping the monad to produce “pure”
values. If the monad is built on top of the IO monad this
will always be the case, but if the monad is built on top
of the ST monad (like the EM monad) this need not be the
case. Computations with type (ST a x) that are completely
polymorphic in the thread type variable a can be converted
into values of type x using the function runST.
Fortunately many terms are completely polymorphic in

the state thread variable a. All top-level program constants

93

with type (GT C (STRef a)), and larger constants derived
from them, are always polymorphic in the state thread, a.
Witness the type of r1 :: Rule a.
An important role of the GenVar constructor, and the

instanGT generic function is to allow the construction of
templates. Templates, because they contain no MutVar con-
structors, are always completely polymorphic. Templates
can be used to create non-polymorphic instances (with MutVar

constructors) by the use of the pattern illustrated in the
function rewrite in the previous section. Create a list of
fresh type variables and instantiate the template using the
function instan.
Polymorphic terms can also be constructed algorithmi-

cally, by a parser for example, if the algorithms never use
the MutVar constructor. A term completely polymorphic in
its thread variable can be extracted from the monad using
runST in the ST monad or its equivalent (such as runEM) in
other monads. In order to do this we need a form of terms
that does not mention the thread variable.
If we know a generic term has no MutVar or GenVar con-

structors we can turn it into a type with similar structure.
The Fix type constructor, like the GT type constructor, takes
a type constructor as argument, but has a single constructor
function, Fix. It plays the same role as the S constructor
function.

newtype Fix s = Fix (s (Fix s))

Conversion between the two types can be made generic as
well. In Appendix A, generic functions have been added to
the GTstruct aggregate structure.

tofixGT :: GT s r -> m(Fix s)

fromfixGT :: Fix s -> GT s r

We can now illustrate a complete program.

try1 :: (forall a . GT C (STRef a))

-> Either Error (Fix C)

try1 x = runEM(do { x1 <- rewrite r1 x; toFix x1})

transform :: Fix C -> IO()

transform x =

let x’ = fromFix x

in case try1 x’ of

Left (E s) -> print $ "Fail: " ++s

Right y -> print(show x++" =\n"++show y++"\n")

7. DISCUSSION
We have shown how to abstract the class of algorithms

that includes unification, matching and equality, over both
the structure of terms, and over the monad in which the
computations occur. We used two techniques that we believe
are generally useful and should be in the repertoire of every
functional programmer.
The first is the use of two-level algebraic data-types, and

utilization of generic operators such as map, seq, acc, and
match. This allows the construction of generic algorithms
in Haskell without the use of any language extensions. It
also allows a brevity of expression in non-generic algorithms.
We have not demonstrated such use in this paper for lack of
space.

The second is the use of rank-2 polymorphism to encode
user-defined parameterized modules. Such modules allow a
level of abstraction not possible using Haskell’s class system
since they allow arbitrary “overlapping” instances. Such
flexibility comes at the cost of a few explicit type annota-
tions.
Our exploration of this new paradigm has not been with-

out its setbacks. Using advanced features often pushes the
limits of a paradigm or a language implementation. Three
issues are worth discussion.

Mutual recursion. To generalize two level datatypes
to mutually recursive structures one needs to parameter-
ize each structure operator over all of the recursive compo-
nents, both direct and indirect. We can illustrate this using
a simple language for Haskell-like expressions and declara-
tions. Below E is the structure operator for expressions,
and D is the structure operator for declarations. Both E

and D have parameters e and d which are used where recur-
sive sub-components of type expression or declaration would
normally be used.

type N = String -- names

data E d e

= Var N -- x

| Const Integer -- 5

| App e e -- f x

| Abs [N] e -- \ x1 x2 -> e

| Let [d] e -- let x=e1 in e2

data D d e

= Fun N [([N],e,[d])] -- f p1 p2 = b where ds

| Val N e [d] -- p = e where ds

newtype Exp = E (E Decl Exp)

newtype Decl = D (D Decl Exp)

Since the structure operators (E and D) have more than one
parameter, the generic operators map and seq must be gen-
eralized as well. For example:

mapD :: (a->b) -> (c->d) -> D a c -> D b d

seqD :: Monad m => D (m a) (m b) -> m(D a b)

Two level types are not restricted to lazy languages like
Haskell. We have used them in ML as well. In fact we have
found them to scale quite well to even very large, highly
mutually-recursive datatype declarations. We use two level
types to represent all the datatypes in the MetaML1 imple-
mentation. We found them both easy to use, and advanta-
geous in the genericity they supplied.
The following two problems were encountered using the

Hugs interpreter in our initial research. Each has simple
work-arounds. Further investigation as shown that neither
occurs when using GHC.

Pattern matching polymorphic records. Using data

types with polymorphic components as the input to func-
tors (like makeUnify) worked well, but when we tried using
pattern matching to bind the results of functor application,
we stretched the limits of the Hugs implementation. For
example consider the functor-like function makeSeqmap that
takes a (RSclass s r m) as input and produces a (T1 s m)

object as output:

1See http://www.cse.ogi.edu/PacSoft/projects/metaml/index.html

94

data T1 s m =

T1 {seqmapGT :: forall x y .

(x->m y) -> (s x) -> m(s y) }

makeSeqmap :: RSclass s r m -> T1 s m

makeSeqmap lib = T1 { seqmapGT = seqmap }

where seqmap f x = seqRS lib(mapRS lib f x)

Everything works fine until we try and use the pattern
matching feature of records to produce an actual instance
of a (T1 s m) object with a component called seqmap. This
top-level definition is not allowed:

T1 { seqmapGT = seqmap } = makeSeqmap rs

because of restrictions on the use of rank-2 polymorphism in
pattern matching in Hugs. A work around for this is not to
use pattern matching, but use the field selection mechanism
instead.

lib = makeSeqmap rs

seqmap = seqmapGT lib

Update syntax of polymorphic records. In Section 5
we specialized the emPartial structure by updating its (un-
defined) fields for seqRS, mapRS, accRS, and matchRS. Un-
fortunately, in the Hugs interpreter, the record update syn-
tax is not implemented for records that contain explicitly-
typed polymorphic components. Fortunately there is a work
around for this as well. We can replace the elegant:

commandClass :: RSclass C (STRef a) (EM a)

commandClass =

emPartial { seqRS = seqS

, mapRS = mapS

, accRS = accS

, matchRS = matchS

}

with the equivalent, but much less elegant:

addSpart (RSclass sv wv rv nv e s m a mtch) =

(RSclass sv wv rv nv e seqC mapC accC matchC)

commandClass :: RSclass C (STRef a) (EM a)

commandClass = addSpart emPartial

8. CONCLUSION
Despite these minor complications, the techniques dis-

cussed here show great promise in writing high-level, generic,
reusable programs in Haskell (with minor extensions). The
two techniques demonstrated here: two level syntax with
generic operators, and type-parameterized data types with
rank-2 polymorphic components, are both useful and com-
plementary ideas that every functional programmer should
be aware of.
The second idea could be made easier to use by incorpo-

rating it into a high-level module system based upon pa-
rameterized signatures as suggested by Mark Jones. Such
a system should include the facility to define parameter-
ized modules. They would serve the same purpose as the
makeUnify function of this paper. A good design for param-
eterized modules would allow the names of components in
the input module to be used directly, rather than relying on
the selector function mechanism as was done in the defini-
tion of makeUnify in Appendix A. A well designed module
system would also alleviate the last two problems discussed
in the previous section.

9. HISTORY
The author was introduced to the use of two-level types

by Erik Meijer in the fall of 1996, in a talk in which he used
them to define catamorphisms, and other uniform control
structures in Haskell.

data Fix f = Fix (f (Fix f))

fmap :: Functor f => (a->b) -> f a -> f b

cata :: Functor f => (f a -> a) -> Fix f -> a

cata phi (Fix x) = phi (fmap (cata phi) x)

This started a long period of experimentation with these
ideas as a mechanism to write programs that did not de-
pend upon the structure of the datatype they operated on.
Ultimately, the use of uniform control structures, like cata,
turned out to be too inflexible, but the generic operators,
like fmap above, and acc, match, and seq turned out to be
just the right stuff.
Most of these generic operators originate in the work of Jo-

han Jeuring and his colleagues on polytypic programming[6,
8]. The one exception is seq :: Monad m => s(m a) ->

m(s a), which the author likes to believe he independently
discovered (though it’s probably been around for years).
Generic unification is one of the prime examples[7] of poly-
typic programming, but the efficient algorithm employing
mutable references has not been described.
The type parameterized modules idea originated from a

discussion with Mark Jones about examples illustrating mul-
tiparameter type classes. Mark suggested abstracting the
operations on stateful references away from the actual ref-
erence type constructor and monad type constructor.

class Monad m => Mutable r m where

read :: r x -> m x

write :: r x -> x -> m ()

new :: x -> m(r x)

Frustration trying to retrofit some existing examples into
this framework led to the techniques presented.

10. ACKNOWLEDGMENTS
The work described here was supported by NSF Grant

CDA-9703218, the M.J. Murdock Charitable Trust and the
Department of Defense.
The author would also like to thank Andy Gill, Andy

Moran, Mark Jones, Emir Pasalic, and Simon Peyton Jones
for discussions about these ideas, Frank Taylor for LaTex
wizardry, and the entire Advanced Functional Programming
class, at the Oregon Graduate Institute, in the winter of
2001, who suffered through endless versions of the imple-
mentation.

11. REFERENCES
[1] L. Cardelli. Basic polymorphic typechecking. Science

of Computer Programming, 8(2):147–172, Apr. 1987.

[2] R. Harper and M. Lillibridge. A type-theoretic
approach to higher-order modules with sharing. In
ACM, editor, Conference record of POPL ’94, 21st
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages: papers presented at the
Symposium: Portland, Oregon, January 17–21, 1994,

95

pages 123–137, New York, NY, USA, 1994. ACM
Press.

[3] R. Harper and B. C. Pierce. Advanced module
systems (invited talk): a guide for the perplexed.
ACM SIGPLAN Notices, 35(9):130–130, Sept. 2000.

[4] R. Hinze. Memo functions, polytypically! In
J. Jeuring, editor, Proceedings 2nd Workshop on
Generic Programming, WGP’2000, Ponte de Lima,
Portugal, 6 July 2000, Tech. Report UU-CS-2000-19,
Dept. of Computer Science, Utrecht Univ., pages
17–32. June 2000.

[5] R. Hinze. A new approach to generic functional
programming. In Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POLP-00), pages 119–132,
N.Y., Jan. 19–21 2000. ACM Press.

[6] P. Jansson and J. Jeuring. PolyP — a polytypic
programming language extension. In ACM, editor,
Conference record of POPL ’97, the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages: papers presented at the
symposium, Paris, France, 15–17 January 1997, pages
470–482, New York, NY, USA, 1997. ACM Press.

[7] P. Jansson and J. Jeuring. Functional pearl: Polytypic
unification. Journal of Functional Programming,
8(5):527–536, Sept. 1998.

[8] J. Jeuring and P. Jansson. Polytypic programming. In
J. Launchbury, E. Meijer, and T. Sheard, editors,
Tutorial Text 2nd Int. School on Advanced Functional
Programming, Olympia, WA, USA, 26–30 Aug 1996,
volume 1129 of Lecture Notes in Computer Science,
pages 68–114. Springer-Verlag, Berlin, 1996.

[9] M. Jones. Type classes and functional dependencies.
In Proceedings of the 9th European Symposium on
Programming, ESOP 2000, volume LNCS 1782.
Springer-Verlag, March 2000.

[10] M. P. Jones. Using parameterized signatures to
express modular structure. In 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’96), pages 68–78, St.
Petersburg Beach, Florida, 21–24 Jan. 1996.

[11] M. P. Jones. Typing haskell in haskell. In Proceedings
of the 1999 Haskell Workshop, pages 68–78, Paris,
France, 21–24 Oct. 1999. Published in Technical
Report UU-CS-1999-28, Department of Computer
Science, University of Utrecht.

[12] J. Launchbury and S. Peyton-Jones. Lazy functional
state threads. In PLDI’94: Programming Language
Design and Implementation, Orlando, Florida, pages
24–35, New York, June 1994. ACM Press.

[13] M. Odersky and K. Läufer. Putting type annotations
to work. In ACM, editor, Conference record of POPL
’96, 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages: papers
presented at the Symposium: St. Petersburg Beach,
Florida, 21–24 January 1996, pages 54–67, New York,
NY, USA, 1996. ACM Press.

APPENDIX

A. MAKEUNIFY

data GTstruct s r m =

B { unifyGT :: GT s r -> GT s r -> m ()

, matchGT :: GT s r -> GT s r -> m()

, equalGT :: GT s r -> GT s r -> Bool

, freshGT :: m (GT s r)

, occursGT :: Ptr s r -> GT s r -> m Bool

, colGT :: GT s r -> m(GT s r)

, pruneGT :: GT s r -> m(GT s r)

, instanGT :: [GT s r] -> GT s r -> m(GT s r)

, tofixGT :: GT s r -> m(Fix s)

, fromfixGT :: Fix s -> GT s r

}

makeUnify :: Monad m => RSclass s r m -> GTstruct s r m

makeUnify lib =

B { unifyGT = unify

, matchGT = match

, equalGT = equal

, freshGT = freshVar

, occursGT = occursIn

, colGT = col

, pruneGT = prune

, instanGT = inst

, tofixGT = toFix

, fromfixGT = fromFix

}

where

-- first some common patterns

seqmap f x = seqRS lib(mapRS lib f x)

write r x = writeVarRS lib r x

freshVar = do { r <- newVarRS lib Nothing

; return (MutVar r) }

prune (typ @ (MutVar ref)) =

do { m <- readVarRS lib ref

; case m of

Just t ->

do { newt <- prune t

; write ref (Just newt)

; return newt }

Nothing -> return typ}

prune x = return x

col x =

do { x’ <- prune x

; case x’ of

(S y) ->

do { t <- (seqmap col y)

; return (S t)}

(MutVar r) -> return(MutVar r)

(GenVar n) -> return(GenVar n)}

occursIn v t =

do { t2 <- prune t

; case t2 of

S w ->

do { s <- (seqmap (occursIn v) w)

; return(accRS lib (||) s False)

}

MutVar z -> return(sameVarRS lib v z)

GenVar n -> return False }

varBind r1 t2 =

do { b <- occursIn r1 t2

; if b

96

then errorRS lib "OccursErr"

else write r1 (Just t2) }

unify tA tB =

do { t1 <- prune tA

; t2 <- prune tB

; case (t1,t2) of

(MutVar r1,MutVar r2) ->

if sameVarRS lib r1 r2

then return ()

else write r1 (Just t2)

(MutVar r1,_) -> varBind r1 t2

(_,MutVar r2) -> varBind r2 t1

(GenVar n,GenVar m) ->

if n==m

then return ()

else errorRS lib "Gen error"

(S x,S y) ->

case matchRS lib x y of

Nothing -> errorRS lib "ShapeErr"

Just pairs ->

mapM_ (uncurry unify) pairs

(_,_) -> errorRS lib "ShapeErr"

}

match tA tB =

do { t1 <- prune tA

; t2 <- prune tB

; case (t1,t2) of

(MutVar r1,_) ->

write r1 (Just t2)

(GenVar n,GenVar m) ->

if n==m

then return ()

else errorRS lib "Gen error"

(S x,S y) ->

case matchRS lib x y of

Nothing -> errorRS lib "ShapeErr"

Just pairs ->

mapM_ (uncurry match) pairs

(_,_) -> errorRS lib "ShapeErr"

}

equal x y =

case (x,y) of

(MutVar r1,MutVar r2) ->

sameVarRS lib r1 r2

(GenVar n,GenVar m) -> m==n

(S x,S y) ->

case matchRS lib x y of

Nothing -> False

Just pairs -> all (uncurry equal) pairs

(_,_) -> False

inst sub x =

do { x’ <- prune x

; case x’ of

MutVar r -> return(MutVar r)

GenVar n -> col (sub !! n)

S x ->

do { x’ <- (seqmap (inst sub) x)

; return (S x’)

} }

fromFix (Fix x) = S(mapRS lib fromFix x)

toFix x =

do { x’ <- prune x

; case x of

MutVar r -> errorRS lib "No vars"

GenVar m -> errorRS lib "No generic vars"

S y -> do { y’ <- seqmap toFix y

; return(Fix y’)

}}

B. COMMAND LANGUAGE EXAMPLE

type Var = String

type Exp = Bool

data C x

= If Exp x x -- if e then s2 else s1

| While Exp x -- while e do s

| Begin x x -- { s1 ; s2 }

| Skip -- {}

| Assign Var Exp -- x := e

-- the lowercase constructor convention

ifc e x y = S(If e x y)

while e x = S(While e x)

begin x y = S(Begin x y)

skip = S Skip

assign v e = S(Assign v e)

type Command a = GT C (STRef a)

---- The S structure operators

mapC f (If e x y) = If e (f x) (f y)

mapC f (While e x) = While e (f x)

mapC f (Begin x y) = Begin (f x) (f y)

mapC f Skip = Skip

mapC f (Assign v e) = Assign v e

accC acc (If e x y) ans = acc x (acc y ans)

accC acc (While e x) ans = acc x ans

accC acc (Begin x y) ans = acc x (acc y ans)

accC acc Skip ans = ans

accC acc (Assign v e) ans = ans

seqC (If e x y) =

do { x’ <- x; y’ <- y; return (If e x’ y’)}

seqC (While e x) =

do { x’ <- x; return(While e x’)}

seqC (Begin x y) =

do { x’ <- x; y’ <- y; return(Begin x’ y’) }

seqC Skip = return Skip

seqC (Assign v e) = return(Assign v e)

matchC (If e w x) (If f y z) =

if f==e then Just[(w,y),(x,z)]

else Nothing

matchC (While e w) (While f y) =

if f==e then Just[(w,y)]

else Nothing

matchC (Begin w x) (Begin y z) = Just[(w,y),(x,z)]

matchC Skip Skip = Just[]

matchC (Assign v e) (Assign u f) =

if v==u && e==f

then Just []

else Nothing

matchC _ _ = Nothing

97

