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Abstract
Programs written in terms of higher-order recursion schemes like
foldr and build can benefit from program optimizations like short-
cut fusion. Unfortunately, programmers often avoid these schemes
in favor of explicitly recursive functions.

This paper shows how programmers can continue to write pro-
grams in their preferred explicitly recursive style and still bene-
fit from fusion. It presents syntactic algorithms to automatically
find and expose instances of foldr and build . The algorithms have
been implemented as GHC compiler passes and deal with all reg-
ular algebraic datatypes, not just lists. A case study demonstrates
that these passes are effective at finding many instances in popular
Haskell packages.

Keywords catamorphisms, fold/build fusion, analysis, transfor-
mation

1. Introduction
Higher-order functions are immensely popular in Haskell, whose
Prelude alone offers a wide range of them (e.g., map, filter , any ,
. . . ). This is not surprising, because they are the key abstraction
mechanism of functional programming languages. They enable
capturing and reusing common frequent patterns in function def-
initions.

Recursion schemes are a particularly important class of patterns
captured by higher-order functions. They capture forms of recur-
sion found in explicitly recursive functions and encapsulate them
in reusable abstractions. In Haskell, the foldr function is probably
the best known example of a recursion scheme. It captures struc-
tural recursion over a list.

foldr :: (a → b → b)→ b → [a ]→ b
foldr f z [ ] = z
foldr f z (x : xs) = f x (foldr f z xs)

By means of a recursion scheme like foldr , the programmer can
avoid the use of explicit recursion in his functions, like

sum :: [Int ]→ Int
sum [ ] = 0
sum (x : xs) = x + sum xs

in favor of implicit recursion in terms of the recursion scheme:

[Copyright notice will appear here once ’preprint’ option is removed.]

sum :: [Int ]→ Int
sum xs = foldr (+) 0 xs

Gibbons [6] has likened the transition from the former style to
the latter with the transition from imperative programming with
gotos to structured programming. Indeed the use of recursion
schemes has many of the same benefits for program construction
and program understanding.

One benefit that has received a lot of attention in the Haskell
community is program optimization. Various equational laws have
been devised to fuse the composition of two recursion schemes
into a single recursive function. Perhaps the best-known of these
is shortcut fusion, also known as foldr/build fusion [7].

∀c n g .foldr c n (build g) = g c n

This law fuses a list producer, expressed in terms of build , with
a list consumer, expressed in terms of foldr in order to avoid the
construction of the allocation of the intermediate list; the latter is
called deforestation [22].

A significant weakness of foldr/build fusion and other fusion
approaches is that programmers have to explicitly write their pro-
grams in terms of the appropriate recursion schemes. This is an
easy requirement when programmers only reuse library functions
written in the appropriate style. However, when it comes to writ-
ing their own functions, programmers usually resort to explicit re-
cursion. This not just true of novices, but applies just as well to
experienced Haskell programmers, including, as we will show, the
authors of some of the most popular Haskell packages.

Hence, already in their ’93 work on fold/build fusion, Gill et
al. [7] have put forward an important challenge for the compiler:
to automatically detect recursion schemes in explicitly recursive
functions. This allows programmers to have their cake and eat it
too: they can write functions in their preferred style and still benefit
from fusion.

As far as we know, this work is the first to pick up that challenge
and automatically detect recursion schemes in a Haskell compiler.
Our contributions are in particular:

1. We show how to automatically identify and transform explicitly
recursive functions that can be expressed as folds.

2. In order to support a particular well-known optimization, fold-
build fusion, we also show how to automatically detect and
transform functions that can be expressed as a call to build .

3. We provide a GHC compiler plugin1 that performs these detec-
tions and transformations on GHC Core. Our plugin not only
covers folds and builds over lists, but over all inductively de-
fined directly-recursive datatypes.

4. A case study shows that our plugin is effective on a range of
well-known Haskell packages. It identifies a substantial num-

1 http://github.ugent.be/javdrjeu/what-morphism

1 2013/6/14



ber of explicitly recursive functions that fit either the fold or
build pattern, reveals that our approach works well with GHC’s
existing list fusion infrastructure.

2. Overview
This section briefly reviews folds, builds and fusion to prepare for
the next sections, that provide systematic algorithms for finding
folds and builds in explicitly recursive functions.

2.1 Folds
Catamorphisms are functions that consume an inductively defined
datastructure by means of structural recursion. Here are two exam-
ples of catamorphisms over the most ubiquitous inductive datatype,
lists.

upper :: String → String
upper [ ] = [ ]
upper (x : xs) = toUpper x : upper xs

product :: [Int ]→ Int
product [ ] = 1
product (x : xs) = x ∗ product xs

Instead of using explicit recursion again and again, the catamor-
phic pattern can be captured once and for all in a higher-order func-
tion, the fold function. In case of list, that fold function is foldr .

upper = foldr (λx xs → toUpper x : xs) [ ]

product = foldr (∗) 1

Folds with Parameters Some catamorphisms take extra parame-
ters to compute their result. Hinze et al. [9] distinguish two kinds
of extra parameters: constant and accumulating parameters. List
concatenation is an example of the former:

cat :: [a ]→ [a ]→ [a ]
cat [ ] ys = ys
cat (x : xs) ys = x : cat xs ys

The ys parameter is a constant parameter because it does not
change in the recursive calls. We can get rid of this constant pa-
rameter by hoisting it out of the loop.

cat :: [a ]→ [a ]→ [a ]
cat l ys = loop l

where
loop :: [a ]→ [a ]
loop [ ] = ys
loop (x : xs) = x : loop xs

Now, the local function can be rewritten in terms of a foldr without
having to bother with passing the constant parameter.

cat xs ys = loop l
where

loop l = foldr (:) ys l

Finally, we can inline the local function entirely.

cat xs ys = foldr (:) ys l

The intermediate steps can of course be skipped in practice and our
algorithm in Section 3 does so.

Accumulating parameters are trickier to deal with as they may
vary in recursive calls. An example is the accumulator-based sum
function:

sumAcc :: [Int ]→ Int → Int
sumAcc [ ] acc = acc
sumAcc (x : xs) acc = sumAcc xs (x + acc)

where the acc parameter varies in the recursive call. Typically, such
a function is defined in terms of the foldl variant of foldr , which
folds from the left rather than the right.

foldl :: (a → b → a)→ a → [b ]→ a
foldl f z [ ] = z
foldl f z (x : xs) = foldl f (f z x ) xs

sumAcc l acc = foldl (+) acc l

However, these functions too can be expressed in terms of foldr .
The trick is to see such a function not as having an extra parameter
but as returning a function that takes a parameter. For instance,
sumAcc should not be considered as a function that takes a list and
an integer to an integer, but a function that takes a list to a function
that takes an integer to an integer. This becomes more apparent
when we make the precedence of the function arrow in the type
signature explicit, as well as the binders for the extra parameter.

sumAcc :: [Int ]→ (Int → Int)
sumAcc [ ] = λacc → acc
sumAcc (x : xs) = λacc → sumAcc xs (x + acc)

Now we have an obvious catamorphism without extra parameter
that can be turned trivially into a fold.

sumAcc l = foldr (λx xs acc → xs (x + acc))
(λacc → acc) l

As a last step we may want to η-expand the above definition.

sumAcc l acc = foldr (λx xs acc → xs (x + acc))
(λacc → acc) l acc

Finally, foldl is an example of a function with both a constant
parameter f and an accumulating parameter z . It is expressed as a
foldr thus:

foldl f z l = foldr (λx xs z → xs (f x z )) (λz → z ) l z

Note that as a minor complication both extra parameters precede
the list parameter.

Other Datatypes The above ideas for folds of lists easily gener-
alize to other inductively defined algebraic datatypes. We illustrate
that on leaf trees.

data Tree a
= Leaf a
| Branch (Tree a) (Tree a)

The sumTree function is an example of a directly recursive
catamorphism over leaf trees.

sumTree :: Tree Int → Int
sumTree (Leaf x ) = x
sumTree (Branch l r) = sumTree l + sumTree r

This catamorphic recursion scheme can be captured in a fold func-
tion too. The generic idea is that a fold function transforms the in-
ductive datatype into a value of a user-specified type r by replacing
every constructor with a user-specified function.

foldT :: (a → r)
→ (r → r → r)
→ Tree a
→ r

foldT l (Leaf x ) = l x
foldT l b (Branch x y) =

b (foldT l b x ) (foldT l b y)

The fold over leaf trees enables us to define sumTree succinctly
as
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sumTree = foldT id (+)

Leaf trees also have a counterpart of left folds for lists, where
the pattern is called downward accumulation. For instance, the
following function from [9] labels every leaf with its depth:

depths :: Tree a → Int → Tree Int
depths (Leaf x ) d = Leaf d
depths (Branch l r) d = Branch (depths l (d + 1))

(depths r (d + 1))

This catamorphism is rewritten into a fold in a similar way as left
folds.

depths t d =
foldT (λd → Leaf d)

(λl r d → Branch (l (d + 1)) (r (d + 1))) t d

2.2 Builds
Builds are the opposite of folds: they produce datastructures. For
lists, this production pattern is captured in the function build .

build :: (∀b.(a → b → b)→ b → b)→ [a ]
build g = g (:) [ ]

where g is a function that builds an abstract list in terms of the
provided ‘cons’ and ‘nil’ functions. The build function constructs
a concrete list by applying g to the conventional (:) and [ ] list
constructors.

Consider for instance the function replicate .

replicate :: Int → a → [a ]
replicate n x
| n 6 0 = [ ]
| otherwise = x : replicate (n − 1) x

which can be expressed in terms of build as follows:

replicate n x = build (λcons nil →
let g n x
| n 6 0 = nil
| otherwise = cons x (g (n − 1) x )

in g n x )

Other Datatypes The notion of a build function also generalizes.
For instance, this is the build function for leaf trees:

buildT :: (∀b.(a → b)→ (b → b → b)→ b)
→ Tree a

buildT g = g Leaf Branch

With this build function we can express a producer of leaf trees

range :: Int → Int → Tree a
range l u
| u > l = let m = l + div (u − l) 2

in Branch (range l m) (range (m + 1) u)
| otherwise = Leaf l

as a build:

range l u =
buildT (λleaf branch →

let g l u
| u > l = let m = l + div (u − l) 2

in branch (g l m) (g (m + 1) u)
| otherwise = leaf l

in g l u)

2.3 Fold/Build Fusion
The foldr/build fusion rule expresses that a consumer and producer
can be fused:

foldr cons nil (build g) ≡ g cons nil

Consider the following expressions:

sum (replicate n x )

which consumes a list with sum after generating it with replicate .
With the help of the fusion rule and simple transformations, we can
optimize it as follows.

sum (replicate n x )

≡ [[ inline sum ]]

foldr (+) 0 (replicate n x )

≡ [[ inline replicate ]]

foldr (+) 0 (build $ λcons nil →
let g n x
| n 6 0 = nil
| otherwise = cons x (g (n − 1) x )

in g n x )

≡ [[ foldr/build fusion ]]

(λcons nil →
let g n x
| n 6 0 = nil
| otherwise = cons x (g (n − 1) x )

in g n x ) (+) 0

≡ [[ β-reduction ]]

let g n x
| n 6 0 = 0
| otherwise = x + g (n − 1) x

in g n x

Although arguable less readable, we can see that the final version
of sum (replicate n x ) does not create an intermediate list.

Pipelines Haskell best practices encourage building complicated
functions by producing, repeatedly transforming and finally con-
suming an intermediate datastructure in a pipeline. An example of
such a pipeline is the following sum-of-odd-squares function:

sumOfSquaredOdds :: Int → Int
sumOfSquaredOdds =

sum ◦map (ˆ2) ◦ filter odd ◦ enumFromTo 1

This code is quite compact and easy to compose from exist-
ing library functions. However, when compiled naively, it is also
rather inefficient because it performs four loops and allocates three
intermediate lists (the results of respectively enumFromTo 1,
filter odd and map (ˆ2)) that are immediately consumed again.

With the help of fusion, whole pipelines like sumOfSquaredOdds
can be fused into one recursive function:

sumOfSquaredOdds :: Int → Int
sumOfSquaredOdds n = go 1
where

go :: Int → Int
go x
| x > n = 0
| odd x = x ˆ 2 + go (x + 1)
| otherwise = go (x + 1)

which performs only a single loop and allocates no intermediate
lists.
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The key to pipeline optimization is the fact that transformation
functions like map and filter can be expressed as a build whose
generator function is a fold .

map :: (a → b)→ [a ]→ [b ]
map f l = build (λcons nil → foldr (cons ◦ f ) nil l)

filter :: (a → Bool)→ [a ]→ [a ]
filter p l =

build (λcons nil → foldr (λx → if p x then cons x
else id) nil l)

This means they can fuse with both a consumer on the left and a
producer on the right.

Other Datatypes Any datatype that provides both a fold and build
function, has a corresponding fusion law. For leaf trees, this law is:

foldT leaf branch (buildT g) ≡ g leaf branch

It is key to fusing two loops into one:

sumTree (range l u)

≡ [[ inline sumTree ]]

foldT id (+) (range l u)

≡ [[ inline range ]]

foldT id (+) (buildT $ λleaf branch →
let g l u
| u > l = let m = l + div (u − l) 2

in branch (g l m) (g (m + 1) u)
| otherwise = leaf l

in g l u)

≡ [[ fold/build fusion ]]

(λleaf branch →
let g l u
| u > l = let m = l + div (u − l) 2

in branch (g l m) (g (m + 1) u)
| otherwise = leaf l

in g l u) id (+)

≡ [[ β-reduction ]]

let g l u
| u > l = let m = l + div (u − l) 2

in g l m + g (m + 1) u
| otherwise = l

in g l u

2.4 Automation
The main Haskell compiler, GHC, automates fold/build fusion by
means of its rewrite rules infrastructure [11]. The fusion law is
expressed as a rewrite rule in the GHC.Base module

{-# RULES
"fold/build"

forall k z (g::forall b. (a->b->b) -> b -> b) .
foldr k z (build g) = g k z

#-}

which is applied whenever the optimizer encounters the pattern on
the left. In addition, various library functions have been written2

in terms of foldr and build . Whenever the programmer uses these
functions and combines them with his own uses of foldr and build ,
fusion may kick in.

Unfortunately, GHC’s infrastructure shows two main weak-
nesses:

2 or come with rewrite rules that rewrite them into those forms

1. GHC does not explicitly cater for other datatypes than lists.
While the programmer can replicate the existing list infrastruc-
ture for his own datatypes, it requires a considerable effort and
rarely happens in practice.

2. Programmers or libraries need to explicitly define their func-
tions in terms of foldr and build . If they don’t, then fusion is
not possible. This too turns out to be too much to ask as we see
many uses of explicit recursion in practice (see Section 6).

This work addresses both limitations. It allows programmers
to write their functions in explicitly recursive style and performs
fold/build fusion for any directly inductive datatype.

3. Finding Folds
This section explains our approach to turning explicitly recursive
functions into invocations of fold .

3.1 Syntax and Notation
To simplify the presentation, we do not explain our approach in
terms of Haskell source syntax or even GHC’s core syntax (based
on System F). Instead, we use the untyped lambda-calculus ex-
tended with constructors and pattern matching, and (possibly re-
cursive) bindings.

binding b ::= x = e
pattern p ::= K x
expression e ::= x

| e e
| λx → e
| K
| case e of p → e

The extension to GHC’s full core syntax, including types, is rela-
tively straightforward.

We will also need an advanced form of (expression) context:

E ::= x
| E x
| E �
| E 4

A context E denotes a function applied to a number of arguments.
The function itself and some of its arguments are given (as vari-
ables), while there are holes for the other arguments. In fact, there
are two kinds of holes: boxes� and triangles4. The former is used
for a sequence of extra parameters, while the latter marks the main
argument on which structural recursion is performed. The function
E [e; e] turns a context E into an expression by filling in the holes
with the given expressions.

x [ε; e] = x
(E x )[e; e] = E [e; e] x
(E �)[e, e1; e] = E [e; e] e1
(E 4)[e; e] = E [e; e] e

Note that this function is partial; it is undefined if the number of
expressions e does not match the number of box holes.

3.2 Finding Folds
Figure 1 shows our non-deterministic algorithm for rewriting func-
tion bindings in terms of folds. To keep the exposition simple, the
algorithm is specialized to folds over lists; we discuss the general-
ization to other algebraic datatypes later on.

Single-Argument Functions The top-level judgement is of the
form b  b′, which denotes the rewriting of a function binding b
to b′. The judgement is defined by a single rule (F-Bind), but we
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b b′

(F-BIND)

e′1 = [y 7→ [ ]]e1 f 6∈ fv(e′1)
E [u; y ] = f x y z ws fresh

e2 vs
E
 ws e′2 {f, x, vs} ∩ fv(e′2) = ∅

f = λx y z → case y of { [ ]→ e1; (v : vs)→ e2}
 f = λx y z → foldr (λv ws u → e′2) (λu → e′1) y u

e x
E
 y e′

(F-REC)
ei x

E
 y e′i (∀i)

E [e; x ] x
E
 y y e ′

(F-REFL)
e x

E
 y e

(F-ABS)
e x

E
 y e ′

λz → e x
E
 y λz → e ′

(F-APP)
e1 x

E
 y e′1 e2 x

E
 y e′2

e1 e2 x
E
 y e′1 e

′
2

(F-CASE)
e x

E
 y e ′ ei x

E
 y e′i (∀i)

case e of p → e x
E
 y case e ′ of p → e ′

Figure 1. Fold discovery rules

first explain a specialized rule for single argument functions:

(F-BIND’)

e′1 = [y 7→ [ ]]e1 f 6∈ fv(e1) ws fresh

e2 vs
f 4
 ws e

′
2 {f, x, vs} ∩ fv(e′2) = ∅

f = λy → case y of { [ ]→ e1; (v : vs)→ e2}
 f = λy → foldr (λv ws → e′2) e

′
1 y

This rule rewrites a binding like

sum = λy → case y of
[ ] → 0
(v : vs)→ (+) v (sum vs)

into

sum = λy → foldr (λv ws → (+) v ws) 0 y

mostly by simple pattern matching and replacement. The main
work is to replace all recursive calls in e2, which is handled by
the auxiliary judgement of the form

e x
E
 y e′

which is defined by five rewriting rules: rule (F-REC) takes care of
the actual rewriting of recursive calls, while rule F-REFL provides
the reflexive closure and the other three rules provide congruence
closure. In the restricted setting of single argument functions rule
(F-Rec) takes the simplified form

(F-REC’)
f x x

f 4
 y y

Hence, we have sum vs vs
sum 4
 ws ws .

The side-conditions on the (F-BIND’) rule make sure that the
function being rewritten is a proper catamorphism.

1. If vs appears in e′2 as part of f vs , the latter has not been
properly replaced by ws . If vs appears in any other capacity,
then the function is not a catamorphism, but a paramorphism.
An example of such a function, is the function suffixes .

suffixes = λy → case y of
[ ] → [ ]
(v : vs)→ vs : suffixes vs

This function can be written as

suffixes = para (λv vs ws → vs : ws) [ ]

where the higher-order pattern of paramorphisms is

para :: (a → [a ]→ b → b)→ b → [a ]→ b
para f z [ ] = z
para f z (x : xs) = f x xs (para f z xs)

2. If f appears in any other form than as part of recursive calls
of the form f vs , then again the function is not a proper
catamorphism. An example of that case is the following non-
terminating function:

f = λx → case x of
[ ] → 0
(v : vs)→ v + f vs + f [1, 2, 3]

Note that we know in the branches e1 and e2 the variable x is an
alias for respectively [ ] or (y : ys). Rule (F-BIND’) exploits the
former case to eliminate x in e′1. The latter case reveals an improper
catamorphism, where ys appears outside of a recursive call (issue
2 above); hence, rule (F-BIND’) does not allow it.

Folds with Parameters Rule (F-BIND) generalizes rule (F-
BIND’) by supporting additional formal parameters x and z before
and after the scrutinee argument y . The algorithm supports both
constant and accumulating parameters. Rule (F-BIND) does not
explicitly name the constant parameters, but captures them instead
in the context E for recursive calls. For instance, for cat the context
has the form cat 4 ys where ys is the constant parameter.

Rule (F-Bind) names the accumulating parameters u and leaves
� holes in the context E for them. For instance, the context of
sumAcc is sumAcc 4 �. Because the u arguments vary through-
out the iteration, their current and new values need to be bound,
respectively supplied, at every step. The binding of the current val-
ues is taken care of by the binders λu → in the two first parameters
of foldr . Also the initial values for u are supplied as extra parame-
ters to foldr .

Rule (F-REC) captures the new values e for the accumulating
parameters with the help of the context E ; a recursive call takes the
form E [e; vs]. The rule passes these variant arguments explicitly to
the recursive result ws .

Note that rule (F-REC) recursively rewrites the accumulating
parameters e because they may harbor further recursive calls. For
instance,

5 2013/6/14



f = λy acc → case y of
[ ] → acc
(v : vs)→ f vs (f vs (v + acc))

is rewritten to

f = λy acc → foldr (λv ws acc → ws (ws (v + acc)))
(λacc → acc) y acc

3.3 Degenerate folds
Our algorithm also transforms certain non-recursive functions into
folds. For instance, it rewrites

head :: [a ]→ a
head = λl → case l of

[ ] → error "empty list"

(x : xs)→ x

into

head :: [a ]→ a
head = λl → foldr (λz zs → z ) (error "empty list") l

These degenerate folds are of no interest to us, since non-recursive
functions are much more easily understood in their conventional
form than as a fold. Moreover, they can easily be optimized without
fold/build fusion: by simple inlining and specialization. Fortunately
we can easily avoid introducing degenerate folds by only rewriting
recursive functions. In other words, the algorithm must use the rule
(F-REC) at least once.

3.4 Other Datatypes
The algorithm generalizes straightforwardly to other datatypes than
lists. The main issues are to cater for the datatype’s constructors
rather than those of lists, and to use the datatype’s fold function
rather than foldr .

A significant generalization from lists is that datatype con-
structors may have multiple recursive subterms. For instance, the
Branch constructor of our leaf trees has two recursive subterms,
for the left and right subtrees. This means that the (F-Rec) rule has
to allow for recursive calls over either. Also note that in the case of
multiple recursive subterms, the recursive rewriting of accumulat-
ing parameters in rule F-REC is more likely to occur. Consider for
instance the following function

flatten :: Tree a → [a ]→ [a ]
flatten = λt acc → case t of

Leaf x → (x : acc)
Branch l r → flatten l (flatten r acc)

which is turned into

flatten = λt acc → foldT (λx acc → (x : acc))
(λl r acc → l (r acc)) t acc

4. Finding Builds
Figure 2 lists our non-deterministic algorithm for finding list builds.
The toplevel judgement is b � b′; bg . It rewrites a binding b into
b′ that uses build and also returns an auxiliary binding bg for the
generator function used in the build . There is one rule defining this
judgement, (B-BIND), that rewrites the body e of a binding into
a build and produces the generator function binding. Note that the
rule allows for an arbitrary number of lambda abstractions λx → to
precede the invocation of build . This allows auxiliary parameters
to the generator function, e.g., to support an inductive definition.
For instance, the map function can be written as a build with two
auxiliary parameters.

b � b′; b′′

(B-BIND)

c,n, g fresh
e f

c,n
�g e′

f = λx → e �
f = λx → build (g x );

g = λx → λc → λn → e ′

e f

c,n
�g e ′

(B-REC)
f e f

c,n
�g g e c n

(B-NIL)
[ ] f

c,n
�g n

(B-CONS)
e2 f

c,n
�g e′2

(e1 : e2) f

c,n
�g c e1 e

′
2

(B-BUILD)
build e f

c,n
�g e c n

(B-CASE)
ei f

c,n
�g e′i (∀i)

case e of p → e f

c,n
�g case e of p → e ′

Figure 2. Build discovery rules

map = λf → λl → build (g f l)

g = λf → λl → λc → λn →
case l of

[ ] → n
(y : ys)→ c (f y) (g f ys c n)

Only the f parameter is constant. The l parameter changes in
inductive calls as g is defined inductively over it.

The toplevel judgement is defined in terms of the auxiliary
judgement

e f

c,n
�g e ′

that yields the body of the generator function. This judgement
is defined by five different rules, the last of which, (B-CASE),
is merely a congruence rule that performs the rewriting in the
branches of a case expression. The first four rules distinguish four
ways in which the function body can yield a list.

1. Rule (B-NIL) captures the simplest way for producing a list,
namely with [ ], which is rewritten to the new parameter n .

2. Rule (B-CONS) replaces the (:) constructor with the new pa-
rameter c, and recursively rewrites the tail of the list.

3. Rule (B-REC) replaces recursive calls to the original function f
by recursive calls to the generator function g .

4. Rule (B-BUILD) deals with the case where a list is pro-
duced by a call to build . In this situation the abstract c
and n list constructors can be introduced dynamically as
foldr c n (build e). However, this expression can of course be
statically fused to e c n .

In the map example, all rules but (B-BUILD) are used. Here is an
example that does use rule (B-BUILD).

toFront :: Eq a ⇒ a → [a ]→ [a ]
toFront x xs = x : filter ( 6≡ x ) xs

After inlining filter , which itself is expressed as a build, this func-
tion becomes.

toFront = λx → λxs → x : build (g ( 6≡ x ) xs)

which can be transformed into:
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toFront = λx → λxs → build (g ′ x xs)
g ′ = λx → λxs → λc → λn → c x (g ′ ( 6≡ x ) xs c n)

Degenerate Builds Just like non-recursive catamorphisms we can
also call non-recursive builds degenerate. For instance,

f = 1 : 2 : 3 : [ ]

is rewritten to

f = build g
g = λc → λn → c 1 (c 2 (c 3 n))

These functions can be easily identified by the absence of a re-
cursive call. In other words, the rule (B-REC) is never used in the
rewriting process.

Strictly speaking, such non-recursive functions do not require
fold /build fusion to be optimized. They can also be optimized
by inlining their definition and then unfolding the catamorphism
sufficiently to consume the whole list.

sum f
≡ [[ inline f ]]

sum (1 : 2 : 3 : [ ])
≡ [[ unfold sum ]]
1 + sum (2 : 3 : [ ])
≡ [[ unfold sum three more times ]]
1 + (2 + (3 + 0))

However, in practice, GHC does not perform such aggressive in-
lining by default. Hence, fold /build fusion is still a good way of
getting rid of the intermediate datastructure.

Other Datatypes The adaptation of the build algorithm to other
datatypes is essentially similar to the adaptations we had to make
for the fold algorithm: cater for a different set of constructors with
other recursive positions and use the datatype’s build function.

5. Implementation
Rather than to implement our algorithms as a source-level program
transformation, we have implemented our algorithms as compiler
passes in a plugin [20] for GHC. This has three important advan-
tages:

• Firstly, the compiler passes work with GHC’s core represen-
tation, which is much simpler than Haskell source syntax. For
instance, the type that represents Haskell source expressions in
the popular haskell-src-exts package features 46 different
constructors, while the corresponding GHC core type has only
10.

• Secondly, GHC optimizer performs various beneficial transfor-
mation passes on a program’s core representation before run-
ning our algorithms. Many of these passes help our algorithms
by simplifying the source code. Consider the following example
of two mutually recursive functions.

f :: [Int ]→ Int
f [ ] = 1
f (x : xs) = g x xs

g :: Int → [Int ]→ Int
g x xs = x ∗ f xs + 1

Our fold finding algorithm does not identify f as a catamor-
phism, because it does not see the recursive call, which is hid-
den in g . However, GHC’s inlining pass is likely to inline g in
the body of f and thus expose the recursive call.
In other words, we can keep our algorithms relatively simple,
because other GHC passes already do part of the work for us.

• Finally, GHC core is fully typed. While type information is not
essential, our algorithms can make good use of it to improve
their performance. Consider this simple function:

add :: Int → Int → Int
add x y = x + y

The type signature reveals that none of the parameters is an
inductively defined datatype, nor is the result type. As a con-
sequence, without looking a the function body, our algorithms
can conclude that the function cannot be expressed as a fold or
a build.

5.1 Algorithm Implementation
We have implemented the two algorithms as separate passes in our
plugin. The implementations deviate from the non-deterministic
algorithms of Sections 3 and 4 on two accounts:

• They deal with the core language, which is slightly larger than
the language used earlier. As already indicated, core carries type
information, which our implementation must adjust when per-
forming the transformation. Core also involves local binders in
addition to toplevel binders. We analyze these too for occur-
rences of folds and builds.

• Our implementation is of course deterministic rather than non-
deterministic, and, as described above, based on the available
type information, it tries to fail fast.

Below are two more important points with respect to the quality
of obtained fusions.

Local Generator Binders An important point for the build find-
ing algorithm is that the new abstract generator function is actually
introduced as a local binding, rather than a new toplevel binding.
The reason is that we want GHC to specialize the generator func-
tion at the use site after fusion.

For instance, after the inlining and fusion of sum (replicate n),
we get g (+) 0 where g is the abstract generator function. If g is
defined with a toplevel binder, GHC will not inline it because it
is recursive. Hence, while the intermediate datastructure has been
eliminated, we still pay the price of the generator’s abstraction.

However, if g is actually defined locally in replicate , as shown
in Section 2.2, GHC can easily specialize the recursive definition
of the generator and eliminate the abstraction. The result is a tight
first-order loop.

Relative Pass Scheduling As we have already argued in Sec-
tion 2.3, it is crucial for the fusion of pipelines that transformation
functions are expressed as a build of a fold. In order to obtain this
required form, our build finding pass must be scheduled before the
fold finding pass. Only in this order do we obtain, e.g., the defini-
tion

map f l = build (λc n → foldr (λx xs → c (f x ) xs) n l)

If we first find the fold, we get stuck at the following intermediate
form

map f l = foldr (λx xs → f x : xs) [ ] l

because our build finder is not equipped to deal with folds.
A more heavyweight solution would be to extend the build

finding algorithm with a rule for handling folds.

(B-FOLD)
e1 f

c,n
�g e ′

1 e2 f

c,n
�g e ′

2

foldr (λx xs → e1) e2 e3

f

c,n
�g foldr (λx xs → e ′

1) e ′
2 e3

Such a rule has the added benefit of handling handling folds in-
troduced by the programmer. However, because it is not powerful
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enough to deal with accumulating parameters, it remains best to
schedule build finding first.

5.2 Fusion
The passes for finding folds and builds are inherently compatible
with GHC’s approach to list fusion. Whenever a list producer or
consumer is rewritten into a foldr or build , it becomes a possible
subject of the GHC rewrite rules that target these higher-order
schemes.

Moreover, for fusion to happen it is not necessary for our passes
to find a fold and a build together. Fusion can also happen when the
programmer combines, e.g., his own explicitly recursive catamor-
phism with a library function that is already expressed as a build.

5.3 Datatype Support
In order to introduce calls to fold and build functions for a datatype,
these functions have to be available for that datatype. At present,
GHC only provides such functions for lists.

In order to support additional datatypes, we allow the program-
mer to register fold and build functions for his own datatypes by
means of annotations [19]. For instance, the following annotation
does so for the type of leaf trees.

{-# ANN type Tree
(RegisterFoldBuild "foldT" "buildT")

#-}

Moreover, we also provide complimentary Template Haskell [17]
routines to derive the implementations of the two functions.

$ (deriveFold ‘Tree "foldT")
$ (deriveBuild ‘Tree "buildT")

Similarly, to support fusion for other datatypes, we follow
GHC’s rewriting rules approach for lists. However, instead of hav-
ing to write the fusion rewrite rule explicitly, we provide a handy
Template Haskell routine. For instance,

$ (deriveFusion ‘Tree "foldT" "buildT")

generates

{-# "foldT/buildT-fusion"
forall l b
(g :: forall b. (a -> b) -> (b -> b -> b) -> b).
foldT l n (buildT g) = g l b
#-}

If desired, the responsibility for registering types and generating
the higher-order schemes and rewrite rules can easily be moved to
the compiler. At this time, and for the purpose of evaluation, it suits
us to have a bit more control.

6. Evaluation
6.1 Identifying Folds
In order to test the quality of our fold finding algorithm, we have
applied it to 13 popular Haskell packages during a compilation with
GHC 7.6.3. We have not enabled any of the compiler’s optimization
flags and disabled the actual rewriting in our pass. In this way, we
get an accurate estimate (a lower bound) of the number of explicitly
recursive catamorphisms that experienced Haskell programmers
write in practice.

Table 1 lists the results of the fold analysis. The first column
lists the names of the packages and the second column (Total) re-
ports the total number of discovered catamorphisms. The third and
fourth column split up this total number in catamorphisms over lists
(List) and catamorphisms over other algebraic datatypes (Other).
The fifth column (Acc.) shows the number of catamorphisms with

Package Total List Other Acc. N. rec. HLint

Cabal-1.16.0.3 20 11 9 6 0 9
containers-0.5.2.1 100 11 89 41 11 1
cpphs-1.16 5 2 3 3 0 1
darcs-2.8.4 66 65 8 1 0 6
ghc-7.6.3 327 216 111 127 9 26
hakyll-4.2.2.0 5 1 4 3 0 0
haskell-src-exts-1.13.5 37 11 26 15 0 2
hlint-1.8.44 6 3 3 1 0 0
hscolour-1.20.3 4 4 0 0 0 2
HTTP-4000.2.8 6 6 0 2 0 3
pandoc-1.11.1 15 15 0 1 0 2
parsec-3.1.3 3 3 0 1 0 0
snap-core-0.9.3.1 4 3 1 1 0 0

Table 1. Folds found in well-known Haskell packages

accumulating parameters (e.g., left folds). The sixth column (N.
rec.) counts the number of accumulating parameter catamorphisms
with nested recursive calls such as the f vs (f vs (v + acc))
example from Section 2.1.

Finally, the last column provides the analysis results of hlint [15]
for comparison. This tool provides hints on how to refactor Haskell
source code. The listed results reflect the number of suggestions on
the use of map, filter , foldl and foldr rather than explicit recur-
sion.

We see that across all packages our analysis finds more list cata-
morphisms than hlint. In fact, our tool discovers some list cata-
morphisms in hlint’s own source code that hlint cannot find itself.
Moreover, in addition to the results in the table, our tool also suc-
cessfully identifies all the list folds in the hlint test suite. There
are three other packages in which hlint does not find any catamor-
phisms. This is likely due to the fact that the authors of those pack-
ages have themselves used hlint to discover and eliminate explicit
recursion.

We attribute the better results of our tool partly to the fact that
more catamorphisms are exposed in the core representation by
GHC’s program transformations. However, to a large extent, the
better results are due to the fact that our analysis is more powerful
than that of hlint. Also, hlint does not look for catamorphisms
over other datatypes than lists, while several packages do have a
significant number of those.

Folds with a variant arguments (left folds) are found quite regu-
larly in Haskell packages, but those with nested recursive calls are
much rarer. We have only found them in the GHC and containers
packages; they may be an indication of a rather advanced program-
ming style.

6.2 Identifying builds
Table 2 shows the results of the build analysis for the 13 packages.
The Total column lists the total number of builds per package, while
the List and Other columns split up this number into list builds
and builds of other datatypes. Column Rec show the number of
recursive builds.

Our main observation is that the numbers are roughly propor-
tional to those of the folds. Unlike for folds, we are not aware of
any other tool that detects builds and would provide a basis for
comparison.
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Package Total List Other Rec.

Cabal-1.16.0.3 101 81 20 5
containers-0.5.2.1 25 2 23 12
cpphs-1.16 6 5 1 3
darcs-2.8.4 354 354 0 26
ghc-7.6.3 480 178 302 53
hakyll-4.2.2.0 22 18 4 2
haskell-src-exts-1.13.5 140 74 66 16
hlint-1.8.44 69 62 7 1
hscolour-1.20.3 33 33 0 2
HTTP-4000.2.8 11 11 0 5
pandoc-1.11.1 97 97 0 16
parsec-3.1.3 10 10 0 0
snap-core-0.9.3.1 4 4 0 0

Table 2. Builds found in well-known Haskell packages

6.3 Fusion
We have not measured any significant performance improvements
in the above 13 packages. Likely, the critical paths in these pack-
ages have already been optimized by their authors.

Hence, instead, we offer the following artificial benchmarks,
that demonstrate the potential impact of fusion on program runtime.
We have two similar sets of benchmarks, one for lists and one
for leaf trees, that consist of pipelines of increasing length. The
ithe benchmark consists of a producer (upto), followed by i − 1
transformers (map (+1) and a final consumer (sum). Each of the
components of the pipeline is defined in an explicitly recursive style
(see Appendix. A).

We have timed the pipelines with Criterion [16], using in-
put n = 100 000 on an Intel Core i3-2367M CPU @ 1.40GHz.
Each of the benchmarks was compiled twice: once with the -O2
-fenable-rewrite-rules GHC flags, and once with those two
flags and our compiler passes. We have inspected the produced core
code and observed that in the former case the pipeline is not fused
at all, and in the latter case it is fully fused. For instance, the fully
fused code obtained for l5 is:

l5 =
λl u → case l > u of

False → case l5 (l + 1) u of
n → ((((l + 1) + 1) + 1) + 1) + n

True → 0

Figure 3 shows the absolute runtimes and the speed-ups ob-
tained by fusion for the list pipelines. The relative speed-ups are
defined as (tu − tf )/tu where tu is the runtime of the unfused
pipelines and tf the runtime of the fused pipelines.

We see in the unoptimized version that the shortest list pipeline
l1 has a base runtime of about 10ms; every additional transforma-
tion in the longer pipelines adds about 4ms. Our compiler passes
cause big-speeds. Firstly, the base runtime is reduced by almost
80%. Moreover, the cost of the additional transformations is com-
pletely eliminated: all pipelines have the same absolute runtime.
This means that the relative speed-up gradually converges to 100%.

Figure 4 Similar observations can be made for the leaf tree
pipelines.
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Figure 3. Absolute runtimes (top) and relative speed-ups (bottom)
for list pipelines.

7. Related Work
7.1 Folds and Fusion
There is a long line of work on writing recursive functions in terms
of structured recursion schemes, as well as proving fusion proper-
ties of these and exploiting them for deriving efficient programs.
Typically the derivation process is performed manually.

Bird and Meertens [1, 13] have come up with several equational
laws for recursion schemes to serve them in their work on program
calculation. With their Squiggol calculus, Meijer et al. [14] promote
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Figure 4. Absolute runtimes (top) and relative speed-ups (bottom)
for leaf tree pipelines.

the use of structured recursion by means of recursion operators.
These operators are defined in a datatype generic way and are
equipped with a number of algebraic laws that enable equivalence-
preserving program transformations.

Gibbons [6] promotes explicit programming in terms of folds
and unfolds, which he calls origami programming. Unfolds are the
dual of folds, and capture a special case of builds.

Gill et al. [7] present the foldr/build fusion rule and discuss its
benefits. They mention that it would be desirable, yet highly chal-
lenging, for the compiler to notice whether functions can be ex-

pressed in terms of foldr and build . That would allow program-
mers to write programs in whatever style they like.

Various authors have investigated variants of short-cut fusion
where datastructures are produced and consumed in the context of
some computational effect. Delbianco et al. [4] consider the case
where the effect modeled by an applicative functor, and both Ghani
& Johan [5] and Manzino & Pardo [12] tackle monadic effects. It
would be interesting to extend our approach to finding uses of their
effectful recursion schemes.

7.2 Automation
Higher-order matching is a general technique for matching expres-
sions in functional programs against expression templates. In the
context of Haskell, Sittampalam and de Moor [18] have applied
higher-order matching in their rewriting system, called MAG. They
have used MAG for fusion in the following way. the programmer
specifies the initial program, a specification of the target program
and suitable rewrite rules. The latter includes a rule for foldr fu-
sion:

f (foldr c n l) = foldr c′ n ′ l
if f n = n ′

∀x y .f (c x y) = c′ x (f y)

Then the MAG system will attempt to derive the target implementa-
tion by applying the rewrite rules. Finally, the programmer needs to
check whether MAG has only applied the fusion rule to strict func-
tions f , a side condition of the fusion rule that cannot be specified
in MAG.

GHC rewrite rules [11] are a lightweight way to (semi-)automate
fusion. The programmer provides rewrite rules to rewrite program
patterns into their fused forms and the compiler applies these when-
ever it finds an opportunity. The one part that is not automated is
that programmers still have to write their code in terms of the
higher-order recursion schemes. GHC has set up various of its base
libraries in this way to benefit from fold/build fusion among others.

Building on GHC rewrite rules, Coutts et al. [3] have pro-
posed stream fusion as a convenient alternative to foldr/build fu-
sion. Stream fusion is able to fuse zips and left folds, but, on the
downside, it is less obvious for the programmer to write his func-
tions in the required style. Hinze et al. [8] provide clues for how
to generalize stream fusion: by expressing functions in terms of an
unfold, followed by a natural transformation and a fold.

The hlint [15] tool is designed to recognize various code pat-
terns and offer suggestions for improving them. In particular, it rec-
ognizes various forms of explicit recursion and suggests the use of
appropriate higher-order functions like map, filter and foldr that
capture these recursion patterns. As we already showed in Section
6.2, we are able to detect more instances of folds for Haskell lists
than hlint. Moreover, hlint makes no effort to detect folds for other
algebraic datatypes.

Supercompilation [21] is a much more generic and brute-force
technique for program specialization that is capable of fusing
producer-consumer pipelines. Unfortunately, the current state of
the art of supercompilation for Haskell [2] is still too unreliable to
be used in practice.

8. Discussion
We have presented a syntactic approach to transforming explic-
itly recursive functions into invocations of higher-order recursion
schemes (folds and builds in particular). Our experimental evalu-
ation shows that this technique is effective at finding many such
occurrences in popular Haskell packages written by experienced
programmers.

Our work currently targets the most common case: directly re-
cursive functions over directly recursive regular datatypes. In fu-
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ture work it would be interesting to extend this class to encompass
a wider range, although we expect diminishing returns.

Mutually Recursive Functions Our approach does not deal with
mutually recursive functions like:

concat :: [ [a ] ]→ [a ]
concat [ ] = [ ]
concat (x : xs) = concat ′ x xs

where
concat ′ :: [a ]→ [ [a ] ]→ [a ]
concat ′ [ ] xs = concat xs
concat ′ (y : ys) xs = y : concat ′ ys xs

which is ideally rewritten to:

concat l = build (λc n → foldr (λx xs → foldr c xs x ) n l)

but the mutual recursion obscures the build , and instead we get:

concat l = foldr (λx xs → foldr (:) xs x ) [ ] l

In order to solve this problem, the build finding algorithm should
be extended to handle mutually recursive groups.

Mutually Recursive Datatypes Mutually recursive functions
arise naturally for mutually recursive datatypes, which are common
representations for abstract syntax trees and document structures.
A simple example are rose trees:

data Rose = Node Int Forest
data Forest = Nil | Cons Rose Forest

sizeR :: Rose → Int
sizeR (Node f ) = 1 + sizeF f

sizeF :: Forest → Int
sizeF Nil = 0
sizeF (Cons r f ) = sizeR r + sizeF f

can be written as

data Rose = Node Int Forest
data Forest = Nil | Cons Rose Forest

sizeR = foldR (λx f → 1 + f ) 0 (λr f → r + f )
sizeF = foldF (λx f → 1 + f ) 0 (λr f → r + f )

where the two mutually recursive datatypes have the following
signatures for their fold functions:

foldR :: (Int → f → r)→ f → (r → f → f )→ Rose → r
foldF :: (Int → f → r)→ f → (r → f → f )→ Forest → f

GADTs GADTs pose an additional challenge because they rep-
resented a family of types whose members are selected by means
of one or more type indices. For instance, the GADT Expr a rep-
resents a family of expression types by means of the type index a .

data Expr a where
Lit :: Int → Expr Int
Add :: Exp Int → Exp Int → Exp Int
Eq :: Exp Int → Exp Int → Exp Bool

This type indexing is carried over to the type signatures of its
fold and build definitions [10], where Expr :: ∗ → ∗ is abstracted
to r :: ∗ → ∗.

foldE :: (Int → r Int)
→ (r Int → r Int → r Int)
→ (r Bool → r Bool → r Bool)
→ Exp a → r a

buildExp :: (∀r . (Int → r Int)
→ (r Int → r Int → r Int)

→ (r Int → r Int → r Bool)
→ r a)→ Exp a

This means that when we rewrite a catamorphism like

eval :: Expr a → a
eval (Lit n) = n
eval (Add x y) = eval x + eval y
eval (Eq x y) = eval x ≡ eval y

into an invocation of foldE , we must come up with an appropriate
indexed type to instantiate r . In particular, when the catamorphism
does not feature such an indexed type, we may have to introduce a
new one:

newtype R a = R {runR :: a }
eval e =

runR $ foldE (λn → R n)
(λx y → R (runR x + runID y))
(λx y → R (runR x ≡ runR y)
e
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A. Pipeline Benchmarks

-- List Pipelines
suml :: [Int ]→ Int
suml [ ] = 0
suml (x : xs) = x + suml xs

mapl :: (a → b)→ [a ]→ [b ]
mapl f = go

where
go [ ] = [ ]
go (x : xs) = f x : go xs

uptol :: Int → Int → [Int ]
uptol lo up = go lo

where
go i
| i > up = [ ]
| otherwise = i : uptol (i + 1) up

l1, l2, l3, l4, l5 :: Int → Int
l1 n = suml (1 ‘uptol ‘ n)
l2 n = suml (mapl (+1) (1 ‘uptol ‘ n))
l3 n = suml (mapl (+1) (mapl (+1) (1 ‘uptol ‘ n)))
l4 n = . . .
l5 n = . . .

-- Tree Pipelines
sumt :: Tree Int → Int
sumt (Leaf x ) = x
sumt (Branch l r) = sumt l + sumt r

mapt :: (a → b)→ Tree a → Tree b
mapt f = go

where
go (Leaf x ) = Leaf (f x )
go (Branch l r) = Branch (go l) (go r)

uptot :: Int → Int → Tree Int
uptot lo hi

| lo > hi = Leaf lo

| otherwise =
let mid = div (lo + hi) 2
in Branch (uptot lo mid) (uptot (mid + 1) hi)

t1, t2, t3, t4, t5 :: Int → Int
t1 n = sumt (1 ‘uptot ‘ n)
t2 n = sumt (mapt (+1) (1 ‘uptot ‘ n))
t3 n = sumt (mapt (+1) (mapt (+1) (1 ‘uptot ‘ n)))
t4 n = . . .
t5 n = . . .
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