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Abstract
We make monadic components more reusable and robust to changes
by employing two new techniques for virtualizing the monad stack:
the monad zipper and monad views. The monad zipper is a higher-
order monad transformer that creates virtual monad stacks by ig-
noring particular layers in a concrete stack. Monad views provide
a general framework for monad stack virtualization: they take the
monad zipper one step further and integrate it with a wide range of
other virtualizations. For instance, particular views allow restricted
access to monads in the stack. Furthermore, monad views provide
components with a call-by-reference-like mechanism for accessing
particular layers of the monad stack.

With our two new mechanisms, the monadic effects required by
components no longer need to be literally reflected in the concrete
monad stack. This makes these components more reusable and
robust to changes.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages

General Terms Design, Languages

Keywords Components with Side Effects, Modularity, Monad
Transformers, Zipper

1. Introduction
Monads [15, 31] are a useful abstraction for encapsulating side-
effects in purely functional languages like Haskell [18]. With mon-
ads different types of effects – such as state, non-determinism or
exceptions – can be modeled with the same abstract interface.

Monads are composed via mechanisms such as monad trans-
formers [13]. With monad transformers writing programs that use
multiple effects is possible by stacking different transformers on
top of each other to form a larger monad. Monads and monad
transformers are interesting because they allow programmers to
write realistic effectful programs that are still purely functional,
thus enjoying reasoning principles such as equational reasoning
and parametricity [21, 29]. Furthermore, because of these rea-
soning principles, monads and monad transformers also provide
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a good setting for studying modular effectful components, like
Aspect-Oriented Programming (AOP) style advice [17] or models
of Feature-Oriented Programming (FOP) [20].

Monad transformers come with a responsibility: it is necessary
to manage the monad stack. In Haskell there are two existing
approaches for this: implicit liftings and explicit liftings. Implicit
liftings exploit type-directed overloading of methods, provided by
type classes [32], to automatically route an effectful operation to
the first layer of the right type in the monad stack. Explicit liftings
offer more control to programmers, at the cost of automation, by
allowing monadic components to directly refer to a monad layer at
some position below the current layer using multiple invocations
of the lift method (which moves from the current layer to the one
immediately below).

However, there are two main problems with the current mecha-
nisms for manipulating the monad stack:

1. Inconvenience: The first problem is that explicit lifting is sim-
ply “awkward” to use. Explicit lifting relies on a positional
mechanism, similar to de Bruijn indices, to refer to particular
layers of the monad stack. Because access to the nth layer be-
low the current layer requires n calls to the lift method, code
quickly becomes polluted with lift method invocations.

2. Lack of robustness, limited expressiveness and reusability:
The second, and more fundamental, problem is that the current
approach is not robust to changes and offers only limited ex-
pressiveness and reusability, specially when higher-order com-
ponents (or control flow operators) are involved. Implicit lift-
ing through overloaded methods is robust, but it is also quite
limited in expressiveness since handling multiple monads of
the same type is not possible. Explicit liftings are not robust
to changes because the relative (positional) references impose
a tight coupling between monadic components and the monad
stack, which makes those components less adaptable. Further-
more, explicit lifting still has limited expressiveness because it
only allows to refer to layers below the current layer, but not
layers above.

The first problem is well-known in the Haskell community and
there have been some proposals for solving it. Piponi [19] and
Snyder & Alexander [25] suggested a solution by labeling monad
transformers with (type-level) tags, allowing particular layers in
a monad stack to be accessed by name rather than by position,
eliminating the pollution arising from multiple calls to lift.

The second problem is a bit more subtle because it only shows
up when monadic components are meant to be reused in differ-
ent contexts with different monad stack layouts as, for example,
in the modular effectful components studied by Prehofer [20] and
Oliveira et al. [17]. For this to be possible, monadic components
should abstract over the monad stack by keeping the type represent-
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ing the monad stack polymorphic (though constrained). The use of
names is also useful to solve this second problem because names
are more robust to changes in the monad layout. However, existing
tagged approaches [19, 25] are invasive, in the sense that monadic
components have to be written specially with tagging in mind, and
they still have reusability limitations (such as name clashes).

Contributions This paper proposes two new techniques for ma-
nipulating monad stacks: the monad zipper and monad views. The
monad zipper is a monad transformer that allows ignoring particu-
lar layers in the concrete stack. Monad views abstract the concrete
monad stack into a virtual monad stack, which presents itself with a
more suitable interface to a particular component. Views also allow
restricting access (in the sense of permissions) to particular layers
of the monad. An important characteristic of both techniques is that
they can be used non-invasively, by being applied externally and
effectively providing the component with a tailored virtual monad
stack. When there are conflicts that are local to a certain compo-
nent, monad views can also be used invasively to provide a call-
by-reference mechanism to refer to particular layers in the monad
stack. By working with virtual stacks, requirements of components
in terms of the monad stack shape no longer need to be literally
reflected in the concrete monad stack, making these components
more reusable and robust to changes.

We also briefly report on a non-trivial application of our tech-
niques, developed by Schrijvers et al. [24], which shows that the
techniques proposed by us scale well in terms of the number of
monads in a monad stack. In that application 30 monadic compo-
nents and equally as many monad transformers were used. We are
not aware of any Haskell projects using as many transformers at the
same time.

2. Overview
The presentation of our work will be made in Haskell, and we
will assume knowledge of the language. Nevertheless, as discussed
in more detail in Section 7.1, we believe that none of the main
concepts presented by us (the monad zipper, views and masks) are
Haskell-specific.

In this section we briefly introduce the Haskell monad trans-
former library (MTL), provide an overview of the current state-of-
the-art in manipulating monad stacks and illustrate how the monad
zipper and monad views improve upon that state-of-the-art by vir-
tualizing the monad stack.
2.1 Quick Monad Transformers Reference
Our ideas and examples are formulated in terms of a variant of the
MTL.1 See Liang et al. [13] for a more in-depth introduction to
MTL. Figure 1 summarizes the monad transformers, classes and
operations that we use in the course of this paper. The transformers
consist of pure computations (IT, the identity monad transformer)
and computations with a read-only environment (RT), updateable
state (ST) and exceptions (ET). These transformers are combined
into different monad stacks with the identity monad (I) at the
bottom. The type classes (denoted with subscript M) constrain a
monad stack to provide support for a particular effect, without as-
suming a particular stack configuration. Each class offers a number
of primitive operations, such as ask to access the environment for
RM.

2.2 Monadic Components
An important distinction throughout this paper is between monadic
component and client code. The main goal of this paper is to im-
prove the robustness, reusability and convenience of use of the for-
mer. At first sight, it will seem that the client code pays the price for

1 Section 7.2 discusses the differences.

this improvement, because it is forced to make the necessary con-
figuration choices for the more adaptable components. Fortunately,
the complexity can be neatly hidden behind combinators.

Component code Component code is intended to be reused in
different contexts. Typically such code resides in libraries, which
are used by clients in various different applications. As two simple
examples of monadic components, consider an incrementer and an
assertion checker:

inc :: SM Int m⇒ m Int
inc = do x← get

put (x + 1)
return (x + 1)

assert :: EM String m⇒ Bool→ m ()
assert test = if test

then return ()
else throwError "Assertion failed"

What is interesting about these components is that they can be
adapted to work with different concrete monad stacks. This is
possible because we use parametric polymorphism to abstract over
the monad, imposing only the required restrictions on the layout by
using (type-class) constraints. For example, what the signature of
inc tells us is that it can be used by any client whose monad stack
supports state.

Components can, of course, be combined into larger compo-
nents. For example:

comp :: (SM Int m,EM String m)⇒ m ()
comp = do x← inc

assert (x > 0)

Client code Client code instantiates the monad stack, and is de-
fined by the end-user when using the components to build particular
applications. Different stack configurations may be possible:

type M1 = ST Int (ET String I)
type M2 = ET String (ST Int I)

In general, different monad stack layouts have different semantics.
Consider the following run functions for M1 and M2:

runM1 :: Int → M1 a→ Either String (a, Int)
runM1 n = runI ◦ runET ◦ flip runST n
runM2 :: Int → M2 a→ (Either String a, Int)
runM2 n = runI ◦ flip runST n ◦ runET

When we use these functions to instantiate the monad in comp
we can observe the semantic differences between the two monad
stacks:

> runM1 (−1) comp
Left "Assertion failed"

> runM2 (−1) comp
(Left "Assertion failed", 0)

In the case of M1 changes to the state are lost upon throwing an
error, while this is not the case for M2.

2.3 State-of-the-art Manipulation of the Monad Stack
Implicit lifting The monadic components presented in Sec-
tion 2.2 use implicit lifting for accessing the right layer in the
monad stack. Effectful operations like get, put or throwError are
automatically routed to the first layer of the right type in the monad
stack, by exploiting the type-based overloading mechanism of type
classes. This approach is robust, because the routing automatically
adapts to multiple layouts of the monad stack (such as M1 or M2).
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-- identity transformer
newtype IT m a

IT :: m a→ IT m a
runIT :: IT m a→ m a

-- identity monad
newtype I a

I :: a→ I a
runI :: I a→ a

-- reader transformer
newtype RT e m a

RT :: (e→ m a)→ RT e m a
runRT :: RT e m a→ e→ m a

-- state transformer
newtype ST s m a

ST :: (s→ m (a, s))→ ST s m a
runST :: ST s m a→ s→ m (a, s)

-- exception transformer
newtype ET x m a

ET :: m (Either x a)→ ET x m a
runET :: ET x m a→ m (Either x a)

-- reader class
class Monad m⇒ RM e m | m→ e

ask :: RM e m⇒ m e

-- state class
class Monad m⇒ SM s m | m→ s

get :: SM s m⇒ m s
put :: SM s m⇒ s→ m ()

-- exception class
class Monad m⇒ EM x m | m→ x

throwError :: EM x m⇒ x→ m a
catchError :: EM x m⇒ m a→ (x→ m a)→ m a

Figure 1. MTL quick reference.
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Figure 2. Three composition scenarios: ifpos inc, ifpos (lift inc) and ↑ (ifpos (↓ inc)).

Implicit lifting has one big limitation: it is ineffective for com-
bining multiple instances of the same effect because the automatic
type-based selection of a monad layer always picks the first layer
of the right type. If there is another layer of that type below that
layer, implicit lifting cannot access it.

Explicit Lifting Explicit lifting addresses the limitation of im-
plicit lifting to some extent because it allows moving down the
monad stack into a lower layer. Therefore, by calling the effect-
ful operations in lower layers, implicit liftings are routed to monad
transformers that are not at the top of the stack.

The approach consists of using lift methods explicitly to disam-
biguate the targets of accesses to the monad stack. Suppose that
we want to combine two instances of inc in such a way that they
update different counters. Using explicit lifting we could write a
component doubleInc that does the job:

doubleInc :: (SM Int (t m), SM Int m,MonadTrans t)⇒ t m ()
doubleInc = inc >> lift inc >> return ()

The role of lift is to ensure that the second instance of inc updates
a counter in the monad below the current layer (and not at the top-
most layer). The use of lift is reflected in the constraints imposed on
the stack. In this case, the requirement is that the top-level monad
t m must support state and the monad m below must also support
state. If the monad stack is ST Int (ST Int I), then doubleInc
updates the two state layers. Hence, running doubleInc with the
run function below yields the result (((), 1), 6).

run c = runI $ runST (runST c 0) 5

Explicit lifting is essentially, like de Bruijn indices, a relative refer-
ence mechanism: it allows moving n layers below2 the current layer
by using n calls to lift.

A clear limitation of this mechanism is that it is not possible
to refer to layers above the current layer. Yet this functionality is
particularly desirable to preserve modularity when higher-order
components (also known as control flow operators) are involved.
Some compositions of primitive monadic control flow operators
(e.g. catchError) cannot be expressed with lift at all. Furthermore,
components that use lift internally usually impose unnecessary
restrictions on the layout of the monad stack, because they express
relative orderings of layers.

In summary implicit liftings are quite robust to changes and
are convenient to use, but have limited expressiveness; and, while
explicit liftings address the limitations of implicit liftings to some
extent, they too are still limited in expressiveness and there is a
price to pay, in terms of a tighter coupling between component and
monad stack.

2 Note that there are two points of view for lift m in a certain calling
context. From the calling context’s point of view towards m the direction
of movement is downwards, while, vice versa, the direction of movement
from m’s point of view towards the calling context is upwards. Usually, we
adhere to the calling context’s point of view, but occasionally we may have
to use m’s perspective; when that is the case, it should be clear from the
context.
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2.4 Virtualizing the Monad Stack
By presenting the component code with a virtual monad stack,
components become decoupled from the client code’s concrete
monad stack. The monad stack virtualization is achieved by:

1. avoiding lift method invocations inside component code, which
are responsible for the tight coupling; and

2. using the monad zipper and monad views to manage virtual
monad stacks.

In this section we explain how the monad zipper and monad views
are used to develop components free of lift invocations while, at
the same time, allowing for additional expressiveness that is not
possible with explicit lifting alone.

Note that, in the remainder of this section, the intention is just
to demonstrate how the monad zipper, structural masks, nominal
masks and views can be used from the user’s point of view to solve
various problems related to the manipulation of monad transform-
ers. The reader is not expected to understand in detail how the ex-
amples work by the end of Section 2. Instead, the details of each
mechanism will be explained in later sections: Section 3 describes
how the monad zipper works, Section 4 presents views, and Sec-
tion 5 presents the different flavors of masks.

The Monad Zipper With the monad zipper we derive a virtual
stack from a concrete one, that ignores a prefix but does not forget
it. For instance, M3 is a virtual stack for ST Int (ST Int I) that
ignores, but does not forget, the topmost transformer:

type M3 = (ST Int ◃ ST Int) I

Ignoring a prefix enables an operation ↑ much like lift, while
still enabling an inverse ↓ that has no counterpart in the explicit
lifting approach. This is useful for adapting higher-order monadic
components such as ifpos

ifpos :: SM Int m⇒ m Int → m Int
ifpos c = do x← get

if x > 0
then c
else return 0

(which routes the flow of control to c when a state is positive)
to monad layouts where the component c is supposed to access a
monad above the current layer. With the monad zipper this problem
is solved as follows:

> run (↑ (ifpos (↓ inc)))
((1, 1), 5)

Without the monad zipper, the only way to achieve the same result
is to invasively (non-modularly) modify ifpos such that the get
method is lifted: explicit lifting alone is not enough to handle
the scenario on the right of Figure 2. The zipper, on the other
hand, allows ifpos to be reused without any invasive changes to
the original code.

Structural Masks Masks take the monad zipper one step further
and allow selectively ignoring stack layers at multiple arbitrary po-
sitions in the monad stack (not just prefixes). Consider for instance
the monad stack

type M = ST Int (ST Int (ET String (ET String I)))

to which the two components ifpos and comp>>get have interleaved
access in the composition

client :: M Int
client = from m1 (ifpos (to m1 (from m2 (comp >> get))))

where m1 = �
m2 = � ::: � ::: � ::: �

ST
Int
ST
Int
ET
String
ET
String

I

ST
Int
ET
String

ST
Int

ET
String

M m1 m2

RT
Int

m3

Figure 3. The monad stack M and the layers visible through masks
m1, m2 and m3: black layers are masked and gray layers are ab-
stracted over.

Here, the mask m2 = � ::: � ::: � ::: � has a meaning similar to
the bitvector 1001. When imposed on a monad stack, it ignores the
second and third layers. The from m and to m functions, with m a
mask, generalize ↑ and ↓. For instance, from m2 comp gives comp
access to the first and fourth layer in a monad stack. Similarly,
m1 provides ifpos with access to the second and third layers. See
Figure 3 for a graphical depiction. Note that the layers in gray
are not masked for the corresponding component, but nor is that
component aware of their presence. This is either because a visible
layer higher up in the monad stack blocks a similar layer lower
down from view, or because the component’s polymorphic type
does not mention (i.e., abstracts away) the effect of a layer.

Masks with Restricted Views Masks are special instances of a
more general mechanism called views. As such, masks can be freely
combined with other types of views. For instance, the following
example shows how to use masks in combination with a read-only
view r1, which provides a read-only view of a state monad.

client′ :: M Int
client′ = from m1 (ifpos (to m1 (from m2 comp >> from m3 ask)))

where m1 = �
m2 = � ::: � ::: � ::: �
m3 = r1

The ask component, whose type is RM e m ⇒ m e (see also
Figure 1), requires a reader monad, but the concrete monad M has
no layer with a monad of that kind. However, we can view one of
the state monads as a reader. The read-only view r1, used in the
mask m3, does precisely this and allows the component ask to view
the first state monad in M as a reader monad.

Nominal Masks Referring to layers in a structural fashion (with
the monad zipper or bitvector-like masks) can be fragile when the
layout of the monad stack is likely to change. With a nominal mask,
the client code specifies the names (not the locations) of the layers
to be used by a component. That component is then automatically
matched up with the correspondingly named layers in the monad
stack. For instance, with nominal masks the client example would
be rewritten as:

client′′ = ifpos ((comp >> get) ‘use‘ (Counter1 & Err2))

35



Here, Counter1 and Err2 are the names of respectively the first and
fourth stack layer. The combinator use takes a list of names and
makes the layers tagged with those names visible to the compo-
nents. The list of names is assembled using the combinator & . The
nominal masking infrastructure is built on top of structural masks.
The big benefit of using the nominal approach instead is that it is
much more robust: if the layers are rearranged, the nominal masks
do not have to change at all.

Call-by-reference with Views A final application of views and
masks is to allow for a call-by-reference programming style (that
is discussed in Section 5.3) in which the view arguments act as
references to particular layers in the monad stack.

add :: (Monad m,SM Int n1, SM Int n2)
⇒ (n1 Z m)→ (n2 Z m)→ m ()

add xref yref = do x← getv xref
y← getv yref
putv xref (x + y)

In this example xref and yref are two view arguments and the getv
and putv operations, which generalize the state monad get and put
operations, use such views to access the right layer in the monad
stack. This functionality is especially useful when a component
employs multiple instances uses of the same effect. By using this
call-by-reference style it is possible to avoid the pollution and the
ordering constraints on the stack imposed by lift methods.

3. The Monad Zipper
This section presents the monad zipper: a monad transformer that
is used to shift the focus of automatic lifting to the desired layer in
the monad stack. In essence, the monad zipper allows us to ignore
layers at the top of the stack while, at the same time, preserving
these same layers, which allows shifting the focus back to the top
when needed.

3.1 Stacks and Zippers
Sometimes type-level problems get easier when we move them to
the term level. Let’s reify the structure of the monad stack in a data
type

data Stack = Trans · Stack | Bottom Monad
data Trans = T1 | ... | Tn

data Monad = I

where the Ti represent the different transformers and I represents I.
Huet [9] taught us how to shift the focus to any position in a

data structure, with his zipper. Here is the Zipper for Stack:

data Zipper = Zipper Path Trans Stack
data Path = Path I Trans | Top

where Zipper p l s denotes a stack with layer l in focus, remainder
of the stack s and path p back to the top of the stack. The path is a
reversed list, where the first element is closest to the layer in focus
and the last element is the top of the stack. With a little syntactic
sugar

(◃) = Zipper

we obtain the self-explanatory notation (Top I T1 I T2 I T3 ◃
T4) (T5 · I), where the triangles point towards the layer in focus T4.

The zipper function turns a stack into a zipper with the first
element in focus:

zipper :: Stack → Zipper
zipper (t · s) = (Top ◃ t) s

while the up and down functions allow shifting the focus one
position up or down:

up, down :: Zipper → Zipper
up (Zipper (p I t1) t2 s) = (p ◃ t1) (t2 · s)
down (Zipper p t1 (t2 · s)) = (p I t1 ◃ t2) s

It’s all well and good to zip around a reified form of the monad
stack, but can we do it on the real thing too?

3.2 Monad Zipper
The answer is yes. Here is how the monad zipper (◃) is defined:

newtype (t1 ◃ t2) m a = ZT {runZT :: t1 (t2 m) a}
where the type (p◃t) s has similar meaning to the reified data struc-
ture above. However, the monad zipper only changes the type rep-
resentation: the newtype indicates that no actual structural change
to the monad stack t1 (t2 m) takes place. The only change takes
place in the form of the type, which will enable us to select a dif-
ferent type class instance depending on the layer in focus. We will
see more on this later, but first let us complete the analogy between
types and terms.

Term-level stack composition (·), as in T1 · M1, corresponds to
type application, as in t1 m1. As to I, the type system will not
allow terms of type Zipper to be used when terms of type Stack
are expected. This segregation is not the case at the type level: the
monad zipper type (◃) can appear as part of a monad stack. Indeed,
we define t1 ◃ t2 to be the monad transformer composition of t1 and
t2:

instance (MonadTrans t1,MonadTrans t2)
⇒ MonadTrans (t1 ◃ t2) where

lift = ZT ◦ lift ◦ lift

Hence, at the type level, we simply use ◃ where I was needed
at the term level. So, the monad stack representation (t1 ◃ · · · ◃
ti) (ti+1 · · ·m) denotes a monad stack with focus on ti.

Finally, analogous to what the zipper function does with Stack,
a monad transformer stack can be transformed into explicit zipper
form by the following function:

zipper :: t m a→ (IT ◃ t) m a
zipper = ZT ◦ IT

where the identity monad transformer IT acts as the Top sentinel.
However, the IT sentinel is unnecessary, as the unadorned

monad stack t m a already expresses that the focus rests on t.
There is no point in adding IT to subsequently ignore it again with
IT ◃ t. In general, t1 (t2 · · · (tn m)) represents a monad stack with
focus on t1. So we will not actually use the above zipper function.

In summary, the term (Top I T1 I T2 I T3 ◃ T4) (T5 · I) is the
reified form of the type (t1 ◃ t2 ◃ t3 ◃ t4) (t5 I).

Relative Navigation Suppose we have a monad transformer stack
t1 (t2 · · · (tn m)). Then the focus lies by default on the top-most
transformer t1. The monad zipper becomes useful only when we
shift the focus away from t1 to t2. The constructor ZT accomplishes
that shift of focus, but how can we navigate further down, and back
up?

Let us start with moving the focus one step further down:

step2to3 :: (t1 ◃ t2) (t3 m) a→ (t1 ◃ t2 ◃ t3) m a
step2to3 = ZT

A further step down:

step3to4 :: (t1◃t2◃t3) (t4 m) a→ (t1◃t2◃t3◃t4) m a
step3to4 = ZT

The pattern should now be obvious. A single step down at any
position in the stack is defined as:

↓ :: t1 (t2 m) a→ (t1 ◃ t2) m a
↓ = ZT
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Stepping back up is similar:

↑ :: (t1 ◃ t2) m a→ t1 (t2 m) a
↑ = runZT

Finally, note that ↓ ◦ ↑ ≡ id and ↑ ◦ ↓ ≡ id hold.

Focused Behavior So far, all we have seen is notation. The in-
teresting behavior of t1 ◃ t2, where it should deviate from a plain
monad transformer composition, lies in the methods of the monad
classes, e.g. put of SM. For looking up the method implementations
it should ignore (look through) t1 and only consider t2 m. This is
achieved, e.g. for the state monad SM defined in Figure 1, by lifting
the operations through t1:

instance (MonadTrans t1,MonadTrans t2,Monad m, SM s (t2 m))
⇒ SM s ((t1 ◃ t2) m) where

get = ZT $ lift $ get
put = ZT ◦ lift ◦ put

Contrast this with GHC’s newtype deriving construct, that would
adopt the same behavior for (t1◃ t2) m as for t1 (t2 m), e.g., defining
the former’s get in terms of the latter’s as ZT get.

In order to generally characterize the required behavior of
monad subclass instances such as the above one for SM, we im-
pose the following law.

Law 1 (Lift Compatibility). Given any monad subclass constraint
CM and any computation in this monad subclass x :: ∀ m.CM m ⇒
m A, for any type A. Then we must have that

↑ (x :: (T1 ◃ T2) M A) ≡ lift (x :: T2 M A)

for any monad transformers T1 and T2, and monad M such that
CM (T2 M) holds.

Observe that this law holds for the above SM instance.
As we have no space to provide the details of all monad trans-

former instances for the monad zipper, we refer the interested
reader to our implementations using our variant of the MTL library3

and the Monatron library [10].4
In summary, like explicit lifting, the monad zipper allows us

to shift the focus to layers below the current focused layer via ↑.
However, unlike explicit lifting, we can also shift the focus to layers
above the focused layer with ↓. As we saw in Section 2.4 the extra
expressiveness of the monad zipper allows for applications which
are not possible with explicit liftings.

4. Views
The general problem we face when composing effectful compo-
nents is that of incompatible assumptions about the monad stack.
The solution is to work with one concrete monad stack, but to
present each component with a suitable virtual monad stack. The
correspondence between the concrete and virtual monad stack is
captured in a view.5 In Section 5 we will see how the views frame-
work benefits from the monad zipper.

4.1 Virtual Views as Monad Morphisms
Semantically, a view corresponds to the categorical notion of a
monad morphism (also called monad transformation in category
theory, not to be confused with Haskell monad transformers that are
a special case). Because we will be using different representations
for monad morphisms, we capture the essential features in the
MonadCategory type class.

3 http://users.ugent.be/˜tschrijv/Haskell/MTLzipper.tgz
4 http://hackage.haskell.org/package/Monatron
5 Not to be confused with Wadler’s notion of view [28].

class MonadCategory ({) where
idM :: (Monad m)⇒ m{ m
(•) :: (Monad l,Monad m,Monad n)

⇒ (m{ n)→ (l{ m)→ (l{ n)
hmap :: (Monad m,Monad n,MonadTrans t)

⇒ (m{ n)→ (t m{ t n)
from :: (Monad m,Monad n)⇒ (n{ m)→ n a→ m a

The MonadCategory class describes a category with monads as
objects and monad morphisms as arrows. The identity and compo-
sition of the category are idM and (•), which satisfy the right and
left identity, and associativity laws:

v • idM ≡ v
idM • v ≡ v

v1 • (v2 • v3) ≡ (v1 • v2) • v3

A Haskell monad transformer t corresponds to an infinite num-
ber of monad morphisms in a particular representation{:

{from−1lift :: m{ t m | m ∈ Monad}

At the same time not all monad morphisms can be expressed by
means of Haskell monad transformers. For instance, RT I { ST I
does not reflect the application of a monad transformer to a monad.

What characterizes Haskell monad transformers is that they
are functors over monad morphisms, and hmap allows mapping a
morphism through a monad transformer, which satisfies the functor
laws:

hmap idM ≡ idM

hmap (v2 • v1) ≡ hmap v2 • hmap v1

The from function applies a monad morphism to a monadic com-
putation. A monad morphism preserves the monad structure.

from v ◦ return ≡ return
from v (x >>= f ) ≡ from v x >>= from v ◦ f

4.2 Uni-directional Views
Uni-directional views constitute the obvious implementation of
MonadCategory.

newtype n X m = Uni (∀a.n a→ m a)
instance MonadCategory (X) where

idM = Uni id
v2 • v1 = Uni $ from v2 ◦ from v1

hmap v = Uni $ tmap (from v)
from (Uni v) = v

The above implementation is mostly straightforward, but we
require a new operation tmap supported by all monad transformers
to implement hmap. To avoid interrupting the flow, we continue
with uni-directional views and refer to Section 7.2 for details on
tmap.

The lift function is the most prominent example of a uni-
directional view, which turns a monad transformer into the uni-
directional view presentation:

liftv :: (MonadTrans t,Monad m)⇒ m X t m
liftv = Uni lift

Uni-directional views for restricted access Uni-directional views
are useful to restrict access to monadic layers that are shared by
multiple components. For example, suppose we wanted to provide
particular components only with read access to a shared state. The
view r1 can be used to achieve this.
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r1 :: (MonadTrans t,Monad m, SM s (t m))⇒ RT s m X t m
r1 = Uni $ λn→ do s← get

lift $ runRT n s

In this case the monad transformer t can be any state monad trans-
former (in particular it can be ST s).

4.3 Bi-Directional Views
Some views are invertible. An invertible view is a monad isomor-
phism, or bi-directional view. We capture bi-directional views in a
separate datatype.

data n Z m = Bi { fromZ :: ∀a.n a→ m a
, toZ :: ∀a.m a→ n a}

A bi-directional view is of course an instance of MonadCategory.

instance MonadCategory (Z) where
idM = Bi { fromZ = id

, toZ = id }
v2 • v1 = Bi { fromZ = fromZ v2 ◦ fromZ v1

, toZ = toZ v1 ◦ toZ v2 }
hmap v = Bi { fromZ = tmap (from v)

, toZ = tmap (to v)}
from v = fromZ v

to :: (Monad n,Monad m)⇒ n Z m→ m a→ n a
to = toZ
inverse :: (Monad n,Monad m)⇒ n Z m→ m Z n
inverse (Bi from to) = Bi to from

where
v • inverse v ≡ idM ≡ inverse v • v

Abstract view constructor To abstract from the Uni and Bi repre-
sentations of bi-directional views, we provide an overloaded view
constructor function.

class MonadCategory ({)⇒ View ({) where
view :: (∀a.n a→ m a)→ (∀a.m a→ n a)→ n{ m

instance View (X) where view f f −1 = Uni f

instance View (Z) where view f f −1 = Bi f f −1

Using this constructor has the advantage that we can build over-
loaded views that work not only as bi-directional views, but also as
uni-directional views. This is useful to capture isomorphic views
like:

stateIso :: (Monad m,View ({))
⇒ (s2 → s1)→ (s1 → s2)→ ST s2 m{ ST s1 m

stateIso f f −1 = view (iso f f −1) (iso f −1 f ) where
iso g h m = ST $ λs2 → do (a, s1)← runST m (h s2)

return (a, g s1)

without committing to bi-directional views in particular. In this
case stateIso converts between ST s1 m and ST s2 m where s1
and s2 are isomorphic. This is useful, for instance, to share a state
between components that expect values in different units, or to
employ different character or data encodings.

Isomorphic Read-Only Views Consider how we can turn the uni-
directional read-only view r1 into a bi-directional one. For that
purpose, the target type RT s m is unsuitable because it cannot
keep track of updates. So we need to alter the target type for bi-
directional read-only views. Fortunately, components are typically
polymorphic in the monad stack and do not particularly care about
a RT view; any instance of RM will do. We may put this freedom to
good use by defining our own instance that is (trivially) isomorphic
with any state monad.

newtype SMRT s m a = SMRT {runSMRT :: m a}
instance SM s m⇒ RM s (SMRT s m) where

ask = SMRT get
instance MonadTrans (SMRT s)
r :: (SM s m,View ({))⇒ SMRT s m{ m
r = view runSMRT SMRT

5. Masks
The operations on views presented in Section 4 can be seen as
the foundation for a masking language for monad transformers.
Using this masking language it is possible to apply a mask to a
particular monad stack to hide, restrict access or grant full access
to the various layers in the monad stack.

5.1 Structural Masking
Consider again the example program of Section 2.4 where two
components, ifpos and comp >> get, access disjoint layers in the
monad stack M.

type M = ST Int (ST Int (ET String (ET String I)))

The former component accesses the second and third layer, while
the latter component accesses the first and fourth layer. The snag is
that the same state monad transformer type is used for the first and
second layer, and the same error monad transformer for the third
and fourth layer.

The repeated transformer types suggest to use the monad zipper,
but there is a complication. So far we have used the monad zipper
to create a single focal point, ignoring a prefix of the monad stack.
What we need now are multiple focal points, ignoring arbitrary
parts of the monad stack inbetween. We achieve this by composing
multiple zippers into a single view. We call such a view a structural
mask, a mask because it hides particular layers of the monad stack,
and structural because the form of the mask follows the structure
of the monad stack (we will see non-structural masks later).

To facilitate writing structural masks, we formulate them in
terms of two primitive (1-layer or 1-bit) masks � and �, and one
combinator (:::) that associates to the left.

The symbols � and � denote respectively a transparent and an
opaque mask, similar to role the bits 1 and 0 play in a bit mask. In
our approach, � means as much as “I want to see the current layer
of the monad stack” and � means “I don’t want to see the current
layer”. The (:::) combinator, that associates to the left, adds a 1-bit
mask at the front of an n-bit mask, similar to the list cons operator
(:).

The views framework of Section 4 provides the appropriate
infrastructure to implement the mask primitives: The � mask is
nothing more than the identity isomorphism.

� :: (Monad m,View ({))⇒ m{ m
� = idM

The � mask captures another familiar isomorphism, that of the
monad zipper.

� :: (MonadTrans t1,MonadTrans t2,Monad m,View ({))
⇒ (t1 ◃ t2) m{ t1 (t2 m)
� = view ↑ ↓

Finally, the composition operator is:

(:::) :: (Monad m,Monad n
,MonadTrans t1,MonadTrans t2,View ({))

⇒ (t1 n{ t2 n)→ (m{ n)→ (t1 m{ t2 n)
v1 ::: v2 = v1 • hmap v2

So a mask that hides the second and third layer is
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m2 :: ...⇒ t1 (((t2 ◃ t3) ◃ t4) m){ t1 (t2 (t3 (t4 m)))
m2 = � ::: � ::: � ::: �

Similarly, we could write a mask that hides the first and fourth layer
as � ::: � ::: � ::: �. However, the much shorter

m1 :: ...⇒ (t1 ◃ t2) m{ t1 (t2 m)
m1 = �

has exactly the same effect in this example. In conclusion, the
desired composition is

client :: M Int
client = from m1 (ifpos (to m1 (from m2 (comp >> get))))

5.2 Nominal Masking
While the structural masking approach above resolves the issue
of focusing on different layers, it can be awkward to use and
maintain. Masking the stack requires global structural knowledge
of the monad stack that is fragile with respect to changes. When the
stack layout changes, all masks have to be adjusted accordingly.

As a remedy, we propose a nominal masking technique. A
nominal mask specifies the names rather than the positions of the
monad stack layers that a component may access. The layers in the
monad stack are correspondingly tagged with these names. Using
the names and the tagged stack structure, the appropriate structural
masks are automatically derived. This makes the approach much
more robust: when the stack layers are reorganized (e.g. to insert a
new layer or to swap two layers), the structural masks are adjusted
accordingly.

Tagged Monad Stack The TT tag monad transformer labels a
particular position in the monad stack with a type-level name tag.

newtype TT tag m a = TT {runTT :: m a}
instance MonadTrans (TT tag) where

lift = TT

which can be combined with other monad transformers, e.g. ST to
create tagged transformers.

type TST tag s m = TT tag (ST s m)
runTST :: Monad m⇒ tag→ s→ TST tag s m a→ m (a, s)
runTST t s m = runST (runTT m) s

Singleton types are used for tag names, e.g.

data Counter1 = Counter1

data Counter2 = Counter2

The type class TWith tag n m relates a monad stack n with a
particular mask m that puts the focus on the layer with name tag.

class (Monad m,Monad n)⇒ TWith tag n m where
structure :: View ({)⇒ tag→ (n{ m)

We refer to Appendix A for the instances implementing TWith;
these automatically derive the appropriate structural mask.

Two convenient additional combinators are

use :: TWith tag n m⇒ n a→ tag→ m a
c ‘use‘ name = fromZ (structure name) c
expose :: TWith tag n m⇒ m a→ tag→ n a
c ‘expose‘ name = toZ (structure name) c

Hence, we may write

c = do inc ‘use‘ Counter1

(inc >> inc) ‘use‘ Counter2

return ()

to configure a number of incrementers. The stack layout is easily
modified without requiring changes to the component configura-
tion.

> runI $ runTST Counter2 5 $ runTST Counter1 0 $ c
(((), 1), 7)
> runI $ runTST Counter1 0 $ runTST Counter2 5 $ c
(((), 7), 1)

The above approach can be extended from masking with a
single tag to masking with a type-level list of tags. For instance,
Counter1 & Error1 represents a mask that views both layers
Counter1 and Error1. Here, (&) is the constructor for non-empty
type-level lists. We refer to the source code for all the necessary
definitions.

Moreover, it nicely integrates with the other views. For instance,
stateIso f f −1 • structure Counter selects the layer named Counter
and applies a state isomorphism to it.

5.3 Formal Mask Parameters
So far, we have applied masks, and views in general, on compo-
nents in a non-invasive fashion, from the outside. However, views
as formal parameters within components also have an important
use in disambiguating different instances of an effect. Obviously
externally applied views are no solution to this problem that al-
ready manifests itself inside a component. The traditional solution
to disambiguate two different states within a component is to use
lift.

Consider again the doubleInc example in Section 2. To disam-
biguate the two states, we have used lift. Unfortunately, such in-
ternally motivated uses of lift impose unnecessary ordering con-
straints: in the monad stack one state transformer must appear
above the other. Reversing the order of the two transformers is not
possible; for that purpose we need to change the component imple-
mentation or write an alternate version.

Explicit view parameters allow us to abstract from the ordering,
similarly to tagged transformers [19, 25] but with two advantages:
(i) we get the full expressivity of views for adapting the concrete
monad stack, and (ii) we get the full expressivity of bi-directional
views for handling mutual embedding of components.

doubleInc2 :: (MonadCategory ({), SM Int n1

,SM Int n2,Monad m)
⇒ (n1 { m)→ (n2 { m)→ m Int

doubleInc2 v1 v2 = do from v1 inc
from v2 inc

So doubleInc2 � �, doubleInc2 � � and doubleInc2 � � express
both orderings of two disjoint states as well as a single shared state.

Call-by-reference Operations It is possible to create variants of
effectful operations that take a view argument. For example, the
getv and putv operations used in the add example in Section 2 are
defined as:

getv v = from v $ get
putv v = from v ◦ put

6. Case Study: Monadic Mixins
This section illustrates the uses of the monad zipper and monad
views on monadic mixins. Because monadic mixins are higher-
order components with non-trivial control flow patterns, traditional
mechanisms to manipulate the monad stack do not provide ade-
quate support. However, with the monad zipper and monad views,
the complex control-flow patterns of monadic mixins do not pose a
problem.
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6.1 Monadic Mixin Components
Mixins We briefly summarize the notion of mixins, and refer the
interested reader to previous literature on the topic for a more in-
depth treatment [4]. A simple form of mixins can be easily imple-
mented in Haskell as follows:

type Mixin s = s→ s
fix :: Mixin s→ s
fix a = a (fix a)

(�) :: Mixin s→ Mixin s→ Mixin s
a1 � a2 = λproceed → a1 (a2 proceed)

The type Mixin s is a synonym for a function with type s →
s representing open recursion. The parameter of that function is
called a join point, that is, the point in the component at which
another component is added. The operation � defines component
composition. The function fix is a fixpoint combinator used for
closing, or sealing, an open and potentially composed component.

Combining monads with mixins When combined with monads,
mixins allow us to model a simple form of AOP-like advice [17].
However, the control-flow patterns of programs using mixins are
complex. For instance, consider the following memoization com-
ponent and a monadic fibonacci function.

memo :: SM (Map Int Int) m⇒ Mixin (Int → m Int)
memo proceed x =

do m← get
if member x m

then return (m ! x)
else do y← proceed x

m′ ← get
put (insert x y m′)
return y

fib :: Monad m⇒ Mixin (Int → m Int)
fib proceed n =

case n of
0→ return 0
1→ return 1
→ do y← proceed (n − 1)

x← proceed (n − 2)
return (x + y)

We can instantiate different monads, using the corresponding run
functions of Figure 1, to recover variations of the fibonacci func-
tion. For example, the identity monad recovers the effect-free func-
tion while a fast fibonacci function is obtained by adding the memo
advice and suitably instantiating the state monad:

slowfib :: Int → Int
slowfib = runI ◦ fix fib
fastfib :: Int → Int
fastfib = evalM empty ◦ fix (memo � fib)
evalM :: s→ ST s I a→ a
evalM s m = runI $ runST m s >>= return ◦ fst

Another component for profiling is

prof :: SM Int m⇒ Mixin (a→ m b)
prof proceed x = do c← get

put (c + 1)
proceed x

which allows us to count the number of calls to the fibonacci
function

proffib = evalM 0 ◦ fix (prof � fib)

Transformer Conflicts Of course, we would also like to profile
the memoized fibonacci function to get an idea of how much more
efficient it is.

profmemofib :: Int → ST Int (ST (Map Int Int) I) Int
profmemofib = fix (prof � memo � fib)

Unfortunately, the type checker complains that Int and Map Int Int
are distinct types. The problem is that there are two uses of get
in our components: one in prof ; and another in memo. Due to
automatic lifting, both get methods read the state from the same
top-level ST, which happens to contain an Int value. This is the
right thing to do for prof , but wrong for memo that expects a value
of type Map Int Int.

6.2 Zipping Mixins
The problem above can be solved using the monad zipper to pro-
vide a new composition operator ⊗ for mixins.

(⊗) :: Mixin (a→ t1 (t2 m) b)
→ Mixin (a→ (t1 ◃ t2) m b)
→ Mixin (a→ t1 (t2 m) b)

c1 ⊗ c2 = λproceed x→ c1 (↑ ◦ c2 (↓ ◦ proceed)) x

This combinator associates the left-to-right order of components
with a corresponding top-to-bottom order of monad layers. Here
component c1 focuses on the current layer, and c2 looks one posi-
tion down – that’s why we have to bring proceed down (↓) to its
level and shift the whole back up (↑) to the current level.

This combinator is very useful whenever we have a set of com-
ponents that uses a disjoint set of monads (that is, each component
will use different monads). No additional work is needed to make
the two state transformers of prof and memo happily coexist.

profmemofib :: Int → ST Int (ST (Map Int Int) (IT I)) Int
profmemofib = fix (prof ⊗ memo ⊗ fib)

Note that every component has its own transformer, notably IT for
fib, and we use the base monad I at the bottom of the stack.

6.3 Views and Masks
When using mixins we generally need the full power of bi-
directional views to shift between two isomorphic monads. To
make this shifting convenient we use the following combinator:

fmask :: (Monad m,Monad n)
⇒ (n Z m)→ Mixin (a→ n b)→ Mixin (a→ m b)

fmask v mix proceed = from v ◦ mix (to v ◦ proceed)
mix ‘usesm‘ names = fmask (structure names) mix

The fmask combinator takes a view v and applies it to a mixin mix
executing the to function after proceeding and the from function
after the mixin. Nominal views are applied with usesm.

To demonstrate the application of masks and views on monadic
mixin components, consider a simple assertion component that is
used to check the output of a computation. We will show how this
component is useful for checking whether the result of computing
the fibonacci function has overflowed or not.

assertDump :: (EM String m,RM s m, Show a, Show b, Show s)
⇒ (b→ Bool)→ Mixin (a→ m b)

The assertDump component applies an assertion (a function of
type b→ Bool) to the output of proceed’s computation. If the asser-
tion fails, an error is raised. The error message includes information
on the state at the time of the error, to facilitate debugging.

This assertDump component allows the creation of another vari-
ant of the fibonacci program where, along with memoization and
profiling, we also check for overflow and dump the memo table
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when overflow happens. Because we may be interested in recov-
ering from the overflow (for example, by changing the represen-
tations of the inputs and outputs from Int to Integer) and continu-
ing the computation, the exception layer should be at the top of the
stack. Also, profiling works better if it is executed before memoiza-
tion, so the profiler component should be in between assertDump
and memo. However, assertDump requires access to the monadic
layer with the memo table. In order to combine these components
together we should make sure that all the constraints are satisfied.

Because there is no simple one-to-one correspondence between
mixins and stack layers, we use the nominal approach. In addition,
the r imposes a read-only view on the Memo state for assertDump.

test :: Int → ((Either String Int, Int),Map Int Int)
test = myEval ◦

fix ( assertDump (> 0) ‘fmask‘ r ‘usesm‘ Err & Memo� prof ‘usesm‘ Prof� memo ‘usesm‘ Memo� fib)
myEval m = runI $ runTST Memo empty

$ runTST Prof 0
$ runTET Err $ m

6.4 Monadic Mixins in Practice: Search Combinators
Schrijvers et al. [24] present a compelling application of the
monadic mixins. They provide a Domain Specific Language (DSL)
for expressing a complex search heuristic as a concise combination
of primitive combinators. In their implementation, each primitive
combinator corresponds to a monadic mixin component. The ad-
vantage and novelty is twofold: 1) flexibility because the user is
able to combine combinators any way she wants, and 2) extensibil-
ity because the system developer is able to add new combinators
without touching the existing ones.

To fit in with the Gecode C++ Constraint Programming li-
brary and for performance reasons, a staged approach is taken. The
Haskell mixin components are code generators that collaborate to
produce the C++ code for the overall search algorithm. For ex-
ample, a search heuristic tailored to solving radiation therapy plan-
ning problems [1] of typical size consists of 20-30 monadic mixins,
each with their own monad transformer, that collaborate to produce
around 2000 lines of specialized C++ code. We are not aware of
other Haskell projects with comparable monad stack sizes.

Effect Encapsulation Additionally to the techniques already in-
troduced by us earlier in this section, the search combinators appli-
cation employs a technique that facilitates the dynamic composition
of many mixin components from a parsed specification string: each
component encapsulates its own effect. Even statically this encap-
sulation makes sense. After all, the type of a monad stack with 20
layers is rather unwieldy.

The Component datatype below illustrates the encapsulation
technique on the simple Mixin type.6 The effect t2 of the component
is existentially quantified to hide it, and the included run function
allows eliminating it.

data Component a b = ∀ t2.MonadTrans t2 ⇒
Component {behavior :: ∀ t1 m.(MonadTrans t1,Monad m)

⇒ Mixin (a→ (t1 ◃ t2) m b)
, run :: ∀ m x.Monad m⇒ t2 m x→ m x}

While not all monad transformers support a run function of the
above type, it is convenient and sufficient for our search combina-
tors. For more details on the encapsulation technique and a more
general form of run function, we refer to [22, Section 3.4].

6 The mixin record type of search components is too elaborate to show here.

Performance Considerations We have not performed any sys-
tematic benchmarks yet, but do have a few observations on per-
formance. Because it is defined as a newtype, wrapping and un-
wrapping the monad zipper does not add any space or runtime over-
head. It does generate different type class dictionaries for the differ-
ent components, and depending on the amount of inlining this ei-
ther happens once (statically) or repeatedly for each invocation of a
component (dynamically). The latter scenario notably arises when
the effect types are existentially quantified. We have observed that
this repeated creation of dictionaries puts compositions with around
60 monad transformers out of reach. In conclusion, gracefully and
predictably scaling performance to monad stack sizes well beyond
30 layers is an open challenge.

7. Discussion and Related Work
7.1 The Haskell Setting
Our approach makes use of two key ingredients, monadic types and
constrained polymorphism, which are both available in Haskell.
The combination of these provides the necessary flexibility for
effectful components to be adapted to many different settings.

One important advantage of using of Haskell is type-inference.
In a setting like ours, where types can be relatively complex, type-
inference is a blessing and allows most types to be inferred auto-
matically. Indeed, although we have often used type annotations
in our examples for documentation, those annotations are (for the
most part) not necessary.

While Haskell provides the two necessary ingredients, there is
potential for transferring the presented ideas to other settings. The
monad zipper, views and structural masks have category theory
interpretations and as such are of a more general nature. Indeed,
they are relevant and adaptable to other settings that deal with
explicit effects. Haskell-specific implementation aspects can find
alternative counterparts in other languages. For instance, in Scala
implicits can replace type classes [16]. The type-class tricks to
look up names for nominal masks, popularized by Kiselyov [12],
could be considerably simplified in a dependently typed language.
Finally, a language design that natively supports the presented
concepts is another option.

7.2 Effect Systems and Modular Monads
Effect systems (also known as type-and-effect systems) [14] form
a popular non-monadic approach for making side effects explicit.
However, they only describe (and do not define) programs that al-
ready have a meaning independent of the effect system. Hence,
the effect annotations cannot adapt component behavior. Filin-
ski’s MultiMonadic MetaLanguage (M3L) [7, 8] does embrace the
monadic approach, but uses subtyping (or subeffecting) to com-
bine the effects of different components. The subtyping relation is
fixed at the program or language level, which does not provide the
adaptability we achieve with constrained polymorphism.

Since Moggi [15] proposed monads to model side-effects, and
Wadler [30] popularized them in the context of Haskell, various
researchers (e.g., [11, 26]) have sought to modularize monads.
Monad transformers emerged [3, 13] from this process, and in
later years various alternative implementation designs, facilitating
monad (transformer) implementations, have been proposed, such
as Filinksi’s layered monads [6] and Jaskelioff’s Monatron [10].

In this paper, we rely on several of Monatron’s techniques for
implementing monad transformers. However, so as not to confuse
the reader, we have incorporated the necessary techniques form
Monatron in the familiar setting of the Monad Transformer Li-
brary7 (MTL).

7 which implements the original ideas of [13]
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In our variant of the MTL, 8 monad transformers have to supply
two additional operations, tmap and mw, which are inspired by
Monatron:

class MonadTrans t where
lift :: Monad m⇒ m a→ t m a
tmap :: (Monad m,Monad n)

⇒ (∀x.m x→ n x)→ t m a→ t n a
mw :: Monad m⇒ MonadWitness t m

Here, tmap allows transforming the monad underneath a trans-
former t. We have two uses for this additional operation:

• Our first use, just like in Monatron, is to lift control opera-
tors like catchError and local through other transformers; in
the original MTL these operations could not be lifted. In our
setting, it enables us to implement these control operators ap-
propriately for the zipper (◃).
For instance, here is the zipper implementation of the local
operator from the RM type class:

local f m = ZT $ tmap (local f ) $ runZT m

• The second use, already covered in Section 4, is for the im-
plementation of the hmap function of the MonadCategory type
class.

The mw method encodes the property ∀m.Monad m⇒ Monad (t m)
as a GADT witness.

data MonadWitness t m where
MW :: Monad (t m)⇒ MonadWitness t m

In the original MTL, this property holds informally, but is neither
enforced nor exploitable. We require this property to implement
many of the zipper’s operations. For instance, the return method
for the zipper is defined as:

return x = case (mw :: MonadWitness t2 m) of
MW → case (mw :: MonadWitness t1 (t2 m)) of

MW → ZT $ return x

In the Monatron design, the property is directly conveyed to the
type checker in the form of a single type class instance:

instance (Monad m,MonadTrans t)⇒ Monad (t m) where ...

However, this approach is not compatible with the MTL design.
Hence, our GADT witness approach.

A limitation of tmap, both in Monatron and our MTL variant, is
that it only works for covariant monad transformers. For instance,
the contravariant continuation monad transformer cannot imple-
ment this operation.

7.3 Tag-indexed monads
It has been independently suggested by Snyder & Alexander [25]
and Piponi [19] that indexing monad transformers with a type-
level tag improves their convenience and robustness to changes.
MTLX [25] is a monad transformer library that embodies this idea:
automatic lifting ambiguities are resolved by tags. For example,
consider the programs p1 and p2 written, respectively, in the MTL
and MTLX.

p1 :: (SM Int m, SM Bool m)⇒ m Int
p1 = do b← get

x← get
return (if b then x else 0)

8 available at http://users.ugent.be/˜tschrijv/Haskell/
MTLzipper.tgz.

p2 :: (SM Ix1 Int m, SM Ix2 Bool m)⇒ m Int
p2 = do b← get Ix1

x← get Ix2

return (if b then x else 0)

The p1 program does not type-check because the functional depen-
dencies in the type class SM require that the state type is uniquely
determined by m, but in this program two different state types are
used. The program p2, written for MTLX, solves this issue by using
a SM class with a third type parameter, which is used to index the
monad and determine the state type (along with the monad type),
which avoids the conflict in p1.

The main advantage of indexed monads is that they simplify the
implementation of monadic components with multiple instances
of the same effect. However tags commit to global names, which
restricts reuse. If the lack of flexibility is not an objection, tags are
a good solution. However, when the primary focus is flexibility and
reusability, tags have important drawbacks compared to the monad
zipper and monad views. In the MTLX approach, it is possible to
abstract over the tag in order to be able to choose the monad layer
later. For example:

inc :: (SM ix Int m)⇒ ix→ m Int
inc ix = do x← get ix

put ix (x + 1)
return (x + 1)

This value-level abstraction is more verbose than the monad zip-
per’s type-level abstraction; it is an invasive approach that requires
the component to be written with tags in mind. Moreover, for the
price of value-level abstraction, we get a lot more expressivity from
views: restricting access to layers is not possible with tags. Finally,
a predefined set of tags is unsuitable when components are gen-
erated and composed dynamically, as in our search combinators
application.

Ultimately, indexed monads and our techniques are useful for
solving different problems and it is possible to get the benefits
of both approaches by combining some of the techniques. For
example, if we added monad views and the monad zipper to MTLX,
we could use views to virtualize the tag names, by renaming or even
removing the tags to suit the client’s monad stack, and effectively
acting as a scoping mechanism for the name tags.

7.4 Monadic Components
Many works have identified a need for reusable monadic compo-
nents, but have not addressed the limitations related to monad stack
management. Mixins were introduced by Cook [4] as a functional
form of inheritance. Brown and Cook [2] first considered monadic
mixins for memoization, while Oliveira et al. [17] model arbitrary
AOP-style advice with them and show how to reason about interfer-
ence between two components based on equational reasoning and
parametricity. Our work should enable a generalization of the latter
reasoning results to scenarios with arbitrarily many components.
Prehofer [20] also considers a monadic model for FOP, which is
not based on mixins.

The techniques presented in this paper can be used to improve
the current state-of-the-art approaches to modular interpreters [5,
13, 27]. We describe a modular effectful interpreter case study,
which uses the techniques presented in this paper, in a separate
manuscript [23].

8. Conclusion
The current-state-of-the-art in monad stack management is too re-
strictive to effectively support reusable monadic components. The
monad zipper provides the basic mechanism to lift these restric-
tions, and enables more powerful solutions such as structural and
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nominal masking. Views unite masks and other monad transforma-
tions in a single framework for adapting monadic components to a
wide range of monad stacks.
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A. TWith Instances
In this appendix, we provide the implementation of the overloaded
structure function as a set of five overlapping instances for the
TWith class. Three instances cover the three possible cases and two
instances resolve overlaps between the three possible cases.

Although the implementation below may look daunting to the
uninitiated, it relies only on folklore type-level programming tech-
niques. Moreover, the user is never directly confronted with these
instance implementations.

-- [1] tag at the top
instance (Monad m,m∼n)⇒ TWith tag n (TT tag m) where

structure = t
-- auxiliary clause, to resolve overlap between [1] and [3]

instance (Monad m,m∼t n,MonadTrans t)
⇒ TWith tag m (TT tag (t n)) where

structure = t

-- [2] tag in focus
instance (Monad m,Monad n,MonadTrans t,m∼t n)
⇒ TWith tag m ((t ◃ TT tag) n) where
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structure = case (mw :: MonadWitness t (TT tag n)) of
MW → �−1 • hmap t

-- auxiliary clause, to resolve overlap between [2] and [3]
instance (Monad (t′ n),Monad m,Monad n,MonadTrans t,

m∼(((t ◃ TT tag) ◃ t′) n),MonadTrans t′)
⇒ TWith tag m ((t ◃ TT tag) (t′ n)) where

structure = case (mw :: MonadWitness t′ n) of
MW → �

-- [3] shift focus down
instance (Monad (t0 (t1 n)),Monad m,Monad n,

TWith tag m ((t0 ◃ t1) n),MonadTrans t0,MonadTrans t1)
⇒ TWith tag m (t0 (t1 n)) where

structure tag =
case (mw :: MonadWitness t1 n) of

MW → case (mw :: MonadWitness t0 (t1 n)) of
MW → � • structure tag

The above instances make use of the following auxiliary functions:

t :: View ({)⇒ m{ TT tag m
t = view TT runTT

�−1 = view ↓ ↑
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