
What are principal typings and what are they good for?

Trevor Jim*

Laboratory for Computer Science
Massachusetts Institute of Technology

Abstract

We demonstrate the pragmatic value of the prmczpal typzng

property, a property distinct from ML’s principal type prop-

erty, by studying a type system with principal typings. The

type system is based on rank 2 intersection types and is

closely related to ML. Its prmclpal typing property pro-

vides elegant support for separate compilation, including

“smartest recompilation” and incremental type inference.

Moreover, it motivates a new rule for typing recursive defi-

mtions that can type some interesting examples of polymor-

phic recursion.

1 Introduction

We would like to make a careful distinction between the

following two properties of type systems.

Property A

Given: a term M typable in type envmonment A.

There exists: a type a representing all possible types

for M in A.

Property B

Given. a typable term M.

There exists: a typing A R M cr representing all pos-

sible typings of M.

Property A is the familiar prmczpal type property of ML By
analogy, we will call Property B the prancapal typzng pTop-

erty. The names are close enough to give us pause. In fact,
some authors have used “principal typmgs” in reference to

Property A But “principal typings” is also the name tradi-
tionally applied to Property B, and we will not introduce a
new name here.

Why do we care to make such a distinction? Prop-

erty A—principal types—is certainly useful. But Prop-

erty B—principal typmgs-is more useful still. We believe
this has been overlooked because ML and its extensions com-
pletely dominate current research on type inference; and
we know of no sense in which ML has principal typings,

*Supported by NSF grants CCR–9113196 and CCR–9417382, and

ONR Contract NOOO14-92–J-131O.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific

permission and/or fee.
FOPL ’96, St. Petersburg FLA USA
@1996 ACM o-89791-769-3/95/01. .$3.50

This was already noted by Damas in his dissertation [6], but

there have been subsequent claims that ML has the princi-

pal typing property, indicating that the distinction between

principal types and prmclpal typings is not widely appre-

ciated. We examme ML’s lack of principal typings more

closely in $5.

In this paper, we demonstrate the usefulness of the prin-

cipal typing property by studying a type system that has

it. We emphasize that our results are motivated entirely by

the general principal typing property, and not by the tech-

rucal details of this particular case study Any system with

principal typings can benefit from our observations,

Nevertheless, we take some care m choosing our case

study, so that its relevance to current practice will be im-

mediately evident. Therefore, we seek a type system closely

related to ML: it should be able to type all ML programs, it

should have decidable type inference, and the complexity of

type inference should be approximately the same as m ML.

The type system that satisfies all of these requmements is

the system of rank 2 antersectzon types. This system, and the

more well-known rank 2 of System F, extend ML by allowing

a hmlted form of “polymorphic abstraction “ Consider, for

example, the function

Af. if ~(true) then j’(3) else 4.

Since the argument, ~, is applied to both true and 3, it

clearly must be polymorphic This can be expressed by ei-

ther of the rank 2 types

(Vt. t --7 t) -+ int

or

((int + int) A (bool + bool)) + int

The first is a rank 2 System F type; the second is a rank 2

intersection type, and it indicates that the argument must

have both the types (int + int) and (bool — bool). The

“rank 2“ hrnitation is that polymorphism (’V’ or CA’) can

only be required of arguments, not arguments of arguments,

‘V’ or ‘A’ may appear to the left of a single arrow, no deeper.

Our first result shows that the rank 2 systems are closely

related: they type exactly the same terms (Theorem 4

of $2.1). Despite this close correspondence, the systems dif-

fer with regard to the principal typing property The rank 2

intersection system has principal typings, while rank 2 of

System F has neither principal typings nor principal types.

We use a variant of the intersection system, called Pz, as

our case study, The distinction between principal types and

42

http://crossmark.crossref.org/dialog/?doi=10.1145%2F237721.237728&domain=pdf&date_stamp=1996-01-01

principal typings is evident in the type inference algorithm

for P2: it takes a single input, a term Lf, and produces

two outputs, an A and u such that A } A4 : U. The types

reqmred of the free variables of M are specified by A, but

,4 is a byproduct of type inference, not a necessary input.

Contrast this with Milner’s algorithm for ML, whose let-

~olvmor~hism relies on .4 beirw an in~ut.. .
We i~ustrate the benefits o~princl~al typings m two ar-

eas recursive definitions and separate compdatton.

Recursive definitions. Two rules that have been used

to type recursive definitions in ML are gi~,en below.

(REC-SIMPLE)
Au{z:T}I-M:T

A h (~Xhf) T

(where ~’ is a simple type)

(REC-POLY)
,4u{.c:a}RAf:cJ

.4 t- (p.zk’f) 0-

(where a is an ML type scheme)

The rule (REC-SIMPLE) requires the body Af of the recursive

definition (~xL1) to be typed under the assumption that z

has a simple type. This restriction is relaxed in (REC-POLY),

the rule of polymorphw recurszon [26, 16], which permits M

to be typed under the assumption that z has a polymorphic

type.

More terms are typable under (REC-POLY) than (REC-

SIMPLE), and practical examples of programs requiring poly-

morphic recursion are a recurring topic on the ML mailing

list. But (REC-SIMPLE) is used m practice, because type in-

ference for (REC-POLY) k undecidable [17, 9] To understand

why, consider type inference using Milner’s algorithm: in or-

der to infer a type, o, for the definition M, we need to know

the type to use for the free variable x, that is, a. In the case

of (REC-POLY), this ‘(chicken and egg” problem cannot be

solved.

The principal typing property suggests a new rule for

typing recursive definitions:

In this rule, the type T assumed for the recursive variable z

need not be the same as the type a derived for its defini-

tion Af. The type r expresses the requirements on z needed

to give Af the type a; as long as a meets these requirements

(CJ < ~), it is safe to assume it as the type of the definition.

Now the strategy for type inference becomes clear: infer

the principal typing A h Ml : a for M, producing both a and

~ = A(z), It only remains to ensure a < ~, and this can be

accomplished by subtype sattsfactton, a procedure similar to

unification.

When we use this strategy to type recursive definitions

m Pj, we obtain an interesting typing rule, lying between

(REC-SIMPLE) and (REC-POLY). it is able to type some, but

not all, examples of polymorphic recursion.

Separate compilation. In separate compilation, a

large program is divided into smaller modules, each of which

is type checked and compiled in isolation. The program as a

whole is closed, but modules have free variables—a module

may refer to other modules. Types play an important role in

compilation; for instance, the data representations and call-

ing conventions of a module may depend on its type. Thus

the compiled machine code of a module may depend on the

types of external variables that it references.

Consequently, most compilers require the user to specify

the types of external variables referenced in each module.

In Pj, our ability to perform type inference on program

fragments with free variables means that the user need not

write these specifications: the compiler can infer them it-

self. More significantly, principal typings will enable us to

achieve smartest recompdatzon [27], which guarantees that

a module need not be recompiled unless its own definition

changes. We also show that principal typings enable an ele-

gant and efficient solution to a related problem, tncrernental

type tnference [1].

Organization of the paper. We introduce the type

system P2 in 32, and show its connection with rank 2 of

System F. We describe how we type recursive definitions

in $3, and we show how principal typings support separate

compilation in $4. In $5, we address the question of whether

principal typings exist for ML, We describe alternatives to

principal typings in ~6. In ~7, we describe an extension of Pj

with principal typings. We discuss related work in $8, and

we summarize our results in fj9, Proofs of all theorems can

be found in a separate paper [11].

2 The type system

We now present our type system, in an expository manner

Uninteresting details have been placed in an appendix. For

the most part, the system relies on familiar rules of sub-

typing and type assignment. However, the system is based

on a notion of rank, and there are some cornphcations due

to the need to stay within rank. These complications are

characteristic of all ranked systems.

Our programs are just the terms of the lambda calculus:

Al- ::= z I (MIM,) I (klvf).

Notice that our programs do not use ML’s let-expressions.

In our type system, let z = M in N can be considered an

abbreviation for (AzN)iM.

We will be defining several classes of types, each of which

is a restriction of the types with quantification and intersec-

tion:

For those unfamiliar with intersection types, we present a

brief example. A term of type (a A -r) is thought of as having

both the type a and the type ~. For example, the identity

function has both type (t— t)and (s -+ s) - (s - s), so

(kJ.’y) : (t- t)A ((S -s)+(s-s))

By this intuition, a quantified type stands for the infinde

intersection of its instances:

(Ay.y) : (Vu.u --+ u)

The types (t- t)and (s — ‘) - (s - s) are instances of
(VU,U + u), so in some sense this typing is “more general”

than the first.

Our ranked system will allow only a limited use of inter-

sections: they may only appear to the left of a single arrow.

For example, we will be able to derive the following type in

our system:

(km) :’ds, t,(s A(s -t)) - t

43

This says that as long as the argument of the function

(J.z.zz) has boththe types s and s _ t, for some s and t,

the result will be of type t. Note that this term 1s not ty-

pable in ML. An appropriate argument for this function is

the ldentlty function:

(Az,zz)(Ay,y) : (Vu,u + ‘u),

Again, we will be able to derive

This example is typable in ML,

into a let-expression:

let z = (,\y.y) in xz

this type in our system

provzded it is translated

(Vull+u).

We now give the details of our ranked system, called P2

The sets TO, T1, T2, and TW of types are defined redu-

ctively by the equations below.

To = { t I t is a type variable}

U{(CT-+ 7) ICT,7C TO},

TI = To U{(~A~)\CT, ~ET1},

T2 = To U{(a+T) la STI, TSTz},

TV2 = Tz U{(Vta) I a e TV2}.

The set To is the set of simple types, and T1 is the set of

fimte, nonempty intersections of simple types T2 is the set

of rank 2 intersection types: these are types possibly con-

taining intersections, but only to the left of a single arrow,

Note that rank here refers to the depth of intersections be-

low arrows, not the depth of nesting of arrows, and that

TO = T1 n T2. Finally, TW adds top-level quantdication of

type variables to T2

Just as we have several classes of types, we have sev-

eral subtypmg relations. 1 Their definition 1s simplified by

observing the following conventions: we consider types to

be syntactically equal modulo renammg of bound type vari-

ables, reordering of adjacent quantifiers, and elimination of

unnecessary quantifiers; and we consider ‘A’ to be an asso-

ciative, commutative, and idempotent operator, so that any

TI type may be considered a finite, nonempty set of simple

types, written in the form (~,cI a,), where each a, E To.

Definition 1 For z c {1, 2, V2}, we define the relation <,

as the least partial order on T, closed under the following

rules.

The first rule says that <1 expresses the natural ordering on

intersection types, The second rule says that <z obeys the

usual antimonotonic ordering on function types, restricted

to rank 2. The rules for <V2 express the intuition that a

type is a subtype of its instances (we write {t:= -r}afor

the substitution of -r for t in a) They are equivalent to the

following rule, similar to ML’s notion of generzc znstance:

‘These could be combined into a single subtyplng relation, but ,t
IS technically convenient to keep them separate

(VAR) AU{ Z: CJ}\Z:T a<l~ETo

(ABs)
Azu{.z:cr}+kf:T

A+(JzM). cJ-T

At- M : (&lTZ) - CT,

(APP)
(VZ(SI) A1-N, r,

AR(MN). a

(GEI’J) Afh!(vt.)t @ FTV(A)

(SUB)
AI-M:T

AFM:cJ
r 5Q2 u

Figure 1: Typing rules of Pz. Types m type environments

are in T1, and derived types are in TV2

If {?:= ~}a <z T, where ~ is a vector of simple types,

and the type variables ~ are not free in (Via), then

V.?CT <W V;T,

Note that we only allow instantiation of simple types, This
ensures that instantiation does not take us beyond rank 2. It
also has less desmable implications, e.g., (Vt ,t) M not a least

type m the ordering ~vz (Vt.t) 4V2 (s A (s - u)) + u.

A fourth subtypmg relation wdl play an Important role

in the type system. The relation <V2,1 between TV2 and T1

is the smallest relation satisfying the rule:

0 If a <V2 T. for all i 61, then a <V2,1 (A,er T,).

The relation <VZ,I 1s not a partial order; it is not even re-

flexlve. This is because it relates types “across rank “ Note

that in a comparison

(b’tO) <VZ)I (~ T,),

?EI

the type variable t may be instantiated differently for

each T,,

The typing judgments are of the form A t- M : a, where a

is a TV2 type, and all of the types in A are T1 types. The

typing rules are given in Figure 1.

Example 2 Recall that the typings

(km) : Vs, t.(s A (S - t)) + t,

(Ay.y) : (V’u.u + u),

hold in our system. Then by rule (SUB),

(ACG,ZZ) , ((5 -s) A((s+s) -(s-.))) -(s-.).

And (Vu.u ~ u) <Vz (s a s) and (Vu u + u) <V2 ((s _

s) e (s a s)), so by rules (SUB) and (APP),

(,Jz.zz)(Ay.y) , (s+ s)

Finally, by rule (GEN),

(k zz)(kJ,y) Vs.s + s,

44

(ABS)
Azu{z:a}t-M:~

.4}(JZM):O+T

(APP)
At- M:u —r, A+N; u

AR(MN):~

(INST)
Akiw’vtcr

AEM:{t:=~}a

(GEN)
At-M:u

AkM:Vtu
t@ FTV(A)

Figure 2: Typing rules of Az. Types in type environments

are in R(1), and derived types are in R(2).

We now give the definition of principal typings appropri-

ate to our system.

Definition 3

i) A typing B F M : T is an instance of a typing A > M :

a if there is a substitution S such that Sa <V2 -r and

B(z) <1 S(A(Z)) for all z G dom(A).

ii) A prtnczpal typing for a term M is a typing A F M : u

of which any other typing of M is an instance.

This definition is standard, cf. [25]. Note in particular that

the notion of instance is monotonic in the derived type, but

antimonotonic in the type environment. The intuition is,

a principal typing EXPECTS LESS of its free variables, and

PROVIDES MORE than any other typing judgment.

2.1 Comparison with Rank 2 of System F

The system Pz is closely connected to Az, the restriction of

System F to rank 2 types. Our presentation of Az is based

on that of Kfoury and Tiuryn [15].

The types of System F are defined by the following gram-

mar:

T ::= t I (TI -T2) \ (b’tT)

We consider System F types to be syntactically equal mod-

U1O renaming of bound type variables, reordering of adjacent

quantifiers, and elimination of unnecessary quantifiers.

The types of System F can be organized into a hierarchy

as follows, First, define R(0) = To. Then for n ~ O, the set

R(n + 1) is defined to be the least set satisfying

R(n+ 1) = R(n) u{(a -+ ~) I a E R(Tz), T E R(n+l)}

u{(b’ta) I a 6 R(n+ l)}.

The typing judgments are of the form A 1- M : a, where a

IS an R(2) type, and all of the types m A are R(1) types.

The typing rules are given in Figure 2.

Theorem 4 A term M M typable m P2 zfl M M typable

zn Az iff M is typable in the rank 2 intersection type system.

Thus the Pz programs are exactly the Az programs. As

we wdl see, however, Pa has the principal typing property,

while no notion of principal typings is known for Az [19].

Corollary 5 Typability tn P2 as DEXPTIME-complete.

The proof of Theorem 4 relies on the principal type prop-

erty of ML and E given in a separate paper [11]; a similar

theorem has been shown independently by Yokouchi [31].

Corollary 5 follows by the results of Kfoury and Tiuryn [15]

(A2 typability is polynomial time equivalent to ML typabil-

ity), and Kfoury et al. [18] and Mamson [22] (ML typabdity

is DEXPTIME-complete).

2.2 Subtype satisfaction

In order to perform type inference, we must solve subtype

satzsfactton problems, which generalize unification. Solving

subtype satisfaction also gives a decision procedure for sub-

typing, We will focus on the relation <V2,1, as It is the most

important for type inference; all of the other relations can

be handled in a simdar manner.

A <w,l -sattsfactton problem T is a pair 3.FP, where P is

a set whose every element is either: 1) an equahty between

simple types; or 2) an mequahty between a TV2 type and a

T1 type. A substitution S is a solutzon to 3.?. P if there is a

substitution S’ such that S(t) = S’(t) for all t @ F, S’o <V2,1

S’-r for all inequalities (a < T) ~ P, and S’o = S’ -r for all

equalities (a = ~) c P. We write MGS (m) for the set of

most general solutions to a <v2,1-satisfaction problem m (as

with unification, most general solutions are not unique),

Theorem 6

i) The relation <V2,1 is decidable.

ii) If a <V2, 1-satisfaction probJem x is solvable, then there

is a most general SOIU tion for n. Moreover, there is an

algorithm that decides, for any T, whether w is solvable,

and, if so, returns a most general solution.

Algorithms for deciding <Vz,l subtyping and solving

<v2,1-satisfaction problems are given in Appendix B.

2.3 Type inference

The type inference algorithm is presented in the style fa-

vored by the intersection type community: for any M, we

define a set, PP(M), called the przncapal pairs of M Every

element of PP(M) is a pair (A, a) such that A k M : a is a

principal typing of M.

Definition 7 For any term M, the set PP(M) is defined

by the following cases.

If M = x, then ({z : t},t)E PP(z) for any type vari-

able t.

If M = (kcIV), and (A, VFa) c PP(N), where the type

variables .3’ are distinct from all other type variables,

then:

i) If z @ dom(A), and t is a type variable not ap-

pearing in (A, Via), then

(A, VfF(t --+ a)) c PP(XzN).

ii) If z E dom(A), then

(Az, Gen(Az, A(z) --+ a)) c PP(kzIV).

45

* If NJ = Afl Af2, the type variables of (AI, v?aI) E

PPIAfI) and (A2, 02) E PP(Af2) are disjoint, and the

type variables F are distinct from all other type vari-

ables, then:

1)

ii)

If al is a type variable t, tl and t~ are fresh type

variables, U ~ MGS({CT2 < tl,t = tl-+ ~z}),

and A = U(AI + AZ)) then

(A, Gen(A, Ut2)) E PP(Al).

If al = (At~I~t) - ‘J,

(V, E 1) S; renames FTV((AZ, 02)) to fresh type
variables, U E MGS({S, ~2 S r, I i E J}), and

A = U(AI + ~Lcl S,AZ), then

(A, Gen(A, UT)) 6 PP(Af).

The

PP(A!!)

PP(M)

following techmcal property E used to show that

indeed specifies a type inference algorithm: the set

is an equivalence class of pairs under permutations,

I.e.,’ (~l,al), (Az,az) E PP(Al) lff (AI, crl) = S(A2, a2) for

some bqectlon S of type variables. Therefore, in choosing

(A, o) c PP(M) it is always possible to guarantee that the
type variables of (A, a) are “fresh “

To perform type inference, simply follow the definition of
PP (Al), choosing ‘(fresh” type variables and using the MGS
algorithm as necessary.

Example 8 We show how the algorlthm finds a principal

typing for (Jz. rr).

i] PP(x) produces a pair ({a : tl},tl).

ii) PP(z) (again) produces a pam ({z : tz}, tz)

iii) To calculate PP (zz), we find a most general

to
{t, < t,,tl=t, – t,},

such as {tz .= ts,tl:=t3+ t4} Then

({z : ts A (ts- t4)},t’1)E PP(Z2),

iv) Finally, PP(kz. zz) produces

(@,Vt3, t~. (ts A (ts– t~))+ t4).

solution

Theorem 9 (Principal typings) If M is typable m P2,

then there zs a pazr (A, o} @ PP(Af) such that A > M a u

a prtnctpal typtng for M.

3 Recursive definitions

We now add recursive definitions to our language. a term of

the form (p.zAl) represents the program z such that .z = Af,

where M may contain occurrences of z.

As we remarked in the mtroductlon, the principal typing

property suggests that we type recursive definitions by a rule

of the following form.

(REC)
Acu{z:T}EM:a

A F (@zAI) : C7
u <V2,1 7

The rule (REC) can type strictly more terms than the rule

(REC-SIMPLE) of ML. For example, the following term is

typable in P2 + (REC)) but not in P2 + (REC-SIMPLE).

(pz, (Ayz z)(m)) : Vt,t + t

The self-application z.z cannot be typed If x is assigned just

a simple type.

However, (REC) cannot type as many terms as (REC-

POLY). For example, the term (,UZ.XZ) has type (Vt. t) in

ML + (REC-POLY), but it is not typable with our rules.

It ,s interesting to compare (REC) with a rule, (FIX’),

that Mycroft [26] suggested in the context of ML

Ah-/lx I.xn.Af ’:TI+ +Tn+r
(Fix’)

A h (Pzkf) T

Here AI 1s a term with n occurrences of z, Af’ is M with each

occurrence of .z renamed to a fresh variable x,, ~1, , -r~, T

are simple types, and Gen(A, -r) < 7, for all z < n

The idea behind Mycroft’s rule is that each of the fimte

occurrences of x in M may have a different simple type (so

long as M can be shown to satisfy those types). The same

idea explains the typing power of (REC). Note, however,

that thts zdea was not the motzvatzon for (REC) Instead,

(REC) arose as an instance of a general rule motivated by

the principal typing property. Other mterestmg typing rules

may arise as instances of the general rule, in type systems

other than Pz.

Mycroft’s rule is actually more powerful than (REC). The

side condition, Gen(A, T) < T,, permits T to be generalized

by any type variable not appearing in A, tncludzng type vart-

ables appearvng in the T,. This is not allowed by (REC). The

term (pz.zz) is one place where this makes a difference: it

is typable with (FIX’) but not (REC) For a more practical

example, consider the following ML code. It comes from the

ML mailing list, and has arisen m practice.

datatype j a T = EMPTY

I NODE of ‘a * (’a T) T

fun collect EMPTY = rnl

I collect (NODE(n, t)) =

n :: flatmap collect (collect t)

Here ‘ a T is a polymorphic tree type, and flatmap is the

mapping function of type (‘a -> ‘b list) -> ‘a list ->

‘ b list. The function collect, which collects all the labels

of an ‘ a T and returns them m an ‘ a list, is typable with

(REC-POLY) and with (FIX’), but not with (REC!). Of course,

we could generalize our rule along the lines of (FIX’):

(REc’)
Au{z:~}h Af:a

A } (pzibf) a
Gen(A, a) <vz,l T

The system would retain principal typings and decidable

type reference) but for simplicity, we stay with (REC)

3.1 Mutual recursion

In order to support the applications of principal typings in

the next section, we add mutually recursive definitions to

the language Such defimtions are written

(letrec xl= Ml,,,,, z*= M~in N)

46

Figure 3: Rules for typing mutually recursive definitions The rule (LETREC-SIMPLE) is used by ML, while Pz uses (LETREC-

VAR) and (LETREC).

01

(letrec {z, = AIL \ i C 1} in N),

where all of the z, are distinct.

The typing rules for letrec are given in Figure 3. ML

uses the rule (LETREC-SIMPLE) to type mutual recursion,

In (LETREC-SIMPLE), the recursive definitions must be typed

under the assumption that the recursive variables have sim-

ple type. In typing the body of the Ietrec, however, the

types of the recursive variables can be generalized, so that

they can be used polymorphically

We cannot use (LETREC-SIMPLE) with Pz, because Pz

does not permit quantified types to appear in type environ-

ments. Instead, we use (LETREC-VAR) and (LETREC). In

(LETREC), we have used the notation A l_A M : (A,~l ~,) to

abbreviate (Vi G 1) A t- M : ~,. This simulates the polymor-

phism accomplished by generalization in (LETREC-SIMPLE):

(LETREC) uses (LETREC-VAR) to derive a type for each use

of a recursive variable in the body of the letrec.

We write A} for the system AZ + (REC-SIMPLE) +

(LETREC-SIMPLE), and P; for the system P, + (REC) +

(LETREC-VAFL) + (LETREC).

Theorem 10 If M M typable tn A?, then M M typable in

P},

Definition 11 The t pe inference algorithm of Definition 7
x

can be extended to P2 by adding the following cases.

● IfA4

i)

il)

● IfM

and

then

= (pzN) and (A, a) G PP(N), then:

If z @ dom(A), t is a fresh type variable, and

U E MGS({a < t}),

then (UA, Gen(UA, Ut)) G PP(M).

If x E dom(A) and U G MGS({O < A(z)}),

then (UAZ, Gen(UAm, UU)) c PP(M).

= (letrec {z, = M, I t c 1} in z,,,), where io E 1,

(A,, a,) G PP[M,) for z c 1,. .
A’= ~L~lA,,

A“ = A’ U {zt . t, I z, $! dom(A’), t, fresh},

U ~ MGS({O-, < A“(z,) I i E 1}),

and A = UA~z,l, =l},

(A, Gen(.4, Ua;o)) c PP(M).

● If M = (Ietrec {x, = M, I i c 1} k N), where N @

{z, I i C 1},

and (Ao, ao) c PP(N),

(Al, n) E L(AO, {Z, = M, I i c 1}),

and U c MGS(T),

then (UAI, Gen(UAl, UOO)) c PP(Mf).

The second Ietrec case requires the following auxiliary def-

initions:

● (A’, m) G Lo(A, cT, (A, CIT,)) iff

(Vi c 1) S, renames FTV(A, o-) to fresh variables,

7r={S, a<~, liC 1},

and A’ = ~zel S,A.

● (A’, m) G L(A, B) iff

B={z, =M~li~I},

A“ = AU {a, : t,Ii E I,z, @ dom(A))t, fresh},

(Vj c 1) (Aj, a,) 6 PP(letrec B in Qj),

(Aj, Tj) G ~o(Aj, aJ, A’’(zJ)),

m = Ui.,m;
and A = A{.,l, e,} + X3C1A;.

‘, then there as a patrTheorem 12 If M M typable an P2

(A, a) E PP(M) such that A F M : a is a principal typing

for M in P;.

An important limitation of our rules for mutual recur-

sion is illustrated by the following well-known example of

Mycroft [26]:

map = Af. Al. if null 1 then nil

else f(hd 1) :: map f (tl 1)

squarelist = Al. map (kc. x x z) 1

complement = N, map (k. not z) 1

This program is not typable in under our rules (or ML’s

rules) when presented as a single, mutually recursive defi-

nition. The function map is used polymorphically by the

other functions, and our rules do not allow sufficient poly-

morphism for the program to type. Note that map does not

depend on the other functions; if map is placed in a separate

recursive definition, the program can be typed by our rules.

Thus to type an unordered set of definitions, it is neces-

sary to examine the call graph of the program to determme

47

an order m which to type the definitions. This complication

must be addressed by the applications of the next section, q

4 Separate compilation

Any separate compilation system manages a collection of

small program fragments that together make up a single

large program. Two questions must be answered by such

a system First, does the program as a whole type check?

And second, how do we generate code for each program

fragment, and how can we combine these code fragments

mto an executable program?

We consider each of these questions in turn.

4.1 Incremental type inference

The problem of Incremental type in~erence [I] can be de-

scribed as follows. A user develops a program in an incr-

emental fashion, by entering a sequence of definitions to a

read-eval-print loop:

zl=Ml, x2= M2, x3=~3,

After each definition is entered, the compder performs type

inference to ensure the type-correctness of the partial pro-

gram. Definitions may be re-defined as the programmer de-

tects and corrects bugs, and they may be mutually recursive.

Most relevant, a “bottom-up” style of program development

is made possible by allowing defimtions to refer to other def-

initions which have not yet been entered,

Incremental type inference is thus the type checking task

of separate compilation on an extremely fine scale: not just

every module, but every defimtion IS typed and compiled

separately.

Consider a partial program Z1 = Ml, , Zn = Mn,

where duphcate definitions have been discarded. To check

that the program is well-typed, it is sufficient to perform

type inference on the expression

(letrec BI in (letrec Elm in O) .)

derived from the call graph of the program: each Bi is a

strongly connected component (S CC) of mutually recursive

bmdmgs, and the B. are topologically sorted

This can be accomplished by any type inference algo-

rithm that works on terms with free variables. But this

is not enough to solve the incremental problem efficiently:

when the user enters the next definition, X.+l = M~+l, we

must do better than just running the type reference algo-

rithm on the new expression

(Ietrec 1?{ in (Ietrec B~, in O)),

A close inspection of the P; type inference algorithm

wdl show that principal typings are the key to efficient in-

cremental type inference.

Definition 13 The set L* (BI, . . . B-, IV) is defined induc-

tively as follows,

e If (A, o) 6 PP(N), then (A, a, 0) E L*(N).

o If (A, a,7r) c L*(B2, B~. N),

and (A’, T’) c L(A, B1),

then (A’, a,n Un’)~,L” (Bl, .,. ,B~,lV)

2A generalization of our rules along the lines of Mycroft’s (FIX’)

could handle the map example, but not all such examples

Lemma 14 If M u a term of the form

(letrec B1 in (letrec B~ in N)),

then (A)CJ) c PP(M) zff for some

(A’, a’,7r) c L“(Bl,.. ., B~, fV)

and U c MGS(r), toe have m = Gen(UA’, Us’) and A =

UA’

I.emma 14 tells us that the tv~e checking task reduces

to computmg (A, cJ, m) c L*(BI, ~~. , B~, N), and
solutlon to m

Computing L* involves some type inference:

compute

i) the principal pam (A,, CT,) of each Ibft, and

ii) the prmclpal pair of each (Ietrec Bj in .z,).

When the user enters a brand new definition

Finding a

we must

Xn+l =

Mn+l, we must compute a new # using L*. This means we

must again compute (i), the principal pair (A,, a,) of each

M,. But if t # n + 1, then by the prznczpal typang property,

(A,, a,) is unchanged. The principal pair for each clefinition

need only be computed once, as it is entered by the user, it

does not need to be recomputed at each new definition or re-

definition, This is not the case in the system of Adltya and

Nlkhil, where a new definition may cause the entire program

to be reprocessed (see [8], p 104).

Furthermore, if the new definition does not change the

SCCS of the existing call graph, then by the principal typing

property, the pairs of (ii) need not be recomputed. This is by

far the common case: the SCCS change only when the new

definition is mutually recursive with a previous definition.

We must also calculate a solution to the new satisfac-

tion problem. However, the new problem may be almost

Identical to the previous problem. In particular, if the new

defimtion does not change the SCCS of the call graph, the

new satisfaction problem will be a superset of the old prob-

lem. We may be able to incorporate large parts of the old

solution into the new solution Our algorithm for subtype

satisfaction, described in Appendix B, solves problems by

transforming them into equivalent, simpler problems until a

solution is reached. Such an algorithm is ideally suited to

incorporating parts of the old solution. The transformations

that applied to the old problem will, for the most part, be

identical to the transformations applicable to the new prob-

lem.

Finally, we remark that the SCCS and topological

sort may be computed incrementally by off-the-shelf algo-

rithms [10, 23],

4.2 Smartest recompilation

Once we have solved the type checking task of separate com-

pilation, we face the task of code generation. Types deter-

mine data representations, call~ng conventions, and other

implementation details, Thus we regard compilers as func-

tions from typing judgments to machme code For example,

the compilation of a module M that Imports a module z can
be written

Compile({z : a} > M : T) = (machme code for M),

There are two difficulties with this strategy. Firstl the com-

piler requires as input a typing judgment, or, at least, the

48

types of external variables. The typical solution is to require

the user to supply the types. A better solution is avail-

able in Pz, where the compiler itself can infer a judgment

{z:a}+M:Tf or a term Al with free variable z.

The second difficulty arises when we need to link all of

the code fragments together into a single program. In partic-

ular, consider recompilation, in which a user changes a single

module z and the system attempts to recompile as small a

portion of the entire program as possible. Certainly the def-

inition of x must be recompiled. Moreover, an unchanged

module M that imports z may have to be recompiled: if the

type of x changes, then the typzng ~udgment of M, and thus
its compiled output, changes.

This is where principal typings help. Suppose that we

have compiled a module M by compiling its principal typ-
ing, A E M : T. At link time, we discover that in order to be

consistent with the rest of I,he program, we should instead

have compiled M by a different typing, 1? E M’ : a. The

principal typing property tells us that the second judgment

is an instance of the first: in Pz, it can be obtained by sub-

stitution and subsumption from the principal typing. More

formally,

(B, u) = C(A, T),

where C is an operator that applies substitution and sub-

sumption to the pair (A, ~).

Statmg the problem in this way lets us study the op-

erator C in isolation. The operations of substitution and

subsumption specified by C can be implemented via coer-

czons. These coercions can be “wrapped” around the code

generated for the typing A k M : a at link time, making it

behave like code generated for 1? t- M : ~. That is,

Compile(B 1- M : a) ~ Link(C, Compile(A & M : ~)),

where Link produces machine code that implements the co-

ercions specified by C.

Using this strategy, a module need not be recompiled

unless tts dejihhon changes. This property was dubbed

smartest recompdation by Shao and Appel [27]. They

achieved smartest recompilation for ML by relating ML to

a restriction of Pz with principal typings.

Shao and Appel identified the following problem with

smartest recompilation. If a module references many free

variables, e.g., functions from the standard library, then

the type environment of the principal typing becomes large.

This can be alleviated in the following way. Let B be a

type environment specifying the TV2 types of our library

functions. We modify our type system to use two type en-

vironments, so that typings are of the form

A, BFM: o-.

We modify our old rules to ignore this new type environ-

ment, and add a rule that allows us to use it:

(VAR-NEW) A,Bu {z : a} k x : a

This system does not have principal typings, but it does have

a useful “weak” form of principal typing property: given a

term M typable in type environment B, there exists a typing

A, B k M : a representing all possible typings for M in B.

We say that M has a principal typing with respect to the

type environment B, and that we have smartest compilation

with respect to B. Since B only specifies types for identifiers

that are relatively stable, we gain most of the benefits of full

smartest recompilation.

As an aside, we remark that this immediately suggests

an extension to the type system: restore let-expressions to

the language and add the rule

(LET)
A, BkM:u, A, BZU{Z. a} blV:~

A, B’r-letx=iWiniV:T

We call this a “rank 2.5” system, since it lies between ranks 2

and 3. For instance, it can type a term that is untypable in

rank 2:

let g = (kz.zz) in g(~y.y) : Vt.t a t.

We will not pursue this further, because we already know

how to extend Pz to a more general system, called P, that

does not rely on let-polymorphism. The description of P

will appear in a future paper.

We do not claim that we have solved the smartest re-

compilation problem for Standard ML. Standard ML has a

rich module system, with type components in modules, and

generative, user-definable, recursive datatypes, Our simple

language does not support such features (nor does the work

of Shao and Appel [27]). However, we have identified prin-

cipal typings, or some equivalent, as the key ingredient of

such a system.

5 Does ML have principal typings?

We have deliberately stated the principal typing property

in a broad way, so that it can be applied to many different

type systems.3 In particular, we have not precisely defined

what it means to represent all possible typmgs, because this

will vary from one type system to another.

This imprecision makes it impossible for us to prove that

a given type system lacks the principal typing property.

Nevertheless, we do not know of a sensible formulation of

principal typings for ML, and in particular, ML does not

have principal typings in the sense of our Definition 3. For

example, consider the following ML typmgs of the term XX.

{r :W.t} t- Xz :Vt.t,
{z: Vt.t - t} } Zz : Vt.t + f.

Our intuition is that a principal typing EXPECTS LESS of its

free variables and PROVIDES MORE than any other typing.

We certainly cannot hope to derive a more general type for

the term xx than (Vt .t), so the first judgment provides more

than the second. However, the first judgment also makes

a strong requirement on z: the type environment indicates

that it too must have type (Vt.f). Thus the second judgment

expects less than the first, and neither typing is more general

than the other. Moreover, there is no typing more general

than both the typings above, The obvious candidate,

{z: Vt.t + t} 1- xx : Vt.t,

is not derivable.

Why doesn’t ML’s principal type property imply the ex-

istence of principal typings ? You might think that the pri-

ncipal typing of a term could be obtained from the principal

31rI Fret, We could have ,tated ,t more broadly .tdl: we as.umed

typing judgments were of the form A F M u, but this is not always

tbe case,

49

type of the J-closure of the term. But ML has only a re-

stricted abstraction rule:

In ML, we cannot abstract over variables of polymorphic

type, the only way of introducing polymorphic variables is

through let-expressions

6 Living without principal typings

If we want to work in a language lacking the principal typing

property, we may still achieve some of its benefits by finding

a “representation” for all possible typings. That is, we may

relax the principal typing condition that the representatives

themselves be typings.

Pushed to an extreme, this is nonsense—after all, J/f

itself is a representation of all typings of M! But there 1s a

middle ground. For example, the “representation” may be

a typing an another type system.

This iclea was the basis of the smartest recompilation

system of Shao and Appel [27]. They defined a type system

with the following property: for any ML typable term M,

there is a judgement in the Shao/Appel system that en-

codes all of the ML typings for A/f, in an appropriate sense.

They did not prove a principal typing property for their sys-

tem, but it is essentially identical to a system of Damas [6].

Damas proved a principal typing theorem for his system,

and showed that it types exactly the same terms as ML.

A second example of this phenomenon is the systems

P2 and Az. We have shown that Pz has principal typings

and types exactly the same terms as A~. However, Az does

not have principal typings in the sense of Defimtion 3. The

counterexample zz that we used for ML also works for Az.

Unlike ML, Az has a ‘[true” abstraction rule; this is not a

contradiction, because in addition to lacking principal typ-

ings, Az lacks principal types [19].

And for a third example, Palsberg and Scott4 have shown

that the recursive type system of Amadio and Cardelli [3]

types exactly the same terms as a type system based on

constraints [7]. Palsberg has shown that the Amadio and

Cardelli system does not have principal typings, and Jim has

shown that the constraint-based system does have principal

typings.

7 An extension

The system Pz is the rank 2 fragment of a type system, P,

that can type many more terms. The description of P is

beyond the scope of this paper. However, we wdl present a

few examples of its typing power.

If we define terms M and N by

M = (Ag.g(Af.f(xz.z))),
N = (~w.W(~y.y~)),

then the following typings hold in P:

M : Vt.((vs.((vu.u- u) - s) - s) — t) - t,

N : ‘du. ((vst. (sA (S+ ~)) ~ t) -+ u) -+ u,

MN : Vt.t -+ t.

4Pers0nal communication

Only M is typable in ML or P2, and only at less informative

types. Note that in the type of M, the inner quantifier, Vu,

is under the left of four arrows, well beyond rank 2.

The system P has the principal typing property, decid-

able type reference, and a rule in the style of (REC) for

typing recursive definitions. The crucial techmcal advance

is a way of solving subtype satisfaction problems for types

with quantifiers and intersections at unlimited depth

8 Related work

Principal typings are not a new concept. A number of exist-

ing type systems have principal typings, including the simply

typed lambda calculus [30], the system of recursive types [5],

the system of simple subtypes [25], and the system of inter-

section types [4]. Our contribution is to highlight the practi-

cal uses of the principal typing property, and to distinguish

it from the principal type property. A number of authors

have published offhand claims that ML possesses the princi-

pal typing property, despite the early remarks of Damas [6]

to the contrary.

The system of rank 2 intersection types is also not new,

but as with the principal typing property, it has attracted

little attention. It was first suggested by Leivant in 1983 [21],

but he did not give a formal definition of the type inference

algorithm or proof of correctness. In an oft-referenced 1984

paper [24], McCracken gave a type inference algorithm for

rank 2 of System F, inspired by Leivant’s ideas This algo-

rithm is incorrect. A correct algorithm for rank 2 of Sys-

tem F was finally given by Kfoury and Wells [19] in 1993.

Their algorithm is completely unrelated to Leivant’s algo-

rithm. The earliest formal definition and proof of Leivant’s

algorithm was pubhshed in 1993, by van Bakel ~29].

Our addition of top-level quantification is a useful tech-

nical improvement to the rank 2 mtersectlon system In

particular, the simplicity of our rule for typing recursive

definitions is due to the power of quantifiers and the sub-

typing relation <w,l. It is possible to formulate an equiv-

alent rule for typing recursive definitions without top-level

quantification, but the machinery is cumbersome and simply

duplicates the functionality of the quantdiers

We have shown that rank 2 of System F is closely related

to our type system However, rank 2 of System F does not

have principal types or principal typings [19] Launchbury

and Peyton Jones [20] describe an interesting constant with

a rank 2 System F type. Rank 2 System F types are not

part of our type system, and we do not know how to handle

their constant without resort to a special typing rule. This

is the same solution employed by Launchbury and Peyton

Jones.

The system of Aiken and Wlmmers [2] uses ML’s

let-polymorphism, and, therefore, we believe it does not

have principal typings. The subsystem without let-

polymorphism, though, is still of interest, and may have

principal typings (but this is not clear). The constraint-

based systems of Jones [12], Kaes [14], and Smith [28] are

also based on ML.

Constraint satisfaction, including subtype satlsfactlon,

is an important component of each of these systems. Our

method for solving constraints revolving quantifiers (<V2,1 -

satisfaction) is a significant advance over these systems.

Along with intersections, this is the central mechamsm by

which let-polymorphism is avoided and prmclpal typings are

achieved. In our work on the system P, we will show how

50

to solve some subtype satisfaction problems for types with

quantifiers and intersections at unlimited depth, giving type

reference for a system with a much richer class of types.

9 Conclusion

We have shown that the principal typing property has prac-

tical applications, including smartest recompilation and in-

cremental type inference. Inspired by the principal typing

property, we proposed a new rule for typing recursive def-

initions. The type inference algorithm of our system PZ is

easily extended to infer principal typings for recursive defi-

nitions under the new rule, resulting in a type system with

decidable type inference that can type some interesting ex-

amples of polymorphic recursion.

A number of languages, including ML, seem to lack

the principal typing property. In such languages, we may

achieve some of the benefits of principal typings by finding

a way to represent all possible typings for a term. In par-

ticular, a. term’s principal typing in one type system may

serve as a representative of all of its typings in another type

system. This technique serves for AZ, whose typings can be

represented by principal typings in Pz.

Although our primary goal was to draw attention to the

principal typing property, a secondary contribution is to

draw attention to the system of rank 2 intersection types,

which also seems to have been overlooked. Our particular

version of this system, PZ, makes an important technical

contribution by showing how to solve subtype satisfaction

problems for types containing quantifiers. Our types only

have quantifiers at top level, but the method is easily ex-

tended to types with quantifiers at unlimited depth, as we

will show in a forthcoming paper.

Acknowledgments. This paper has benefited from the

comments of Assaf Kfoury, Albert Meyer, Jens Palsberg,

Mona Singh, Phd Wadler, and the POPL referees. We thank

Fritz Henglein for pointing out Mycroft’s rule (FIX’) and the

work of Damas.

References

[1]

[2]

[3]

[4]

[5]

Shail Aditya and Rishiyur Nikhil. Incremental poly-

morphism. In Functional Programmmg Languages and

Computer Archdecture, volume 523 of Lecture Notes

in Computer Sc3ence, pages 379–405. Springer-Verlag,

1991.

Alexander Aiken and Edward L. Wimmers. Type in-

clusion constraints and type inference. In Functional

Programmmg Languages and Computer Ar-chztecture,

pages 31-41 ACM Press, June 1993.

Roberto M. Amadio and Luca Cardelli. Subtyp-

ing recursive types. ACM Transactions on Pr-ogram-

mtng Languages and Systems, 15(4) 575–631, Septem-

ber 1993.

Henk Barendregt, Mario Coppo, and Mariangiola

Dezani-Ciancaghni. A filter lambda model and the

completeness of type assignment. J. Symbohc Logzc,

48(4):931-940, December 1983.

Felice Cardone and Mario Coppo. Type inference with

recursive types: Syntax and semantics. Injormataon

and Computation, 92(1).48–80, May 1991.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Luis Manuel Martins Damas. Type A sszgnment kn Pro-

grammmg Languages. PhD thesis, University of Edin-

burgh, 1984.

J. Eifrig, S. Smith, and V. Trifonov. Type inference

for recursively constrained types and it application to

00P. In Proc. Mathematical Foundat~ons of Program-

rnmg Semantics, 1995. To appear.

Shail Aditya Gupta. An incremental type inference sys-

tem for the programming language Id. Master’s thesis,

Massachusetts Institute of Technology, November 1990.

Available as MIT/LCS Technical Report TR-488.

Fritz Henglein. Type inference with polymorphic recur-

sion. ACM Transactions on Programming Languages

and Systems, 15(2):253–289, April 1993.

Monika Rauch Henzinger and Valerie King. Fully dy-

namic biconnectivity and transitive closure. To appear

in Proc. 36’h Annual Symp. on Foundations of Com-

puter Science, 1995

Trevor Jim. Rank 2 type systems and recursive defi-

nitions. Technical Memorandum MIT/LCS/TM–531,

M.I.T. Lab. for Computer Science, August 1995.

Marli P. Jones. Qualified Types: Theory and Practtce.

Cambridge University Press, November 1994.

Jean-Pierre Jouannaud and Claude Kirchner Solving

equations in abstract algebras: A rule-based survey of

unification. In Jean-Louis Lassez and Gordon Plotkin,

editors, Computational Logtc: Essays m Honor of Alan

Robinson, chapter 8, pages 257-321. MIT Press, 1991.

[14] Stefan Kaes. Typing in the presence of overloading,

subtyping, and recursive types. In Proceedings of the

1992 ACM Conference on Lwp and Functional Pro-

gramming, pages 193-204, 1992.

[15] A.J. Kfoury and J. Tiuryn. Type reconstruction in fi-

nite rank fragments of the second-order J-calculus. ln-

formatton and Computation, 98(2):228-257, June 1992.

[16] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. A proper

extension of ML with an effective type-assignment In

Conference Record of the Fzfteenth Annual ACM Sym-

posmm on Przncaples of Programming Languages, pages

58-69, 1988.

[17] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type re-

construction in the presence of polymorphic recursion.

ACM Transactions on Programmmg Languages and

Systems, 15(2):290-311, April 1993.

[18] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis

of ML typability. Journal of the A CM, 41(2), March

1994.

[19] A.J. Kfoury and J.B. Wells. A dmect algorithm for type

inference in the rank 2 fragment of the second-order

lambda-calculus. In Proceedings of the 1994 ACM Con-

ference on Ltsp and Functional Programming, pages

196-207, 1994.

[20] John Launchbury and Simon L Peyton Jones. Lazy

functional state threads. In Proceedings of the ACM

SIGPLAN ’94 Conference on Programming Language

Design and Implementation, pages 24-35.1994.

51

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

A

Daniel Leivant. Polymorphic type inference, In Con-

ference Record of the Tenth Annual ACM Sympostum

on Prtncaples of Pr-ogrammmg Languages, pages 88–98,

1983.

Harry G. Mairson. Deciding ML typability is com-

plete for determmlstlc exponential time, In Conference

Record of the Seventeenth Annual ACM Sympostum on

Prznczples of Programming Languages, pages 382-401,

1990.

Marchetti-Spaccamela, Nanni, and Rohnert. On-line

graph algorithms for incremental compilation. In

Graph- Theoretzc Concepts an Computer Sctence, Inter-

national Workshop WG, 1993.

Nancy McCracken. The typechecking of programs with

implicit type structure. In G. Kahn, D.B. MacQueen,

and G. Plotkin, editors, Semantzcs of Data Types, vol-

ume 173 of Lecture Notes an Computer Sctence, pages

301-315, June 1984.

John Mitchell. Type inference with simple subtypes. J.

Functional F’rogrammzng, 1(3):245-285, July 1991.

A. Mycroft, Polymorphic type schemes and recursive

definitions. In Proceedings of the International Sympo-

stum on Programming, Toulouse, volume 167 of Lecture

Notes an Computer Sctence, pages 217–239. Springer-

Verlag, 1984.

Zhong Shao and Andrew W. Appel Smartest recompi-

lation. In Conference Record of the Twentaeth Annual

ACM SIGPLA N-SIGA CT Symposium on Prtnctples of

Programming Languages, pages 439-45o, 1993.

Geoffrey S, Smith. Prmclpal type schemes for func-

tional programs with overloading and subtyping. ScZ-

ence of Computer Programmmg, 23:197–226, 1994.

Steffen van Bakel, Intersection Type Dzscaplmes an

Lambda Calculus and Applacatzve Term Rewriting Sys-

tems, PhD thesis, Mathematlsch Centrum, Amster-

dam, February 1993.

Mitchell Wand. A simple algorithm and proof for type

inference. Fundamental Infomatzcae, 10:115–122, 1987.

Hmofumi Yokouchl. Embedding a second-order type

system into an intersection type system. Information

and Computation, 11’i(2).206-220, March 1995

Technical details of the type system

We use z,y, to range over a countable set of (term) vari-

ables, and M, N, to range over terms. The terms of the

language are just the terms of the lambda calculus:

M :,= z I (Aflhf,) I (LZM)

Terms are considered syntactically equal modulo renammg

of bound variables, and we adopt the usual conventions

that allow us to omit parentheses application associates

to the left, and the scope of an abstraction k extends

to the right as far as possible. We write Azl zn ,Af for

[AZ, ((krnLf))).

We use s,t, u to range over a countable set, Tv, of

type variables, and a, 7. to range over types, We define

several classes of types, each of which is a restriction of the

types with quantification and intersection,

U ::= t I (u1 -az) I (Via) I (al Aa2).

The constructor ‘A’ binds more tightly than ‘+’, e,g ,

a A ~ -+ t means (a A ~) + t, and the scope of a quan-

tifier “v” extends as far to the right as possible, If ~ =

tl, tz, .,, ,t~, n > 0, and a E T2, we write (V~a) for the

type (Vt*(Vtj(. (Vtna)))).

A type environment is a finite set {zl : al, Zn : an}

of (variable, type) pairs, where the variables Z1, , xm are

distinct. We use A to range over type environments, We

write A(z) for the type paired with z in A, dom(A) for the

set {z I 3~, (z : -r) E A}, and Am for the type environment A

with any pair for the variable z removed. We write Al U AZ

for the union of two type environments; by convention we

assume that the domains of Al and Az are disjoint. We

define Al +A2 as follows: for each z E dom(Al) lJdom(A2),

{

Al(z)

(A, + A,)(z)= Az(z)

Al(z) A Az(z)

We write Gen(A, a) for the V-closure

but not A,

If z @ dom(A2),

if z @ dom(A1),

otherwise.

of variables free in o

B A subtype satisfaction algorithm

A unzficat~on problem is a satisfaction problem involving

only equahties. Umficatlon algorithms, such as Robin-

son’s algorithm, can determine, for any unification problem,

whether a solution exists, and, if so, produce a most general

solution. Two problems are equivalent if they have the same

solutions.

We will show how to transform a <v2,1-satisfaction prob-

lem into an equivalent unification problem The transforma-

tion is defined by rules of the form

0<7 + 3$. P.

The rules may need to introduce fresh type variables, that

M, type variables that do not appear on the left-hand side

These variables will appear in the variables .5’ of the right-

hand side (but they are not the only source of variables m F)

The rules are used to define a rewrite relation on prob-

lems:

O<T + 3;P

35.P’ u {a < T} + 3zwt.P’ u P

The operator ‘u’ is disjoint union; on the right of the conse-

quent, it means that the variables ~ must be fresh (this can

always be achieved by renammg).

The rules for transforming a <VZ,l -unification problem

into a unification problem are given in Figure 4. To see that

these rules constitute an algorithm for producing an equiv-

alent unification problem, observe that the rules preserve

solutlons, that the system is termmating, and that normal

forms contain no inequahties, and thus are unification prob-

lems

A umfication algorithm m a transformational style)5

taken from [13], is given in Figure 5 The normal forms

5Th1s particular unification algorlthm M inefficient, because the

size of the output may be exponential m the size of the Input It is

possible to spec; fy efficient unification aIgorlthms in this style, but in

order to simphfy the presentation we use thm more straightforward

alg.orlthm.

52

(CT1-iaz)<t * 3tl, t2. {tl <01, u2<t2, t=tl-t2}

if tl, tzare fresh

(01 + a2) < (TI -+ T2)

=+ {Tl sal, a2 .ST2}

t<l- =+’ {t=T}
if ~ is a simple type

(Vtu)~ T + %{C7 < T}

if r is not a A-type, and t is not

free in 7

Figure 4: Transformational rules for <vz,l-satisfaction prob-

lems

Pw{cT=cr} %’ P

~~{01+c72=TI+T2}

+ pu{c71=TI, f7z=T2}

Pw{tl =t2} +’ {tl :=t2}Pu{tl =t2}

if tl,tzc FTV(P) and tl# tz

Pw{t=a} =+ F
if t6 FTV(0) and o @ Tv

Pw{t=cr} %’ {t:= u} Pu{t=a}

if t~ FTV(a), a @ Tv,

and tG FTV(P)

Figure 5: A set of transformational rules for solving unifica-

tion of simple types.

of the rewrite system are in solved form, a set of equations

that corresponds immediately to a most general substitu-

tion. Note the special problem F, used to denote failure of

unification.

The combination of these two transformation systems

is an algorithm for finding most general solutions to <v2,1-

satisfaction problems. As a special case, we obtain a decision

procedure for subtyping: to see whether a <v2,1 -r, compute

a member of MGS({O < T}) and check whether it is the

identity (empty) substitution.

53

