Context Patterns in Haskell

Markus Mohnen

Lehrstuhl fiir Informatik II, RWTH Aachen, Germany
mohnen@informatik.rwth-aachen.de

Abstract. In modern functional languages, pattern matching is used to
define functions or expressions by performing an analysis of the structure
of values. We extend Haskell with a new non-local form of patterns
called context patterns, which allow the matching of subterms without
fixed distance from the root of the whole term. The semantics of context
patterns is defined by transforming them to standard Haskell programs.
Typical applications of context patterns are functions which search a
data structure and possibly transform it.

This concept can easily be adopted for other languages using pattern
matching like ML or Clean.

1 Introduction

Pattern matching in functional languages like Haskell [HF92, HPW92] is a
powerful and elegant tool for the definition of functions. When a pattern matches
a structure, the resulting bindings of the pattern variables yield access to sub-
structures. Typically, definitions with patterns are used for structurally recursive
function definitions.

match

binding

Fig. 1.: Match with standard pattern

However, the patterns allow only the matching of a fixed region near the root
of the structure. Consequently, the resulting bindings are substructures adjacent
to the region (see Fig. 1). It is neither possible to specify patterns at a non—fixed
distance (possibly far) from the root, nor to bind the context of such a pattern
to a variable (see Fig. 2).

Consider a toy example of a function

initlast :: [a]l -> ([al,a)

mgatch

contex

N/

binding

Fig. 2.: Match with context pattern

which splits a list into its initial part and its last element. Informally, we can
describe an implementation as a single match:

Take everything up to but not including a one—element list as initial part
and the element of the list as last element.

However, using the standard patterns, we are not able to express this. Instead,
the recursive search must be programmed explicitly:

initlast [] error "Empty list"

initlast [x] = ([1,x)
initlast (x:xs) = let (ys,l)=initlast xs
in (x:ys,1)

Essentially, our extension consists of a single additional pattern called context
pattern, with the syntax:

cpat — wvar pat; ... patg

A context pattern matches a value v if there exists a function f and values
v1,-- .,V such that pat; matches v; and f vy ... v is equal to v. Furthermore,
this function f is a representation of a constructor context [Bar85|, i.e. a con-
structor term with “holes” in it. The representation consists of modelling the
“hole” by the function arguments, i.e. in general, f has the following form:

f =M. Ah.Clha,. ..,]

where C' is a constructor context with k& “holes”, which imitates the shape of the
value v. If the pattern matches the value, the function f is bound to the variable
var.

In our example, we can reformulate initlast using context patterns in the
following way:

initlast []
initlast (c [x])

error "Empty list"
((c [, x)

Applying initlast to a list [ay,...,an—1,a,] gives us the following bindings:
[x/an,c/\1->(ay:...(ap—1:1)...)]

Hence, evaluation of the application (¢ [1) on the right hand side. yields the
initial part [a1,...,Qn_1].

Apart from the greater expressive power of context patterns, they provide
a means to reduce the impact of any change of data structures. If a function
is defined recursively for an algebraic data type, the patterns must handle all
constructors. If the data type is changed during development of the program, all
these functions must be changed, too. With context patterns, however, functions
only need to know those constructors which are of interest for them. Therefore,
not all functions must be reconsidered.

The paper is organised as follows. In Section 2 we review some of the previous
work in pattern matching and topics related to our approach. Section 3 gives
a formal definition of context patterns as an extension of Haskell’s patterns.
Some examples of context pattern programs are given in Section 4. In Section
5 we define the semantics of context patterns by translating them into Haskell
code. Section 6 concludes.

2 Related Work

Patterns beyond the scope of the Haskell pattern have been studied in [Hec88,
Fer90, Wil90] in the context of Trafola, a functional languages for program
transformations. Their insertion patterns allow an effect similar to our context
patterns, but instead of modelling a context as a function they introduce special
hole constructors @n to denote the position where a match was cut from the
context. Additionally, they introduce several other special purpose patterns for
lists, and allow non—linear patterns, which may interfere with lazy evaluation
[Pey87, p. 65]. Pattern matching usually results in a list of solutions (see 3.1).

An even more general approach was taken in [HL78] where second—order
schemas are used to describe transformation rules. These allow the specifica-
tion and selection of arbitrary subtrees but are not integrated in a functional
language.

In [Que90] patterns with segment assignments and their compilation are stud-
ied in the context of Lisp. The segments allow the access to parts of a matched
list, e.g. the pattern (?x 77y ?x) matches all lists which start and end with x.
The inner part of the list can be accessed via y.

Another root of our work can be seen in higher—order unification [Hue75,
SG89, DJ95]|. The general approach is to synthesise A-terms in order to find
bindings for free function variable in applications, such that equations S-reduce

to equal terms. In general, this problem is undecidable [Gol81]. However, for
certain subclasses of generated A-terms and equations, this problem becomes
decidable [Pre94]. Especially in our case, where only the pattern can contain
unbound variables, i.e. unification becomes matching, the problem is decidable
[HueT75].

The representation of context by functions are related to [Hug86], where lists
of type [a] are represented by a function of type [a]l->[a]. Given a list 1, the
representation is obtained by append 1. In our setting such functions can occur
as a special case, where the “hole” is the rest of the list (see initlast).

3 Context Patterns

The syntax of Haskell’s patterns is shown in Fig. 3(a) (taken from [HPW92,
pp- 17-18)]). For simplicity, we omit infix patterns and n + k patterns. Our ex-
tension is in Fig. 3(b). In addition to the basic syntax given in the introduction,
there a three extras features:

— context wildcards (_), which can be used to match contexts which are not
used on the right hand side

— guards at the sub patterns, which allow the test of additional conditions
during the recursive search

— explicit types at the sub patterns, which allow the restriction of possible
matches

Later we discuss these facilities in more detail, and give examples for their use.
There is one small conflict which arises with this extension: the definition

let x (y:ys) = e1 in e

can be either a function definition for x using the pattern y:ys, or a context
pattern. In these cases, function definitions are preferred.
The context—sensitive conditions for Haskell’s patterns are

1. All patterns must be linear, i.e. no repeated variable
2. The arity of a constructor must match the number of sub—patterns associated
with it, i.e. no partially applied constructors

In addition, we require that

3. If a context variable var has the functional type t; — ... — tx — t, then
there must exist a value v of type t and values v; of type t; such that all v;
are independent subexpressions of v and occur in the sequence vy, ...,v, in
a top—down, left—to-right traversal of v.

This condition ensures that the pattern is not superfluous in the sense that it
can match at least one value. If there is a ¢; which can not be the type of a
subexpression then no value v of type ¢t has a subvalue v; of type ¢; and hence
the context pattern can never match. The same is true if there are two ¢; and

pat — apat

| con apaty ... apaty
apat — var[@apat|

| con

| literal

|

|

| Cpaty,...,paty)
| [patla"'apatk]
|

(a) Haskell’s patterns (simplified)

pat — cpat
cpat — (var | _) maty ... maty,
mat — apat [if guard] [: : type]

(b) context pattern extension

Fig. 3.: Extended Haskell patterns

t; which are not independent. During matching, a subvalue v; matching mat; is
not matched further. Therefore a possible match of mat; is not checked within
vj.

To further motivate this condition, it is worthwhile to look at a few examples.
Consider the following (malformed) function definition

foo :: [a] -> [a]
foo (c (x:xs) (y:ys)) = exp
This context is not admissible, because a list cannot contain two non—overlapping

sublists.

The left-to-right part of condition 3 ensures that matching can be performed
by traversing the value once top—down and left-to—right. For example,

bar :: [a] -> [a]
bar (c x (y:ys)) = exp

is allowed. Matching with a list [a1, as, . .., a,] with at least two elements results
in the bindings'

x/a1, y/az, ys/[as,...,a,] and c/\z zs->(z:zs)

On the other hand, switching the arguments in the pattern is not allowed:

bar’ :: [a] -> [a]
bar’ (c (x:xs) y) = exp

After finding a match for (x:xs) with a value v, there is nothing left in v to
match y.

3.1 TUniqueness of The Solution

In general there are several possibilities to find a match for a context pattern.
Consider the following function definition

foo :: [a]l -> a
foo (c (x:xs)) = x

When applying foo to a non—empty list we must choose deterministically which
entry of the list should be bound to x. However, Haskell is a language with lazy
evaluation, and therefore the match of context patterns should also be as lazy
as possible. The match we choose is hence the shortest possible. In the above
example, x is bound to the head of the list, xs to the tail, and the context c is
bound to the identity function \1->1.

More precisely, the matching process traverses the value once top—down, left—
to—right, similar to the pattern matching semantics of Haskell [HPW92, p. 19].
There is no PROL0OG-like backtracking if the match fails. Hence the matching can
be done in linear time in the size of the value.

An alternative possibility would be to consider all possible matchings, by
binding variables of a context pattern to non—empty lists of all possible matches,
if the context pattern matches at all. The advantage of this is the satisfaction
of a need for completeness of the solution. Furthermore, in a lazy language like
Haskell this list would also be computed lazily. If we assume that the top—down,
left—to—right solution is the first element of the list, then only this element needs
to be evaluated in order to check whether the context pattern matches. All
other solutions can then be evaluated lazily. However, we have not chosen this
approach for several reasons:

— It is unclear what to do with all the solutions. For transformational tasks, we
will typically replace or modify a position and return the transformed value.

! Please note that the binding for c is a function taking two arguments, one for each of
the patterns in the context pattern. A common error is to assume that c is a function
taking three arguments, one argument for each variable in the context pattern.

Of course, we can do that for all solutions, but then we have the problem that
we must recombine all these transformed values into a single result. Since
the solutions need not be independent, this would be a hard task. The latter
could be avoided by choosing the list of all non—overlapping solutions as the
result of a context pattern match, but then we would loose the completeness
again.

— The incompleteness is already there. Even the standard patterns of Haskell
do not generate complete sets of solutions, due to the fact that equations are
used in the order they occur in the program and are matched in a top—down,
left—to—right manner.

— The types of variables would change. If a variable has type t in the pattern
then it would have type [t] in the right hand side of the equation. This
would be very confusing.

This non—deterministic approach would fit better in a integrated functional-
logic language like Curry [HKMN95] or Babel [KLMNRA96], than in a purely
functional one.

3.2 Additional Features

Sometimes it is necessary to restrict the possible matches of a context pattern.

Suppose we use the following data structure to represent trees with a list of
attributes at each node:

data Tree a = TNode [a] [Tree a]
Now consider the following context pattern:

fooatt (c [s]) = expy
Which list in the definition of Tree is going to be matched here? By default, we
choose the first possibility to match a list type in Tree, i.e. the list of attributes.
Therefore the context ¢ has the type [a]l->Tree a. But suppose we want to
match the last element of a non—empty successor list. Of course, we can increase
the pattern accordingly:

foosuc (cl (Tnode atts (c2 [s]))) = exps

This definition, however, has lost the clarity of the previous one. Therefore,

we allow the type of a context pattern to be restricted. Changing the above
definition to

foosuc’ (c [s]::[Tree al) = exps

restricts the pattern [s] to match the tail of a list of successors.

A further extension is the possibility to move Boolean guards into the pattern.
Without context patterns it is sufficient to have guards at the end of patterns.
In the presence of context patterns, however, this is no longer satisfactory:

member’ y (c (x:xs)) | x==y = True

member’ _

_ False
At first sight, member’ seems to be equivalent to the function elem from the
standard prelude, i.e. it seems to implement checking for membership of an
element in a list. However, this is not true. Given a list [ay, .. ., ay], the pattern
(c (x:xs)) matches with x/a;1, xs/[as,...,a,], and c/Az.xz. After that, the
guard x==y is checked, i.e. a; is compared with y. If it is not equal, this rule fails
and the second rule is selected, yielding False as result.

The problem is that the guard is checked after the pattern was matched. If
the check fails, there is no search for the next possible match of the pattern. In
order to overcome this restriction, we allow guards inside context patterns?:

member y (_ (x:xs) if x==y) = True

member _ _ = False
Now the list is searched until the pattern (x:xs) matches and the guard x==
becomes true.

3.3 Type Inference

During type inference, each subpattern is assigned a type, constraints between
this types are recorded, and this set of constraints is solved yielding a principal
type for each subpattern. In addition, the context—sensitive condition for context
patterns may introduce additional constraints. Recall the introductory example
initlast. If we omit the first line

initlast [] = error "Empty list"
then the following (preliminary) types are derived for the subpatterns of the

context pattern ¢ [x]:

— a for the context pattern c [x]
— [bl->a for the context function c
— b for the variable x

In order to fulfil condition 3, we then unify [b] and a and therefore obtain the
following types:

— [b] for the context pattern ¢ [x]

2 In a preliminary version we used the guard symbol | instead of the keyword if to
separate pattern and guard. But the resulting similarity between guards inside and
outside context patterns was prone to cause errors.

— [b]->[b] for the context function c
— b for the variable x

3.4 Abstraction Boundaries

Assume that we have a module M which encapsulates an abstract type Z, and that
we have another type X which is build by using Z in some way: X = Y*Z. Applying
context patterns to values of type X cannot violate the abstraction boundary. If
the functions outside M cannot see inside X then neither can context patterns. So
if both Y and Z contain some type which is matched by a context pattern, then
only Y is searched.

Of course, the same principle holds for polymorphic components: context
patterns can not search inside those components.

4 Examples of Context Pattern Programs

In order to demonstrate some possible applications of context patterns, we give
some example programs.

4.1 Lists As Sets

Consider the implementation of sets based on lists. A function using this repres-
entation for membership test was given at the end of Section 3. In addition, we
give functions for insertion and deletion using context patterns:

insert x l@(_ y if y==x) =1
insert x 1 x:1

Here he have a context pattern inside an at—pattern, which allows the access
to the whole list. Because we do not use the context function on the right hand
side, we use an anonymous context of type Eq a => a->[a].

delete x (c (y:1) if y==x) = c 1
delete x 1 =1

The context must have type [a]l->[al because we must be able to remove
an element. If x is the last element of the list, 1 will be bound to the empty list.

4.2 Sorting

Nested context patterns are allowed, and we can use them to implement a sort
function as follows:

sort :: Ord a => [a] -> [a]

sort (outer (x:imner (y:zs) if y<x)) =
sort (outer (y:inner (x:zs)))

sort zs = zs

If the context pattern matches x and y are of type a such that x occurs before
y and y<xis true. The context outer :: Ord a => [a]->[a] contains everthing
before x, the context inner :: Ord a => [al->[a] everthing between x and y
and the list zs the tail after y.

However, we can observe that the constructors : are only needed to ensure
that x and y are elements. We can simplify this function in the following way:

sort :: Ord a => [a] -> [a]

sort (outer x (imner y if y<x)) =
sort (outer y (inner x))

sort zs = zs

The context outer now has the type Ord a => a -> [a] -> [a] and still
contains everthing before y. The tail of the list and everthing between x and y
is now in the inner context inner of type Ord a => a -> [a].

But now we have two contexts meeting directly, i.e. without a separating
standard pattern and we can fuse them in the following way:

sort :: Ord a => [a] -> [a]
sort (c x y if y<x) = sort (c y x)
sort zs = zs

In this version the context ¢ :: Ord a => a -> a-> [a] contains everthing
but x and y. This sort of fusion is always possible when two contexts meet
directly.

4.3 A Desugarer

The Glasgow Haskell Compiler ghc compiles Haskell programs by translation
into an intermediate language Core [PS94, Pey96]. The part which performs
this translation is called desugarer, because it removes the syntactic sugar like
pattern—matching, list comprehensions, etc. One small subtask is the translation
of conditionals into case.

Assume we represent (a subset of) Haskell expressions with the following
data structures:

data Expr = EVar String | ECon String
| EAp Expr [Expr] | ELam [String] Expr
| EIf Expr Expr Expr | ECas Expr [(Pattern,Expr)]

data Pattern = PCon String [String] | PVar String

An expression is either a variable, a constructor, an application, a A—abstraction,
an if, or a case. Patterns are used in case expressions and are flat. Removing
all conditionals can simply be done in the following way:

uncond :: Expr -> Expr
uncond (c (EIf ec et ef)) =
uncond (c (ECas ec [pt,pfl))
where pt = (PCon "True" [],et)
pf = (PCon "False" [],ef)
uncond e = e

4.4 A Transformer

Another part of the ghc is the Simplifier, which transforms Core programs
for better efficiency. One of these transformations is called case of known con-
structor. Its idea is that when the argument of a case is a constructor, the whole
case can be removed (since all patterns are flat):

cokc :: Expr -> Expr
cokc (ce (ECas (EAp (ECon k1) as)
(_ (PCon k2 vs,e) if k1==k2)))
= cokc (ce (rplc vs as e))
cokc e = e

Here, we use two contexts in one pattern: the outer context ce is the context
of the case expression in the whole expression, and the inner (anonymous) con-
text _ is the context within the list of alternatives in the case. The function
rplc which replaces the constructor arguments for the pattern variables in the
expression can also be defined with context patterns:

rplc :: [String] -> [Expr] -> Expr -> Expr
rplc [1 [e’ = ¢’
rplc (v:vs) (e:es) e’

= rplc vs es (rplc’ v e e?)

rplc’ :: String -> Expr -> Expr -> Expr
rplc’ vl e (c (EVar v2) if vi==v2)

= rplc’ vl e (c e)
rplc’ vl e e’

= e’

The above examples all have the property that all occurrences of a pattern
are transformed, which leads to tail-recursive functions. In these cases it is not

(a) case eg of {p1 mat1; ...; pp mat,}
= case ¢y of {p; mat;;
_ -> ... case e¢g of {p, mat,;
_ -> error "No match"} ...}
where each mat; has the form:

| gi1 -> €1 5 --- 5 | gimi -> €im; where {decls}
(b) case eg of { p | g1 ->e1 ; ...| gn -> e, where {decls}
_ > e}
= let {y = €'}

in case eg of {p -> let { decls}
in if g; then e; ...
else if g, then e, else y

- >y}

where y is a new variable
(c) case ¢y of {"p -> e ; _ > €'}

= let {y = 60}

in let {2z} = case y of {p -> x1}}
in ... let {z}, = case y of {p -> z,}}
in e[z /z1,..., 2} /zy]

where z1,...,z, are the variables in p and y, 21, ..., 2], are new variables

(d) case ey of {z@p -> e ; _ -> €'}

= let {y = eo} in case y of {p -> (\z->e) y ; _ -> €'}
where y is a new variable

(e) case ¢g of {_ > e ; _ >¢e}=c¢
(f) case eg of {K p1 ... pp > € ; _ -> €'}
= let {y = €'}
in case ¢y of {K x1 ... T, -> case x; of {
p1 -> ... case x, of {p, -> e;
_ >y}
_ >y}
_ >y}
at least one p; is not a variable; y, z1,...,x, are new variables
(g) case eg {z -> e ; _-> €'} = case ¢y {z -> e}
(h) case eg {x > e} = (\z -> e) e

Fig. 4.: Semantics of case Expressions

necessary to check the complete structure again. Using this idea for an optimised
implementation of context patterns leads to functions which transform the input
by traversing it only once.

5 Translating Context Patterns into Haskell

All pattern matching constructs may appear in several places, i.e. lambda ab-
stractions, function definitions, pattern bindings, list comprehensions, and case

expressions. However, the first four of these can be translated into case expres-
sions, so we only consider patterns in case expressions.

In [HPW92], the semantics of case expressions is defined by a translation
into simple case expressions:

case eg {K 1 ... T, -> €1 ; _ -> ea}

where K is constructor (including tuple constructor) and z; are variables. Using
the rules given in Fig. 4 (taken from the semantics of case expressions [HPW92,
p. 22]) in a left—to—right manner defines the translation. The rule (a) sequential-
ises case expressions, rule (b) removes additional guards, rules (c)—(e) remove
irrefutable patterns and as—patterns, rule (f) flattens nested patterns, and rules
(g) and (h) remove trivial patterns. For brevity, we omitted n + k patterns.

We extend this semantics by the additional rule (cp) in Fig. 5 which remove
context patterns. The computation of the context function can be omitted if it
is the anonymous context. A more detailed description of the translation process
can be found in an accompanying paper [MT97].

The idea is to perform a top—down left—to-right traversal of ey. Therefore we
define a function

chkg; 1 : (Int,tz5) > t; -> (Int,t1->...->t,->t;,155)

for each type t; which may occur as sub-type of eg. Each chk;, traverses a value
of type t;. By definition ¢; is the type of ey and hence chky, is used to check
all of eg. The first component of the argument tuple of chk;; is the number 4 of
the pattern p; which is to be searched for next. The remaining arguments are
bindings for all variables in the pattern found until the call to chk; ;- The result
tuple contains the same information after traversing the second argument and,
in addition, the context created during traversal. Obviously, if the number of the
next pattern is n + 1 all patterns were found and the match is successful.

Each chky; is defined as a case on which pattern is to be matched next.
If there is no more to match, all bindings and a trivial context containing the
complete sub—structure are returned without further evaluation. Hereby, we keep
the matching process as lazy as possible. For case i, we check the value for pattern
p; and guard g; (which we assume to be True, if there is no guard), if this is
possible with the current type ¢;. If the match succeeds, we return ¢ 4+ 1 as next
pattern number, an empty context, and updated bindings.

If the match is not successful or not possible at all, the value has to be ex-
amined recursively. All constructors of type ¢; are matched and their arguments
are traversed from left to right. At the end of the traversal, a new context is
built by inserting the resulting contexts in the constructor.

Applying the transformation rule to our introductory example initlast
initlast (c [x]) = ((c [1), x)

yields the following program:

case eg of { ¢ py if g1 ... pn if g > e ; _ > €'}
= let {chky—decl ; ... ; chk, —decl}
in case (chky, (1,L,...,1) ey) of {

(n+1,6,%1,15--sTnk,) -> € 3

_ >}
where z; 1,...,%; k; are the variables in p;, to,..., ¢y are the types of all sub-
patterns of ¢ p; if g1 ... pp if g, such that tg is the type of the complete
pattern (and eqg), t; is the type of pattern p; (1 < i < n), chk;, are new
identifiers, and L is an abbreviation for undefined.
We abbreviate §* ==y |, ... ,y:’b’kn, Z:=21,...,2, (new variables) and define
each chky; —decl:

chktj (no,go) z = case n° of {
1 -> Chktj’l R (g Chktj’n H
n+1l -> (n+1,\z->2),§"}

If ¢; is subtype of t; then we have to search for pattern p; in 2° and we define
chky, ; = case 20 of { pi—chky; ry;—decl}. Otherwise, pattern p; cannot oc-
cur and hence we define chky; ; = (i, (\z->2%),5%).

If t; is the type of p;, then we have to check for pattern p; and consequently
pi—chky; is defined as

pi | gi > G+1,02 > 2,00 1590y 4,
.’L’j’l,...,l',',ki,L,...,L);

Otherwise, p;—chk;; is empty. Each ry,—decl performs the recursive search and
has the form (w; new variables):

Ky 1 wy ... wa;, -> chkreky 1 ;

e

Ky n; wi ... Waj,, => chkreky; n;

where Ky, 1,...,Ky; »,; are all constructors of type t; and a;; is the arity of

constructor Ky, ;. For each j,k we abbreviate K := Ky, » and a := a;. If
a =0, we define chkreky; = (n°, (\z->2°),7°). If a > 0 we define:

chkreky,; = let { (nt,ct,g') = chky, (n°,7°) w; } in {

let { (n%,c,7%) = chk, (o-1,5%1) w, }
in { (n%,(\2 > K (' 2) ... (c® 2)),§*) } ...}

where t;,,. .., 1, are the argument types of constructor K, and ¢!, n’, z are new
variables.

Fig. 5.: Semantics of Context—Patterns: Rule (cp)

initlast = \1 -> let
chkl (n0,xb0) x0 = case n0 of
1 -> case x0 of
[x] -> (mo+1, (\z->2),x) ;
1 -> (w0, (\z->x0),xb0);
(wl:w2) ->
let (nl,cl,xbl)=chk2 (n0,xb0) wil
(n2,c2,xb2)=chkl (nl1,xbl) w2
in (n2, (\z->((cl 2):(c2 2))),xb2)

2 > (2,(\z->z),xb0); ;
chk2 (n0,xb0) x0 = case nQ of
1 -> (n0, (\z->x0) ,xb0);
2 -> (n0, (\z->x0),xb0); ;
in case (chkl (1,undefined) 1) of
(2,c,x) -> (c [0,x);
_ -> undefined
Of course, the resulting programs can be optimised. We can distinguish three
classes of possible optimisations:

1. simple well-known program transformations like inlining (e.g. chk2) and 8-
reduction (e.g. application of chk2) as for instance used in ghc [PS94, Pey96]

2. more efficient pattern matching strategies like those in [Pey87, Chapter 7]
or [Thi93] can be adopted

3. completely new optimisations can be performed. If the function using a con-
text pattern is recursive, it may be unnecessary to check the complete struc-
ture again. Using this idea on the programs given in Section 4 yields imple-
mentations which traverse each input only once.

6 Conclusion

The context patterns we have presented are a flexible and elegant extension of
traditional patterns, which allow the matching of regions not adjacent to the
root and their corresponding contexts as functional bindings. Typical examples
of functions using this increased expressive power are functions which search
and/or transform data structures. Moreover, context patterns allow the defin-
ition of functions which are less affected by representation changes than usual
definitions. We have presented the semantics of context patterns in terms of
a translation into Haskell, which also gives us a first possibility for an imple-
mentation. Our next aim is to implement this translation in the Glasgow Haskell
Compiler and to investigate possible optimisations. The translation and the in-
tegration is described in greater detail in an accompanying paper [MT97].

Although we have presented context patterns in the language Haskell, this
concept can easily be adopted for other (functional) languages using pattern
matching like ML [Mil84|, Clean [BVELP&7|, or PIZZA [OW97].

References

[Bar85]

[BVELP87]

[DJ95]

[DM90]

[Fer90]

[Gol81]

[Hec88]

[HF92]

[HKMN95]

[HL78]

[HPW92|

[Hue75]

[Hug86]

H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics,
volume 103 of Studies in Logic and The Foundations of Mathematics.
North-Holland, 1985.

T. Brus, M. van Ecklen, M. Van Leer, and M. Plasmeijer. Clean — A
Language for Functional Graph Rewriting. In G. Kahn, editor, Proc-
cedings of the 3rd Conference on Functional Programming Languages
and Computer Architecture (FPCA), number 274 in Lecture Notes in
Computer Science, pages 364-384. Springer—Verlag, September 1987.
D. J. Dougherty and P. Johann. A Combinatory Approach to Higher-
Order E-Unification. Theoretical Computer Science, 139(1-2):207-242,
March 1995.

P. Deransart and J. Matuszyriski, editors. Proccedings of the 2nd Inter-
national Workshop on Programming Language Implementation and Lo-
gic Programming (PLILP), number 456 in Lecture Notes in Computer
Science. Springer—Verlag, 1990.

C. Ferdinand. Pattern Matching in a Functional Transformational Lan-
guage using Treeparsing. In Deransart and Maluszyriski [DM90], pages
358-371.

W. D. Goldfarb. The Undecidability of the Second-Order Unification
Problem. Theoretical Computer Science, 13(2):225-230, February 1981.
R. Heckmann. A Functional Language for the Specification of Com-
plex Tree Transformations. In H. Ganzinger, editor, Proccedings of the
2nd International Symposium on European Symposium on Programming
(ESOP), number 300 in Lecture Notes in Computer Science, pages 175—
190. Springer—Verlag, 1988.

P. Hudak and J. H. Fasel. A Gentle Introduction to Haskell. Technical
report, Department of Computer Science, 1992.

M. Hanus, H. Kuchen, and J. J. Moreno-Navarro. Curry: A Truly Func-
tional Logic Language. In Proc. ILPS’95 Workshop on Visions for the
Future of Logic Programming, pages 95-107, 1995.

G. Huet and B. Lang. Proving and applying Program Transformations
Expressed with Second Order Patterns. Acta Informatica, 11:31-55,
1978.

P. Hudak, S. L. Peyton Jones, and P. Wadler et. al. Report on the Pro-
gramming Language Haskell — A Non-strict, Purely Functional Lan-
guage. Research Report 1.2, Department of Computer Science and De-
partment of Computing Science, March 1992.

G. Huet. A Unification Algorithm for Typed A-Calculus. Theoretical
Computer Science, 1:27-57, 1975.

R. J. M. Huges. A Novel Representation of Lists and Its Apllication to
the Function “reverse”. Information Processing Letters, 22(3):141-144,
March 1986.

[KLMNRA96] H. Kuchen, R. Loogen, J.J. Moreno-Navarro, and M. Rodriguez-

[Mil84]

[MT97]

[OW97]

[Pey87]

[Pey96]

[Pre94]

[PS94]

[Que90]

[SG89]

[Thi93]

[Wil90]

Artalejo. The Functional Logic Language BABEL and its Implement-
ation on a Graph Machine. New Generation Computing, 14:391-427,
1996.

R. Milner. The standard ML core language. Dept Computer Science,
University of Edinburgh, 1984.

M. Mohnen and S. Tobies. Implementing Context Patterns in the Glas-
gow Haskell Compiler. Technical Report AIB-97-04, RWTH Aachen,
1997. to be published.

M. Odersky and P. Wadler. Pizza into Java: Translating theory into
practice. In Proccedings of the 24th Symposium on Principles of Pro-
gramming Languages (POPL), pages 146-159. ACM, January 1997.

S. L. Peyton Jones. The Implementation of Functional Programming
Languages. Prentice-Hall, 1987.

S. L. Peyton Jones. Compiling Haskell by Program Transformations: A
Report from the Trenches. In H. R. Nielson, editor, Proccedings of the
6th International Symposium on European Symposium on Programming
(ESOP), number 1058 in LNCS, pages 18-44. Springer—Verlag, 1996.
C. Prehofer. Decidable Higher-order Unification Problems. In
A. Bundy, editor, Proccedings of the 12th International Conference on
Automated Deduction (CADE), number 814 in Lecture Notes in Com-
puter Science, pages 635—649. Springer—Verlag, 1994.

S. L. Peyton Jones and A. Santos. Compilation by Transformation in
the Glasgow Haskell Compiler. In Functional Programming, Glasgow
1994, Workshops in Computing. Springer—Verlag, 1994.

C. Queinnec. Compilation of Non-Linear, Second Order Patterns on
S-Expressions. In Deransart and Maluszyziski [DM90], pages 340-357.
W. Snyder and J. Gallier. Higher Order Unification Revisited: Complete
Sets of Tranformations. Journal of Symbolic Computation, 8(1 & 2):101—
140, 1989. Special issue on unification. Part two.

P. Thiemann. Avoiding repeated tests in pattern matching. In
P. Cousot, M. Falaschi, G. Fil¢, and A. Rauzy, editors, Proccedings of
the 3rd International Workshop on Static Analysis (WSA), number 724
in Lecture Notes in Computer Science, pages 141-152. Springer—Verlag,
1993.

R. Wilhelm. Tree Transformations, Functional Languages, and Attrib-
ute Grammars. In P. Deransart and M. Jourdan, editors, Attribute
Grammars and their Applications, number 461 in LNCS, pages 116-129.
Springer—Verlag, 1990.

