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Abstract 

Pattern matching and data abstraction are important concepts in de- 
signing programs, but they do not fit welI together. Pattern matching 
depends OYI making public a free data type representation, while data 
abstraction depends on hiding the representation. This paper proposes 
the viecua mechanism as a means of rsonciling thii conflict. A view 
allows any type to be viewed as a free data type, thus combining the 
clarity of pattern matching with the efficiency of data abstraction. 

1 Introduction 

Induction and abstraction are fundamental tools of the mathemati- 
cian’s trade, and equalIy essentiaI to the computer scientist. Pattern 
matching in a language feature that supports induction, and data ab- 
straction is a feature that supports abstraction; but unfortunately these 
two features do not get on well together. This paper proposes the views 
mechanism as a means of resolving this problem. 

As au example of the conllict between pattern matching and data 
abstraction, consider the definition of exponentiation. Mathematicians 
traditionalIy define it as follows: 

20 = 1 
*nt1 = z(aP) (1) 

This definition makes it easy to prove properties of exponentiation 
by means of induction. Functional programming languages encour- 
age a similar style of definition. For example, in a language like Hope 
[BMSBO] or Miranda [TurSS] we might declare a new type 

peano ::= zero 1 succ peon* 

and then we can write a definition that is esscntiaIly equivalent to (1): 

powerzZero = 1 
power z (Succ n) = 2 x power + n (2) 

This style of definition has severaI advantages: each case is dis- 
played clearly as a pattern on the left-hand side of an equation; the 
compiler can check that no cases have been accidentally omitted; and 
the definitions are we&suited for proofs by structural induction [BurBQ] 
and for program transformation (BDV]. 
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However, there is a problem with the above definition: it specifies a 
particular way of representing natural numbers, aa the free data type 
pcano. The representation of the number seven is the data structure 

succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))) 

Compared with the representation of integers built-in to the computer 
hardware, this representation is astonishingly inefficient. If we had fol- 
lowed the fundamental principle of dafa abstraction (or repnscntation 
hiding) then this problem would not arise, because we would be free 
to implement naturaI numbers in any convenient way, including the 
built-in integer data type. 

In short, pattern matching supports clear delinitiona and induction, 
but it requires that the representing type be a free data type and be 
visible. Data abstraction supports &Iicicncy, but it requires that the 
representing type be hidden. Thus, the programmer is often faced with 
an unenviabIe choice between clarity and efficiency. 

The programming language Hope finesses this problem in the special 
case of the natural numbers. It provides a special mechanism that 
allows the built-in integer type to be viewed as if it were the type peano. 
Such a useful mechanism is clearly a candidate for generalisation, as 
the need to view one data type as if it were another is hardly limited 
to thii special case. This paper proposes a language mechanism called 
views as a means of satisfying this need. A view specified how any 
arbitrary data type (including an abstract data type) can be viewed an 
a free data type. It is even possible to specify several different views of 
the same type. 

This paper discusses views in the context of functional languages; 
similar ideas may be useful in imperative languages. The notation used 
in this paper is styled after Miranda. The essential requirement is that 
the host language permits the declaration of free data types. Views 
are useful regardless of whether eager, appkative order evaluation (an 
in Hope) or lasy, normal order evaluation (ss in Miranda) is used; the 
examples in this paper work with either evaluation order. 

Views as described here should not be confused with views in OBJ2 
[FGJM85]. Views in OBJ2 specify homomorphisms between mod- 
ules; views a described here specify isomorphisms between data types. 
(Joseph Goguen has suggested that the views in this paper be called 
‘biiviews” .) 

The problem of extending pattern-matching to apply to non-free 
types is abo addressed by Miranda, through the mechanism of ‘lawful 
types’ [ThoBS]. This mechanism is rather more limited than views. A 
lawful type is simply a subset of a free type, whereas viewa allow one 
to specify a correspondence between a free type and any desired type. 

The remainder of this paper is organised a~ follows. Section 2 in- 
troduces views by showing how to define a view of integers. Section 
3 briefly describes an alternative view of integers. Section 4 gives a 
simple example of views and abstract data types, in the context of two 
representations of complex numbers. Sections 5 through 8 demonstrate 
further applications of views to lists and trees. Section 9 shows two un- 
usual uses of views. Section 10 and 11 describe how views support 
equational reasoning and induction. Section 12 outlines an efficient 
implementation method. Section 13 concludes. 
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2 Viewing an integer as zero or a succes- 
sor 

This section introduces the views mechanism by defining a view of the 
built-in integer type, int, that b analogous to the free data type peono 
discussed in the introduction. 

Here is the definition of the view: 

view int ::= Zero 1 Succ int 
inn = zero, if n=O 

= Suee(n-l), ifn>O 
outzero = 0 
out(Succ n) = n+ 1 

The first line introduces two new namer, Zero and Succ, which may 
apptar in terms (on the right-hand ride of equations) and in patterns 
(on the left-hand aide of equations). 

The in and out clausea are similar to function definitions. The in 
clause defines a function to apply to an int to get a Zero or Succ; it is 
used when Zero or Succ appear in a pattern on the left-hand aide of an 
equation. Tht out clause defines a function to apply to a Zero or Succ 
to gtt an Znt; it is used when Zero or Suce appear on the right-hand 
side of an equation. 

A view is well-defined only when the functions defined by the in 
and olit clause art inverses of each other. Together, they specify an 
isomorphism between (a subset of) the viewed type and (a subset of) 
the viewing type. In this case, the isomorphism is between the natural 
numbers (a subset of the vitwed type, I’M) and values coutructed with 
Succ and Zero (the viewing type). 

Givtn the above view declaration, one may write definitions such 
as (2) in Section 1, or the following definition of Fibonacci numbers: 

fib Zero zero 

fib (SW Zero) : succ zero 
fib (SW (Suet n)) = (fib n) + (jib (Succ n)) 

Here, viewa art used on the right-hand ride only for symmetry (and 
purposes of demonstration). It would work just ar well to say fib Zero = 

0 for the first equation. Later, we will see examples where the use of 
views on the right-hand ride is more natural. 

This view applies only to natural numbers. Any attempt to view a 
negative integer as a Zero or Succ (for example, by evaluating fib (-1)) 
will cause a run-time error. 

It is easy to translate a program that uses views into a program 
that do- not me viewa. The view definition above is equivalent to a 
type definition and two function definitions: 

uicwtype ::= Zero ) SW int 
eiewin n = zero, if n=O 

= Succ (n - l), if n > 0 
viewout Zero = 0 
viewout (Succ n) = n -+ 1 

The function &win has typt int + uiewtype and the function riewouf 
has type uicwtype -( int. 

A function dtfinition such as power or fib in translated in two rteps. 
First, all pattern matching is translated into case expressions; rte 
(Aug85,Wad87j. Second, calls of vie&n and riewoul art inserted at 
appropriate places. For example, the fib definition above is equivaltnt 
to: 

fib m = 
ease tiewin m of 

zc TO * viewout Zero 
succ m’ * Cme witwin m’ of 

zero =+ uiewouf (Succ (liewout Zero)) 
Succ n =a fib a + fib (vicvout (Succ n)) 

Note that values of type viewtype apptar in the program only in a 
very restricted way (namely, as a result of viewin or as an argument to 
viewout). 

Any view may always be expanded out in the way outlined above. 
Thus, views do not require any significant change in the semantics of a 
functional language. 

3 Another view of integers 

It is possible to have more than ont view of a data typt. An alternative 
view of integers is an follows: 

view int ::= Zero 1 Even int 1 Odd int 
inn = zero, lfn=O 

= Eccn (n div 2), if n>Ohnmodl=O 
= Odd((n- l)div2), if n>Ohnmod2=1 

outzew = 0 
out(Evenn) = 2xn, if2xn>0 
out (Odd n) = 2xn+l, if2xn+l>O 

The in and out clauses again define inverse functions. Nott that tht 
constructor Zero appears in both views; this is permissible and unam- 
biguous because it ia given the same definition in each. 

Using this view one can give a more efficient definition of exponen- 
t&ion: 

power 2 Zeru = 1 
power z (Even n) = power (z x z) n 
power I (Odd n) = I x power(2 x 2) n 

This expresses the traditional divide-and-conquer algorithm. 

4 Viewing a complex number in Cartesian 
and polar coordinates 

Thii section gives a simple illustration of how abstract data types can 
bt combined with pattern matching. The pattern matching here is 
extremely simple-no case analysis or recursive types are involvtd- 
but still useful. 

Two well known representations of complex numbers are the polar 
and the cartesian. We might chooee to represent complex numbers in 
the polar representation, and provide the cartesian as a view: 

eomplez ::= Pole real real 

view compler ::= Cart real reel 
in (Pole r t) J Cart (r X toe t) (r X sin t) 

out (Cart r y) = Pole (rqrt (z-2 + y-2)) (atone I y) 

We can then define the operationa of multiplication and addition as 
followa: 

add (Cart z y) (Cart t’ y’) = Cart (z + z’) (y + y’) 
mdt (Pole r 1) (Pole r’ t’) = Pole (r x r’) (1 + t’) 

Here addition was defined in tam of the cartesian representation and 
multiplication in terms of the polar rtpresentation. 

Alternatively, we might choose to represent complex numbers in the 
cartesian representation, and provide the polar IJ a view. This requires 
just a small variation on tht prtvious declaration: 

complez ::= cart real real 

view compkr ::= Pole real nol 
in (Cart r y) = Pole (aqrt (t-2+ y-2)) (otanb t y) 
out (Pole r t) = Cart (r X toe t) (r x rin t) 

The definitions of add and mult given previously are still valid un- 
der this ntw declaration. This shows how views can be used to hide 
choice of representation, whilt still allowing tht convenitnct of pattern 
matching. 

The traditional method for hiding a representation ia an abstract 
data type. Just as abstract data types export values and functions, they 
should also be able to export views. It is easy to modify the abstract 
data type mechanism of Miranda to include views, for example: 

abetype compler with 
comples ::= Cort real real 
compler ::= Pole red real 

This abstract type only definer vitwn, but in general an abstract type 
might define both views and functions; the syntax for declaring func- 
tions is shown below. 
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This declaration can be implemented with a polar representation 
and a Cartesian view, or with a cart&an representation and a polar 
view, or with some third representation and cartesian and polar both 
as views. The definitions of add and mult will still be valid regardless 
of the representation chosen. 

For comparison, consider the equivalent abstract type if views are 
not used: 

abetype complex with 
zpart, yport, rpart, tpart :: complex -t real 
mkcart, mkpolc :: real + real -+ complez 

The single identifier Cart has been replaced by three identifiers, apart, 
ypart, and mkcort; and similarly for Pole. The corresponding defini- 
tione of addition and multiplication are: 

add c c’ = mkcert (sport c + sport c’) ( ypert c + ypart c’) 
mult c e’ = mkpole (rpart e X rport c’) (tpart c + tpart c’) 

In this example the difference is not great, but for more complicated 
examples the advantages of views--sompaetness and the abiity to use 
pattern matching-would be more pronounced. 

The example given here is slightly contrived, because in practice it 
would be more sensible to define the operations odd and mult inside 
the abstraction, rather than outside it. However, it serves to show 
how views combine well with data abstraction, and particularly how 
views can reconcile the conflict between pattern matching and data 
abstraction mentioned in the introduction. One way to summa&e this 
result is as follows. ‘IYaditionally, abstraction is achieved by refusing 
to export the representation. With views, abstraction can be achieved 
by exporting as many representations as desired. 

5 Viewing a list backwards 

Assume that lists are represented in the traditional way, so that, for 
example, [I, 2] is taken as an abreviation for 1 Cons (2 Cons Nil), 
where the constructors Nil and Cons are defined as follows: 

1wt a ::= Nil 1 a Cons (list a) 

(Here L Cons zd is just different syntax for Cons s se.) 
Of course, the Cons representation of lists is ‘biased’ towards the 

6rst element of the lid. For example, it is much easier to write a 
function to return the first element of the lied than a function to return 
the last: 

head (2 COM za) = It 

lost (z Cons Nil) 
fad (scoM(I’coMsn)) z Lt (z’ConlJ%6) 

We can define a new view, based on constructors Nil and Snot, 
that is biased in the opposite way: 

view list a ::= Nil 1 (list a) Snot a 
in (z Costa Nil) = NilSnoc s 
in (2 cops (26 snot 2’)) = (2 COM sd) Snot z’ 
out (Nil Snot z) = zConsNil 
out ((2 CODE zd) Snot 2’) = s cons (sn Snot 2’) 

This allows us to view the list [ 1,2] as if were (Nil Snot 1) Snot 2. We 
can now write definitions such as 

h8t(u!3nocr) = z 
roflefr (s Coxu zn) = 2.6 Snot s 
rotrigkt (~4 Snot z) = I Con0 zd 

Here loat ie equivalent to the definition above, and, for example, 
r&/t [l, 2,3,4] = [2,3,4,1] and rotrigkt [1,2,3,4] = (4,1,2,3]. 

Attention is drawn to three features of the above view. 
First, the constructor Nil, which is part of the representation, also 

appears m the view, just as Zero was shared between the two different 
views of integers. In general, it is permissible (and unambiguous) to 
let views of the same representation share any number of construetom 
with the representation and with each other. 

Second, some left-hand sides in the in clause above contain Snot. 
Matching against these will cause a recursive invocation of in. The out 
clause is recursive in a similar way. Recursive in and out clauses are 
perfectly acceptable, in the same way that recursive function definitions 
are. 

Third, in the definition above the in and out clauses are exact 
inverses of one another. This can be abbreviated as follows: 

view lint Q ::= Nil ] (liet cz) Snot Q 
lnout (z Cons Nil) = NdSnoc z 
lnout (2 Cons (u Snot s’)) = (2 Cons se) Snot z’ 

As mentioned previously, a view is well-defined only when the in and 
out clauses define functions that are inverses of one another. In the 
case that a view can be defined using an inout clause, this property 
follows automatically. 

Of course, the representation is stilI biased. For example, r Cons zs 
evaluates much more efficiently than M Snot r. Also, consider the two 
function definitions, 

jl (z Cone (2’ Con8 zn)) = cl z 2’ zn 
h (( ~6 Snot z’) Snot z) = cz z6 2’ z 

The matching in ft takes constant time, while the matching in fi takes 
time proportional to the length of the input lint. Indeed, the input list 
is traversed once to decompose the lit for the outer Snot, and then 
the entire input list (except for its last element) is traversed again to 
decompose it for the inner Snot. The next section deecibes a repre- 
sentation where all bias is removed, and the cons and snot views are 
equally efficient. 

6 The join representation of lists 

As au alternative to the cons representation of lists, several researchers 
have suggested the following representation (Mee84,SH82]: 

lid Q ::= Nil 1 Unit a 1 (lid a) Join (list a) 

(Interestingly, Meertens has made this suggestion for reasons of math- 
ematical elegance, whereas sleep and HolmstGm have suggested it for 
reasons of efficiency!) Each list now has many possible representations. 
For example, the list [ 1,2] might be represented by any of the following: 

(Unit 1) Join (Unit 2) 
(Nil Join (Unit 1)) Join ((Chit 2) Join Nil) 

( Unit 1) Join (( Unit 2) Join Nil) 

Indeed, each list has a potentially infinite number of representations, 
since w and Nil Join 26 both represent the same list. 

Assuming this new representation, we can define a view that allows 
one to view a join list a if it were a cons list: 

view list a ::= Nil 1 a Cone (list a) 
in (Unit 2) = rConsNil 
in (Nil Join 2,) = inIs 
in (( Unit s) Join zu) z Cons 26 
in((zsJoinys)Joinla) 1 Sn(rs Join(ys Joinan)) 
out (2 corm 21) = (Unit z) Join 26 

The in clause maps all of the dilferent ways of representing [ 1,2] as a 
join list into the same view as a cons list, namely 

1 Cone (2 Cons Nil). 

Conversely, the out clause maps this term back into a particular rep 
reaentation as a join list, namely 

(Unit 1) Join (( Unit 2) Join Nil). 

The correctness of the view depends on the equivalence between the 
various ways of representing a join list; otherwise, the in and out 
functions would not be inverses. 

Note that recursion in the in clause above is indicated explicitly, as 
compared with the implicit recursion iu the snot view of the previous 
section. 
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The equation in the out clause above also appears, inverted, in the 
in claue-e. Thus, it is easy to show that the in and out clauses define 
inverse functiona. In thin case, the out clame cannot be omitted in 
favour of an inout clause, because a cons list can be represented in 
more than one way by a join list. Choosing which equations to include 
in the out clause is equivalent to choosing which representation to use. 

A anoc view of join lists can be defined in a way completely sym- 
metric to the definition given above. This is left as an exercise for the 
reader. 

A join list can always be viewed as a cons list or a snot list in time 
proportional to the sire of the join lint. (Further, unless the join list has 
an abundance of Nil nodes, its she will be proportional to the sire of the 
corresponding cons and snot fits.) Also, when the join representation 
is used, appending two lists requires constant time, rather than time 
proportional to the sbe of one of the listr. It is these properties that 
make the join representation desirable in terms of efficiency. 

7 Viewing a list of pairs as a pair of lists 

The function that converts a pair of lists into a lit of pairs is defined 
a8 follows: 

n> (Nil, Nil) = Nil 
zip (a Conr as, 1 Corm be) = (a,b)Consnj(os,bs) 

(The pair notation is just another syntax for constructors; think of 
(a, b) as equivalent to Pair a b.) For example, 

sib ([1,2,3],[‘a’,‘b’,‘c’]) = [(l,‘a’),(Z,‘b’),(3,‘~‘)] 

Very often, it is also necessary to decompose a list of pairs into a pair 
of lists. This is usually done by an idiom such es the following: 

fcr = e 01 be 
where (18 = [a 1 (4, b) + CI] 

be = [b 1 (a, b) + ce] 

(This uses list comprehension notation; see [TurSl,Wad87].) 
Clearly, sip defines a isomorphism: given a lid of pairs ce there is 

always a unique pair of lists as and be ouch that tip (aa, 68) = cs. Thus, 
we can discard the definition of sip given above, and instead define a 
view Zip of pairs of lists: 

view list (a, /3) ::= Zip (Ii& P, lid a) 
lnout Nil = Zip (Nil, Nil) 
lnout ((a, b) Cons Zip (as, ba)) = Zip (a Conr aa, 1 Cona be) 

(Here the type of the pair (a, b) is written (o,,8).) Now we can write 
Zip (as, bs) in place of r;P (a#, be) on the right-hand side of equations. 
We can also write Zip (am, ba) on the left-hand sides of equations. For 
example, the idiom given above becomes 

f (Zip (as, bn)) = c an be 

which is somewhat shorter. 

8 Two representations of trees 

One common representation of trees is the following: 

tree a ::= Leaf a 1 Branch (tree a) (tree a) 

Another common representation uses what is called the ‘spine” (mixing 
an anatomical metaphor with an arboreal one). Spine trees, together 
with the isomorphism that relates them to branch trees, can be conve- 
niently described by the following view: 

view tree (I ::= Spine (I (lirt (tree a)) 
inout (Lea/ s) = Spine I Nil 
inout (Brand (Spine s ztu) zt) = Spine I (zte Snoe st) 

For example, the branch tree 

Brand (Erench (Leaf ‘f”) (Leaf “a”)) (haf ‘b’) 

is equivalent to the spiue tree 

Spine Y” [Spine ‘a* [ 1, spine ‘b’ (11. 

Of course, one could use spine trees as the underlying representation 
with branch trees as the view, or hide the representation in an abstract 
type and provide both branch and spine as views. 

9 Two other uses of views 

This section presents two rather unusual uses of views. It is not clear 
whether these uses should be considered good styk, but they do demon- 
atrate the power of the view mechanism. 

Occasionally, it is convenient to both match an argument against a 
pattern, and to refer to it by a single name. (One might ray we wish to 
“eat our argument and have it too’ .) Hope provides the ar construct 
for this purpose. For example, one might write: 

jactofid (n au Zero) = 1 
~actorid (a aa Succ n’) = n X factorial n’ 

Surprisingly, an can be defined as a view: 

view Q ::= (L aa Q 
In% = 2aez 
out (zauz’) = x, if2=2’ 

This defines an isomorphism between any type Q, and the subset of 
the viewing type Q as CI where the left and right arguments of the 
constructor are equal. It ie unlikely that one would want to use au on 
the right-hand side in an equation, but the out clause is necessary for 
the view to be well-defined. 

One may even use views in place of predicates. For axample, one 
might define: 

view int ::= EvenP in: 1 OddP int 
inn = EvtnPn, if nmod2=0 

= OddP n, if nmod2=1 
out EvenP n = n, if nmod2=0 
out OddP n = n, if nmod2= 1 

Then we can write 

/ (EvcnP n) = cl n 
/(O&Pa) = caa 

instead of 
fn = eln, ifamod2=0 

= Can, if nmod2=1 

Replacing conditions by patterns may occasionally be clearer, particu- 
larly if many functions test the same condition. It may also improve 
clarity when a function has many arguments, and the test of the con- 
dition interacts with pattern matching for the other argumente. From 
the out clause, it can be seen that the term EvenP n ie equivalent to n 
with the additional assertion that n is even. Conceivably, it might be 
useful to uee EvenP and OddP on the right-hand sidee of equations, as 
a way of documenting that certain conditions hold. 

10 Equational reasoning 

In order for a language feature to be useful, it must be easy to reason 
about programs containing that feature. Views have been carefully de- 
signed to support two important proof techniquu, equational reasoning 
and induction. These are discussed in this section and the next. 

Equational reasoning is a principle of such supreme importance that 
it goes by many names: refarantial transparency, the rule of Leibnis, 
and more plainly ‘substituting equals for equals’. As a very simple 
example, given the function definition 

Ion t (I Cons Nil) = I (1) 
iO8t (% COXUJ (2’ COIlS Zd)) = i0.d (5’ C0I.M 25) (2) 

equational reasoning is sufficient to calculate the value of lost /‘a’, ‘b’], 
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an foIlowr: 

last (‘a’ Corm (,b’ Cons Nil)) = lart (‘b’ Cons Nil) 
= ‘b’ 

A key principle in the design of viewr in that all equationa in the in 
and out clauses of the view can be used just like any other equrttiona 
for equational rezoning. Thus, given the view 

view fiat a ::= Nil 1 (lid a) Shoe a 
inout (z Cons Nil) = NilSnoc I 
inout (2 Cons (28 Snot x’)) = (2 Corm za) Snot 2’ 

and the definition 

last (m Snot 2) = x 

we may now calculate as follows: 

last (,a’ Cons (‘b’ Cons Nil)) 
= hat (‘a’ Cone (Nil Snoe ‘b,)) 
= lost ((‘a’ Cone Nil) Snot ‘b’) 
= b 

Of co-, the main value of equational reasoning is not in calcu- 
lating valuem but in performing proofs. Given the definitions 

r&/t (L? cons 26) = wSnoc2 
rotright (23 Snot z) = I Cons M 1:; 

we may prove 
rotieft (rotright 26) = 26 

for a non-empty finite list ze, by simply obmrving that 

r&/f (rotright (2 Cone za) = rode/: (26 Snot z) 
= z cone 28 I:;; 

Both the definitions and the proof are rather more involved if view8 are 
not ur’ed. 

Equational reasoning ia valid for all definitiona that use pattern 
matching over free data types. A view establishes an isomorphism 
between (a subset of) the viewed data type and (a subset of) a free 
data type. Thus, equational reasoning is aleo valid for all definitions 
that use pattern matching over views. 

However, lome caution is required, because the view may imply 
additional conditions that the program must satisfy. For example, the 
polar view of complex numbero in Section 4 is valid only if for all angles 
tr and 4, the equation 

Pole 0 :I = Pole 0 ta 

is consistent with the rest of the program. This is required because all 
points of the form Pole 0 t map into the fame Cartesian representation, 
cart 0 0. 

AB a more extended example, consider the view of join lists a.e cons 
Iists. A look at this view will reveal that it establishes the following 
conditions on join lists: 

NilJolnzs = xu 
ZJ Join (YJ Joh 18) = (ea Join yu) Join .W 

That ia, Join must have Nil an a (left) identity and be associative. 
The programmer must verify that every definition containing Join in 
consistent with these conditions. It is sbo desirable that definitiona be 
consistent with the condition 

xeJolnNil = ee 

but this ie not required by the view. 
An example of a satiefactory definition is 

length Nil = 0 
length (Unit CT) = 1 
length (Z-Y Join ye) = length zd + length ye 

This definition establishes a homomorphism mapping Join onto + and 
Nil onto 0. It is valid because + has 0 as an identity and is aesoci+ 
tive, and so the desired properties are preserved. (For further discus- 

aion homomorphisms and operations on lists, the reader is referred to 
[Mee84,Bi86].) 

An example of an unratisfactory definition is 

rilly Nil = 1 
rilly (Unit I) = 2 
silly (zd Join yd) = rilly Zd i- rilly ys 

This definition does not preserve the desired properties, because 1 in not 
a right identity of +. Thus, from the condition that se = Nil Join xe 
we could derive 

2 = silly (Chit ‘a’) = silly (Nil Join ( Unit ‘a’)) = 3 

It is impossible to reason equationally about a program containing this 
definition, which ia just nn well since it in indeed a silly program. 

A further example of an unsattifactory definition ia 

nothead (( Unif z) Join ze) = L 

This definition won’t do, because we have 

( (Init ‘a') Join (Chit ‘b’) = Nil Join ((Unit ‘a’) Join (Unit ‘b’)) 

but applying nothead to the left of thii equation yields ‘a’, while ag 
plying notheod to the right yieldr en undefined value. 

One should consider it a bonus that views reveal an additional con- 
dition that degnitiona involving Join muet be checked for. On the 
other hand, it is useful to be able to limit the portions of the program 
that must be so checked. This can be done in the usual way, by encap 
sulating Join within an abstract data type. Further, it is completely 
safe to export the cona and snot views of lint8 outride of this type, 
because they are guaranteed to enforce the necessary conditions. For 
example, the definition 

heod(r Conrrc) = z 

is completely satisfactory, because the cone view necessarily reepects 
the equivalences among various join representations of the same list. 

11 Induction 

It ie abo easential that induction should work over views. For example, 
in order to demonstrate that a property P(m) holds for every list zd, 
it is sufficient to show 

1. P(Nil) holds, and 

2. P(zs Snot z) holds, assuming P(m) holds. 

Similarly, one can prove properties of the natural numbers by inducting 
over Zero and Succ. 

In general, induction over a view ie valid to demonstrate properties 
that hold for all elements generated by the viewing type. For example, 
every finite list can be generated using Nil and Snot, so induction over 
these serves to prove proper&e of finite lists. Similarly, every natural 
number can be generated using Zero and Suce, so induction over these 
serve8 to prove propertier of natural numb-m. Here the induction only 
demonstrates properties of a subset (natural numbers) of the viewed 
type (integers). 

A more problematic example la the unnrual view of even and odd 
integers presented in Section 9. The set of values that can be generated 
using just the two constructors EvenP and OddP is empty, and so 
induction is not appropriate over this view. 

12 Implementation 

As explained in Section 2, each view can be expanded out into the defi- 
nition of a new type, ticwtype, and applicationa of conversion functions, 
vie&n and vieurou:. This is workable, but not ideal. Constructors of 
the viewed type (such ae Zero and Suet) appear only es the result 
of uiewin or the argument to viewou:. At run-time, such constructors 
me always allocated storage and then immediately examined and never 
referenced again. It would be preferable to use a scheme that avoided 
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allocating such constructors altogether. 
Such a scheme is poesiblt. Instead of introducing a new type and 

two conversion functions, in the mod&ad scheme a view with k con- 
structors introduces k + 1 new functions (and no new types). One func- 
tion acts as the equivalent of vie& and the aseociated case expression, 
while the remaining k functions provide an equivalent of viewout for 
each constructor. 

For trample, the view of integers in Section 2 translates into the 
following three functions: 

siewcadcrr a = I if n=O 
= d(n-1) if a>0 

*tr* = 0 
dYCC ,, = a+1 

Note that tiwcosc is designed so that if n corresponds to Zero then s is 
returned, and if a corresponds to Succ R’ then e a’ is returned. Since 
8 is itself a function, eiewcoae can be defined only in a higher-order 
language, where functions may be passed to other functions. 

Under this scheme, the definition of fik now translates as follows: 

jib m = ticwcaac 
*tro 

0 m’.vidwcadc 

(dUCC MN) 

(An. a +fib (ruee fi)) 

m’) 
m 

It is left to the rtadtr to verify that this translation is tquivalent to the 
one described in Section 2. 

The new translation schtme has the desired property that it in- 
troduces no new constructors (like Succ and Zero) and hence requires 
no extra allocation operations at run-time. However, it has the diead- 
vantage that application of viewcode may be more difficult to evaluate 
efficiently than the corresponding case txprtsrions. The exact nature 
of this problem will depend on the evaluation method used. Here the 
problem will be considered in the context of a G-machine style com- 
piler, and a solution suggested. Some familiarity with the G-machine 
is aeeumed; set [Aug&Joh85,Pey87] for an introduction. 

As an example, consider the following definition (which happens to 
provide a fast method for calculating Fibonacci numbers): 

fibz a b Zero = a 
fibz a b (&cc n) = fibzb(a+b)n 

Translated using the above scheme, this becomes 

fibz a b m = viewcase a (XnJibz b (a + 6) n) m 

After lambda-lifting, this definition in turn becomes 

fibz a b m = viewcads s (fiblo a 6) m 
jibs0 a b n = fibr b (a + 6) I) 

At run-time, the code implementing the body of fibt will need to al- 
locate heap storage to represent the application (fibs0 e 6). Thus, we 
have raved the allocation of a constructor Zero or Succ only to replace 
it by a potentially larger allocation (since in general storage will need 
to be allocated for each free variable in each argument to viewcare). 

Fortunately, this problem can be solved by simply rearranging the 
way free variables art passed into uguments to tieweaae. In the 
rearranged method, all free variables of the function containing the 
uicwcasc are lambda-abstracted from each argument to the viewcase 
(and in the same order); these vsriables art then passed iuto the result 

returned by the uicwcase. Thus, the definition of fibs now translates 
to 

fibz a b m = 
viewcase (Xa.Ab.Xm.a)(Xn.Xa.Xb.Am.fibr b (a f 6) n)m a b m 

After lambda-liiting thii becomes 

fibz a b m = uicwcaee fibt, jilt, m a b m 
jibe, a bm = a 
jibz, n a b m = jib% b (a + 6) n 

Now the body of f;bz need merely push pointers to fibr, and fibza onto 
the stack, copy the parameter m onto the top of the *tack, and perform 
a tail-call (that is, a jump) to viewcare. In turn, riewe~e wilJ examine 
the argument m; if it is aero it will perform a tail-call (jump) to fibzl, 
and if it is positive it will push m - 1 onto the stack and perform a 
tail-call (jump) to fib+ By passing the free variables in the body of 
fibz to each argument in the aamt ordtr, the rearrangement of the stack 
necessary at run-time is minimised. (Given the above definition of jibz, 
the current C-machine compiler would not produce quite the sequence 
of steps described here, but it could be modi6ed to do so.) 

This is quite acceptably efficient. Further efficiency might be gamed 
by expanding out non-recursive function applications at compile time. 
(The compilers described by [HK&I,FWBB] perform expansion of this 
kind.) For example, performing expansion on the abovt de6nition of 
fibs yields 

fibzabm = a, if m=O 
= Jibtb(a+b)(m-l), if m>O 

which rtsemblts the code one would write if a view had not been used. 
However, it is difficult to see how to perform an equivalent expansion 
of a recursive tiewcaec, such as the one associated with the snot view 
of lists. 

13 Conclusions 

Designers of software are continually faced with trade-offs. Some of 
these trade-offs are necessary, but others can be avoided by careful 
design. It is particularly worrying when we are forced to choose be- 
tween valuable methods such as pattern matching and data abrtraction. 
Views move this trade-off from the %ec~sary* to the ‘avoidable’ cat- 
twv. 

After the views mechanism was defined, several unexpected uses of 
it emerged. These included the list-of-pairs to pair-of-lists view dis- 
cussed in Section 7 and the two unusual views discussed in Section 9. 
No doubt many othtr uses of views are waiting to be discovered. 

Programming languages are awash with features, and new features 
must be approached with caution. Views are worth consideration be- 
cause they address an important nted-rtconciling pattern matching 
with data abstraction. In doing so, they aim bring a new perspective. 
Instead of thinhiig of an abstract data type as something which hides 
the representation, with views we can think of it M something which 
export4 as many representations as convenient. 
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