
Multi-Stage Programming:

Its Theory and Applications

Walid Taha

B.S. Computer Science and Engineering, 1993, Kuwait University.

A dissertation submitted to the faculty of the

Oregon Graduate Institute of Science and Technology

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

November 1999

c© Copyright 1999 by Walid Taha

All Rights Reserved

ii

The dissertation “Multi-Stage Programming: Its Theory and Applications” by Walid Taha has

been examined and approved by the following Examination Committee:

Tim Sheard
Associate Professor
Thesis Research Adviser

James Hook
Associate Professor

John Launchbury
Associate Professor

David Maier
Professor

Neil D. Jones
Professor, University of Copenhagen

Eugenio Moggi
Professor, University of Genova

iii

Dedication

To Sohair, Mohamed, Nodar, Hanan, and Hamid.

iv

Why is my verse so barren of new pride,

So far from variation or quick change?

Why with the time do I not glance aside

To new-found methods and to compounds strange?

Why write I still all one, ever the same,

And keep invention in a noted weed,

That every word doth almost tell my name,

Showing their birth and where they did proceed?

O, know, sweet love, I always write of you,

And you and love are still my argument;

So all my best is dressing old words new,

Spending again what is already spent:

For as the sun is daily new and old,

So is my love still telling what is told.

Sonnet LXXVI, Shakespeare

v

Acknowledgements

The creativity, energy, enthusiasm of Prof. Tim Sheard, my advisor, have been a tremendous source

of support throughout my four and half years of graduate studies. His guidance and support are

the reason why I am completing my dissertation today.

An Arabic proverb says that companions should be chosen before route. This is not easy when

the school you want to go to is half-way around the world. Despite that, I must say, I have had

excellent company during my stay at OGI. For many memorable times, I am indebted to Davide

Anacona, Veronica Baiceanu, Byron Cook, Scott Daniels, Joey Flack, Anita Govindarajan, Phil

Galbiati, Ashish and Shailesh Godbole, Brian Hansen, Paul Hosom, Mary Hultine, Jon Inouye,

Jeff Lewis, Roz Lindquist, John and Julie Mathews, Emir Pasalic, Matt Saffell, Amol and Alok

Vyas (and the Indian Mafia at large), Bennett Vance, Karen Ward, Lisa Walton, Wei Wei, and

many other wonderful friends. The many emails and intermittent visits with Tamer Abdel-Rahim,

Wael Fatin, Ashraf Hamalawy, Sarah Miller, Wael Masri, and Kelly Schreckengost provided me

with lots of sunshine when the Portland clouds tried to protect me from it.

Our library did a miraculous job at responding to my continual requests for inter-library loans,

especially as I came closer to graduation and wanted to “tie everything together”. A special thanks

goes to Mary Hultine for her support and continual interest in my native culture and language. I

am also very grateful to Julianne Williams for her promptness and patience in helping me prepare

the bibliography for this dissertation.

The systems support staff of CSE have been most accommodating for my many demands during

my years at OGI. I would especially like to thank Marion H̊akanson for helping me quickly recover

from endless goofs, especially the time when I deleted a chapter of my dissertation.

I would like to thank the administrative staff of OGI in general, and of PacSoft in particular.

Kelly Atkinson and Therese Fisher have continually done miracles to keep me a happy camper

both when I was at OGI and when I was away from OGI during the many business trips that they

had always arranged with meticulous care.

vi

Credits and Personal Contribution: I had the good fortune of finding many of the people that I

wanted to thank ending up being on my thesis committee. My thesis committee played an active

role in the development of this work from beginning to end. I would like to thank Neil Jones for

his careful reading of my thesis proposal, and bringing much needed fresh insights into the various

formulations of MetaML’s semantics. Neil pointed out to me the amazing works of Quine. I would

like to thank Eugenio Moggi for his careful reading of my dissertation, and for his many suggestions

for improving the technical presentation. I am especially grateful to Eugenio for being critical and

also doubtful of the possibility of relating the reduction and big-step semantics. Long before I

started working on my thesis, David Maier’s class on Automata helped me regain the courage

to explore theoretical aspects of programming languages. While I was writing my dissertation,

David preempted many of my attempts to massacre the English language. James Hook’s classes

on Semantics offered a challenge that, as evidenced by this dissertation, I eventually decided to

take up. The numerous illuminating discussions with James Hook about both Software Engineering

and Theoretical Computer Science have had a significant influence on my work. John Launchbury’s

classes on Category Theory and Formal Software Development, and his emphasis on having the

students work through proofs were the reason I developed an appetite for these two topics. There

is a substantial “energy barrier” involved in understanding what these two topics are about, and

John is a magician when it comes to helping people understand. I am especially indebted to James

Hook and John Launchbury for the many challenging questions that they have posed to me during

the years of my dissertation work, and to which I hope they found satisfactory answers in this

dissertation.

I would also like to thank Lois Delcambre and Dick Kieburtz, in addition to my examiners, for

serving on my thesis proposal committee.

While conducting the research presented in this dissertation, and during its preparation, I have

received substantial technical help from a number of people. The idea of manually staged pro-

grams and MetaML’s original implementation is primarily due to Sheard. Cross-stage persistence

and gensym-renaming of free variable were already being used in Sheard’s original MetaML imple-

mentation. Multi-stage programming with explicit annotations is Sheard’s conception. I just gave

these things names, and went on to study them formally. Rowan Davies gave me a concrete ex-

ample of the limitations of the original type system for MetaML. Zine El-Abidine Benaissa guided

me in doing “strip-lemma” confluence proofs for an early version of the reduction semantics. The

work on an earlier version of the first type system for MetaML is joint with Zine. I also had the

great pleasure of working with Eugenio Moggi. Eugenio proposed simplifications to the original

type system, and played the key role in developing the category for interpreting MetaML and its

vii

extensions. I developed the interpretation of MetaML into this model jointly with him. Eugenio

also proposed and spearheaded the study of a language that combined the two logical modalities

previously explored by Davies and Pfenning, which lead us to a framework where the importance

of closedness could be explained clearly. I had very fruitful discussions with Franklyn Turbak

about observational equivalence proofs and Plotkin’s paper on call-by-name, call-by-value, and the

lambda calculus. Hongwei Xi pointed out to me Takahashi’s paper on parallel reduction. I also

had very useful discussions with Hongwei on the details of standardization proofs. Discussions with

Eugenio Moggi and Sava Kristic greatly sharpened my presentation of the results on the soundness

of MetaML’s reduction semantics.

The research on MetaML has also benefited from valuable inputs from Don Batory, Koen

Claessen, Olivier Danvy, Rowan Davies, Robert Glück, Sam Kamin, Peter Lee, Erik Meijer, Flem-

ming Nielson, Dino Oliva, Frank Pfenning, Amr Sabry, Mark Shields, Yannis Smaragdakis, Carolyn

Talcott, Phil Wadler and the members of PacSoft.

Many people have been kind enough to read parts of this dissertation and gave me feedback that

improved the presentation and sharpened my thought. I would like to thank Lennart Augustsson,

Tito Autry, Byron Cook, Leo Fegaras, Mark Jones, Alex Kotov, Abdel Hamid Taha, and Eelco

Visser. All mistakes and all other results in this dissertation are my responsibility.

Parts of the present dissertation build on works by the author and collaborators previously

published elsewhere [94, 91, 55, 5].

Funding and Financial Support: I am very grateful to the Oregon Graduate Institute of Technology,

and the Pacific Software Research Institute (PacSoft) for generously supporting me financially

throughout my doctoral studies, and covering all my expenses related to attending numerous

workshops, conferences and summer schools. My stipend was provided by the National Science

Foundation (NSF) Type Safe Program Generators award #IRI9625462. My tuition was provided

by the Air Force Material Command Phase I & II and Phase III contracts #F19628-93-C-0069

and #F19628-96-C-0161, respectively.

I would also like to thank the University of Copenhagen, Lucent Technologies, and the Uni-

versity of Genova for supporting on different occasions. The University of Copenhagen (DIKU)

provided funding for the Region Analysis school, and for a one week research visit in Copenhagen.

Lucent Technologies Bell-Laboratories supported me during a most enjoyable summer internship,

and also provided funding for my attendance of the Region Analysis school. The University of

Genova (DISI) provided funding for a one month research visit in Genova.

viii

Table of Contents

1 Introduction . 1
1.1 Program Generation as Meta-Programming . 2
1.2 Meta-Programming for Optimization . 7
1.3 Partial Evaluation and Multi-Level Languages . 9
1.4 Multi-Stage Programming with Explicit Annotations . 11
1.5 Thesis and Contributions . 12
1.6 Organization and Reading Plans . 13

I The Practice of Multi-Stage Programming

2 MetaML and Staging . 18
2.1 MetaML the Conceptual Framework . 18
2.2 MetaML the Programming Language . 20
2.3 The Pragmatics of Variables and Levels . 24
2.4 Staging the List-Membership Function . 25
2.5 Staging the Power Function . 27
2.6 Back and Forth: Two Useful Functions on Code Types . 29
2.7 Staging the Inner Product: A Three-Stage Example . 30

3 Staging a Simple Term-Rewriting Implementation . 34
3.1 Term-Rewriting . 34
3.2 A Single-Stage Implementation . 35
3.3 A First Attempt at Staging . 39
3.4 A Second Attempt . 42

II The Theory of Multi-Stage Programming

4 How Do We Implement MetaML? Or, the Basic Semantic Concerns 49
4.1 Known Concerns . 49
4.2 A Simple Approach to Implementing a Functional Language . 55
4.3 Extending the Simple Implementation with Staging Annotations . 61
4.4 New Concerns . 65
4.5 Covers: A Plausible Solution to the Hidden Free-Variables Problem. 67
4.6 More Concerns . 69

ix

5 Big-Step Semantics, Type Systems, and Closedness . 74
5.1 A Big-Step Semantics for CBV and CBN λ . 74
5.2 A Big-Step Semantics for CBV λ-M . 76
5.3 A Basic Type System for MetaML . 79
5.4 Type-Safety . 82
5.5 A Big-Step Semantics for CBN λ-M . 85
5.6 A Limitation of the Basic Type System: Re-integration . 85
5.7 The λBN Language. Or Adding Closedness to λ-M . 88
5.8 Refining the Types . 95
5.9 Staging the Power Function Revisited . 96
5.10 The Refined Method is Intuitively Appealing . 98

6 Reduction Semantics . 99
6.1 A Reduction Semantics for CBN and CBV λ . 99
6.2 Extending the Reduction Semantics for λ . 101
6.3 Intensional Analysis Conflicts with β on Raw MetaML Terms . 101
6.4 Level-Annotated MetaML Terms and Expression Families . 102
6.5 Escapes Conflict with β on Annotated MetaML terms . 103
6.6 Substitution Conflicts with β on Level 0 Annotated Terms . 104
6.7 A Reduction Semantics for CBN λ-U . 105
6.8 Confluence . 106
6.9 The Soundness of CBN λ-U Reductions under CBN λ-M Big-Steps 109

III Appraisal and Recommendations

7 Discussion and Related Works .122
7.1 Introduction . 122
7.2 Part I: The Practice of Multi-Stage Programming . 127
7.3 Part II: The Theory of Multi-Stage Programming . 132
7.4 On the History of Quotation . 140

8 Conclusion .146
8.1 Review . 146
8.2 Summary of Results . 148
8.3 Appraisal of Results . 148
8.4 Open Problems and Promising Research Directions . 150

A A Calculus with Level Annotations .153
A.1 The λ-T Language . 153

Bibliography .162

Biographical Note .170

x

Abstract

Multi-Stage Programming:

Its Theory and Applications

Walid Taha

Supervising Professor: Tim Sheard

MetaML is a statically typed functional programming language with special support for pro-

gram generation. In addition to providing the standard features of contemporary programming

languages such as Standard ML, MetaML provides three staging annotations. These staging an-

notations allow the construction, combination, and execution of object-programs.

Our thesis is that MetaML’s three staging annotations provide a useful, theoretically sound

basis for building program generators. This dissertation reports on our study of MetaML’s staging

constructs, their use, their implementation, and their formal semantics. Our results include an

extended example of where MetaML allows us to produce efficient programs, an explanation of

why implementing these constructs in traditional ways can be challenging, two formulations of

MetaML’s semantics, a type system for MetaML, and a proposal for extending MetaML with a

type construct for closedness.

The dissertation consolidates a number of previous publications by the author, including

MetaML’s type systems and big-step semantics. The presentation is new. The proposed solution

to an implementation problem and the reduction semantics for MetaML’s three staging constructs

are also new.

xi

Chapter 1

Introduction

If thought corrupts language,

language can also corrupt thought.

Politics and the English Language,

George Orwell

Program generation is a powerful and pervasive technique for the development of software. It has

been used to improve code reuse, product reliability and maintainability, performance and resource

utilization, and developer productivity [43, 84, 87, 92]. Despite the success of program generation,

there has been little special support for writing generators in high-level programming languages

such as C++, Java, Standard ML (SML) or Haskell. A host of fundamental problems inherent in

program generation can be addressed effectively by a programming language designed specifically

to support writing program generators. MetaML is a novel example of such a meta-programming

language. This dissertation shows that MetaML is a concise and expressive meta-programming

language based on a solid formal foundation.

This chapter begins by explaining the need for special language constructs to support program

generation and meta-programming, and the role of MetaML in this context. To outline the scope

of this dissertation, we1 present a basic classification of meta-programming that distinguishes what

we call multi-stage programming from other kinds of meta-programming. We relate multi-stage

programming to partial evaluation and multi-level languages, state our thesis, and preview the

organization of this dissertation.

1 In this dissertation, I use “we” to refer primarily to myself. Readers are encouraged to include themselves
in this reference at their discretion.

1

2

1.1 Program Generation as Meta-Programming

Meta-programs are programs that manipulate other programs. Object-programs are programs ma-

nipulated by other programs. Program generators are meta-programs that produce object-programs

as their final result. MetaML is a general-purpose programming language designed so that object-

programs can be manipulated in both a concise and type-safe manner. The notion of type-safety

of MetaML is strong: Not only is a meta-program guaranteed to be free of run-time errors, but so

are all of its object-programs. Furthermore, because MetaML’s meta-programming constructs are

both concise and expressive, it facilitates a powerful method of developing meta-programs that we

call multi-stage programming.

MetaML provides the user with constructs for building, combining and executing object-programs,

all within the same statically-typed language and within the same run-time environment. The

benefits of MetaML can be illustrated by contrasting meta-programming in MetaML with meta-

programming in a mainstream general-purpose language. In particular, MetaML constitutes a clear

improvement over a popular general-purpose language along the following qualitative dimensions

of meta-programming language design:

1. Support for syntactic correctness and conciseness in specifying object-programs,

2. Support for type correctness of object-programs,

3. Efficient combination of object-programs,

4. Semantic correctness of object-programs, and

5. Support for staging-correctness.

In addition, MetaML enjoys two desirable reflective properties. In the rest of this section, we

elaborate on each of these design dimensions and on where MetaML lies in this design space.

Syntactic Correctness and Conciseness: In a general-purpose language, fragments of an

object-program are typically encoded using either strings or datatypes. With the string encoding,

we represent the code fragment f (x,y) simply as “f (x,y)”. While constructing and combining

fragments represented by strings can be done concisely, deconstructing them is quite verbose.

More seriously, there is no automatically verifiable guarantee that programs thusly constructed are

syntactically correct. For example, “f (,y)” can have the static type string, but this clearly does not

imply that this string represents a syntactically correct program.

With the datatype encoding, we can address the syntactic correctness problem. Without any loss

of generality, let us consider SML [49, 72, 67] as a typical general-purpose language. A datatype to

represent object-programs can be defined in SML as follows:

3

datatype exp = Variable of string

| Apply of (exp * exp)

| Tuple of exp list

| Function of string * exp.

This datatype declaration implements the set of representations of object-programs defined by the

following BNF rule:

exp := x | exp exp | (exp, ..., exp) | λx.exp

where x is drawn from a set of identifiers. In the datatype the set of identifiers is implemented

by the set of SML strings. Thus, the datatype encoding is essentially the same as what is called

“abstract syntax” or “parse trees”. The encoding of the fragment f (x,y) in this SML datatype is:

Apply (Variable “f”,Tuple [Variable “x” ,Variable “y”]).

Using a datatype encoding has an immediate benefit: correct typing for the meta-program ensures

correct syntax for all object-programs. Because SML supports pattern matching over datatypes,

deconstructing programs becomes easier than with the string representation. However, constructing

programs is now more verbose.

In contrast, MetaML provides a construct called Brackets that allows us to specify this code

fragment as 〈f (x,y)〉 (read “Bracket f of x comma y”). This encoding combines the simplicity

and conciseness of the string encoding and the strength of the datatype encoding, in that such a

Bracketed expression is accepted by the parser of MetaML only as long as what is contained in the

Brackets has correct syntax. In other words, with MetaML, correct syntax for the meta-program

ensures correct syntax for all object-programs.

Type Correctness: Even when syntax errors are avoided by using a datatype representation,

there is no protection against constructing ill-formed programs that contain type errors, as in the

case with the fragment (a,b) (c,d). In particular, with the datatype encoding, all object-programs

are represented by one type, exp, which does not provide us with any information about the type of

the object-program represented by an exp. The string encoding suffers the same problem. MetaML

takes advantage of a simple type theoretic device, namely, the parametric type constructor. A

common example of a parametric type constructor in SML is list, which allows us to have lists with

elements of different types, such as [1,2,3,4] and [’a’,’b’,’c’], which have type int list and char list,

respectively. In MetaML, we use a parametric type constructor 〈 〉 for code2. Thus, 〈1〉 has type

2 Note that unlike the type constructor for lists, the MetaML code type constructor cannot be declared
as a datatype in SML. We expand on this point in Section 7.1.3.

4

〈int〉 (read “code of int”), 〈’b’〉 has type 〈char〉, and 〈fn x ⇒ x〉 has type 〈’a → ’a〉. As we will show

in this dissertation, with MetaML, correct typing for the meta-program ensures correct typing for

all object-programs.

Efficient Combination and Operational Control: When constructing the representation of

an object-program, it is possible to identify instances where part of the program being constructed

can be performed immediately. For example, consider the meta-program:

〈fn x ⇒ (fn y ⇒ (y,y)) x〉.

This meta-program evaluates to itself, as does a quoted string. But note that it contains an object-

level application that does not depend on any unknown information. We can modify this meta-

program slightly so that the application is done while the object-program is being constructed,

rather than while the object-program is being executed. This modification can be accomplished

using the another MetaML construct called Escape that allows us to incorporate a code fragment

in the context of a bigger code fragment. The improved meta-program is:

〈fn x ⇒ ˜((fn y ⇒ 〈(˜y,˜y)〉) 〈x〉)〉.

When this improved meta-program is evaluated, some useful work will be done. The evaluation of

this term proceeds as follows:

1. 〈fn x ⇒ ˜〈(˜〈x〉,˜〈x〉)〉〉 ... The application is performed.

2. 〈fn x ⇒ ˜〈(x,x)〉〉 ... The Escaped 〈x〉s are spliced into context.

3. 〈fn x ⇒ (x,x)〉 ... The Escaped 〈(x,x)〉 is spliced into context.

In the presence of recursion in the meta-language, Escapes allow us to perform more substantial

computations while constructing the final result, thus yielding more efficient object-programs.

Escaping can be done with both string and datatype encodings easily as long as the object-program

is not itself a meta-program, in which case Escaping gets more involved.

Semantic Correctness: With both string and datatype encodings, ensuring that there are no

name clashes or inadvertent variable captures is the responsibility of the meta-programmer. For

example, consider writing a simple program transformation T that takes an object-level arithmetic

expression and returns another object-level function that adds the arithmetic expression to its

arguments. For example, for an object-program 1+5 we get an object-program fn x ⇒ x + (1+5).

Similarly, for y+z we get fn x ⇒ x + (y+z). It may seem that we can implement this program

transformation as:

5

fun T e = Function (“x”, Apply (Variable “+”, Tuple [Variable “x”, e])).

But this implementation is probably flawed. In particular, for y+x we get fn x ⇒ x + (y+x). This

result is not what we would have expected if we had assumed that x is just a “dummy variable”

that will never appear in the argument to T. In this case, we say that x was inadvertently captured.

As we will see in this dissertation, inadvertent capture becomes an especially subtle problem in

the presence of recursion.

The intended function T can be defined in MetaML as:

fun T e = 〈fn x ⇒ x+˜e〉.

Not only is this definition more concise than the one above, it has simpler semantics: x is never

captured by the result of “splicing-in” e, because the run-time system ensures that all occurrences

of x have the expected static-scoping semantics. Inadvertent capture is avoided in MetaML because

the language is completely statically scoped, even with respect to object-level variables. This way,

naming issues that arise with code generation are automatically managed by MetaML’s run-time

system.

Staging-Correctness: With both string and datatype encodings, care must be taken to ensure

that no meta-program tries to use a variable belonging to one of its object-programs. For example,

if we generate a program that uses a local variable x, we would like to ensure that the generator

itself does not attempt to “use” the variable x, which will not become bound to anything until the

run-time of the generated program. To begin addressing such problems, we must define a notion

of level. The level of a term is the number of surrounding Brackets less the number of surrounding

Escapes. For example, the term 〈fn x ⇒ ˜x〉 is not correct from the staging point of view, because

the variable x is bound at level 1, yet we attempt to use it at level 0. Intuitively, this means that

we are trying to use x before it is available.

Staging-correctness is a subtle problem in the traditional setting where the object-language is

not itself a meta-language. In particular, there is an accidental reason that prevents the staging-

correctness problem from manifesting itself in a two-level language where there is no construct for

executing code. Let us consider both the string and datatype encodings and study the encoding of

the MetaML term 〈fn x ⇒ ˜x〉. The encodings yield the following two untypable expressions:

1. “fn x ⇒ ”ˆx. This fragment is not well-typed (generally speaking) because x is not a variable

in the meta-language, and would be considered to be an “unknown identifier”.

2. Function(“x”, x). This fragment is not well-typed for precisely the same reason.

6

Thus, the real problem in this term, namely, the incorrect staging, is hidden by the coincidental

fact that both encodings are untypable.

With both encodings, we can still show that there are well-typed terms that are not correctly

staged. Staging-correctness does manifest itself in both encodings when we begin describing multi-

level terms such as 〈〈fn x ⇒ ˜x〉〉. Both encodings of this term are well-typed:

1. “\“fn x ⇒ \”\ˆx” is a perfectly valid string.

2. Bracket(Function(“x”, Escape (Var “x”))) is also a perfectly valid exp if we extend the exp

datatype with Brackets and Escapes, that is:

datatype exp = Variable of string

| Apply of (exp * exp)

| Tuple of exp list

| Function of string * exp

| Bracket of exp

| Escape of exp.

Now, the staging-correctness problem is not evident at the time the object-program is constructed,

but becomes evident when the object-program is executed. When executing the program, we get

stuck trying to construct an encoding of the untypable term 〈fn x ⇒ ˜x〉.

The staging-correctness problem is especially subtle when we allow the execution of code, because

executing code involves changing the level of terms at run-time. For example, executing 〈5〉 we get

5, and the level of 5 has dropped by one. Sheard had postulated that ensuring staging-correctness

should be one of the responsibilities of MetaML’s type system. This dissertation presents two type

systems for MetaML where well-typed MetaML programs are also correctly staged.

Reflection: Reflection is sometimes defined by (the presence of a construct in the language that

allows) the execution of object-programs [27, 100, 17, 89], and sometimes by the ability of a language

to represent (all of its meta-)programs as object-programs [85, 86]. Both definitions are properties

that can be formalized, and both can be interpreted as positive qualities. It is therefore unfortunate

the one name is used for two different properties, each of which is important in its own right.

MetaML enjoys instances of both reflective properties3. Qualitatively, the first kind of reflection

suggests that the meta-language is at least as expressive as the object-language. This kind of re-

flection is realized in MetaML by incorporating a Run construct to execute object-programs. The

3 Reification, when defined as the mapping of a value into a representation of that value, is not available
in MetaML.

7

MetaML program run 〈1+2〉 returns 3, and 〈run 〈〈1+5〉〉〉 is a valid multi-level program. Qualita-

tively, the second kind of reflection suggests that the object-language is at least as expressive as

the meta-language. This kind of reflection is realized in MetaML by allowing any object-program

to be itself a meta-program.

To summarize this section, MetaML was designed to solve a host of fundamental problems en-

countered when writing program generators, thus freeing generator developers from having to

continually re-invent the solutions to these problems.

1.2 Meta-Programming for Optimization

Meta-programming is often used to overcome limitations of an existing programming language.

Such limitations can either be performance or expressivity problems. The focus of this dissertation

is on a semantic basis for improving performance. We make a broad distinction between two ways

of improving performance using meta-programming: Translation, and staging. While our work does

touch on translation, our focus is on the staging aspect of meta-programming. In this section, we

explain the difference between translation and staging.

1.2.1 Meta-Programming as Translation, or Re-mapping Abstract Machines

Abstract machines, whether realized by software or by hardware, vary in speed and resource usage.

It is therefore possible to reduce the cost of executing a program by re-mapping it from one abstract

machine to another. As hardware machines can be both faster and more space efficient than

software ones, such re-mappings commonly involve producing machine or byte code. We will call

this technique translation to distinguish it from staging (which discussed in the next subsection).

Translation is an integral part of the practical compilation of a programming languages, and is

typically performed by the back-end of a compiler.

Translation involves both inspecting and constructing code. MetaML implementations support

some experimental constructs for inspecting code, but they are not the focus of this dissertation.

However, we do study various forms of a Run construct which allow the meta-programmer to

exploit the full power of the underlying machine. The distinction between Run and generalized

code inspection is subtle, but has profound implications on the semantics (see Section 6.3) and the

type system (see Section 7.1.3) of a multi-stage programming language.

8

1.2.2 Meta-Programming as Staging

The goal of staging is to improve a program based on a priori information about how it will be

used. As the name suggests, staging is a program transformation that involves reorganizing the

program’s execution into stages [42].

The concept of a stage arises naturally in a wide variety of situations. Compilation-based program

execution involves two distinct stages: compile-time, and run-time. Generated program execu-

tion involves three: generation-time, compile-time, and run-time. For example, consider the Yacc

parser generator: first, it reads a grammar and generates C code; second, the generated program

is compiled; third, the user runs this compiled program. Both compilation and high-level program

generation can be used to reduce the cost of a program’s execution. As such, staging provides us

with a tool to improve the performance of high-level programs.

Cost Models for Staged Computation Cost models are not an absolute, and are generally

dictated by the surrounding environment in which an algorithm, program, or system is to be used

or deployed. Staging allows us to take advantage of features of both the inputs to a program and

the cost model to improve performance. In particular, while staging may be an optimization under

one model, it may not be under another. There are three important classes of cost models under

which staging can be beneficial:

– Overall cost is the total cost of all stages, for most inputs. This model applies, for example, in

implementations of programming languages. The cost of a simple compilation followed by exe-

cution is usually lower than the cost of interpretation. For example, the program being executed

usually contains loops, which typically incur large overhead in an interpreted implementation.

– Overall cost is a weighted average of the cost of all stages. The weights reflect the relative

frequency at which the result of a stage can be reused. This model is useful in many applications

of symbolic computation. Often, solving a problem symbolically, and then graphing the solution

at a thousand points can be cheaper than numerically solving the problem a thousand times.

This cost model can make a symbolic approach worthwhile even when it is 100 times more

expensive than a direct numerical one. Symbolic computation is a form of staged computation

where free variables are values that will only become available at a later stage.

– Overall cost is the cost of the last stage. This cost model is often just a practical approximation

of the previous model, where the relative frequency of executing the last stage is much larger

than that for any of the previous stages. To illustrate, consider an embedded system where

the sin function may be implemented as a large look-up table. The cost of constructing the

9

table is not relevant. Only the cost of computing the function at run-time is relevant. This

observation also applies to optimizing compilers, which may spend an unusual amount of time

to generate a high-performance computational library. The cost of optimization is often not

relevant to the users of such libraries4.

The last model seems to be the most commonly referenced one in the literature, and is often

described as “there is ample time between the arrival of different inputs”, “there is a significant

difference between the frequency at which the various inputs to a program change”, and “the

performance of the program matters only after the arrival of its last input”.

Finally, we wish to emphasize that non-trivial performance gains can be achieved using only staging,

and without any need for translation. MetaML provides the software developer with a programming

language where the staging aspect of a computation can be expressed in a concise manner, both

at the level of syntax and types. This way, the programmer does not need to learn a low-level

language, yet continues to enjoy many of the performance improvements previously associated

only with program generation. Furthermore, when translation is employed in an implementation

of MetaML, translation too can be exploited by the meta-programmer through using the Run

construct.

1.3 Partial Evaluation and Multi-Level Languages

Today, the most sophisticated automated staging systems are partial evaluation systems. Partial

evaluation optimizes a program using partial information about some of that program’s inputs.

Jones introduced off-line partial evaluation to show that partial evaluation can be performed effi-

ciently [41]. An off-line partial evaluator is itself a staged system. First, a Binding-Time Analysis

(BTA) annotates the input program to indicate whether each subexpression can be computed at

partial-evaluation-time (static), or at run-time (dynamic). Intuitively, only the subexpressions that

depend on static inputs can be computed at partial-evaluation time. Second, the annotated pro-

gram is specialized on the static inputs to produce the new specialized program. MetaML provides

a common language for illustrating the workings of off-line partial evaluation. For example, we can

construct a representation of a program in MetaML. Let us consider a simple MetaML session. We

type in:

-| val p = 〈fn x ⇒ fn y ⇒ (x+1)+y〉;

4 Not to mention the century-long “stages” that were needed to evolve the theory behind many of these
libraries.

10

and the MetaML implementation prints:

val p = 〈fn x ⇒ fn y ⇒ (x+1)+y〉
: 〈int → int → int〉.

If the program p is fed to a partial evaluator, it must first go through BTA. At an implementation

level, BTA can be viewed as a source-to-source transformation. Typically, BTA is given a specifi-

cation of which inputs are static and which inputs are dynamic. For simplicity, let us assume that

we are only interested in programs that take two curried arguments, and the first one is static,

and the second one is dynamic. Although our MetaML implementation does not provide such a

function today, one can, in principle, add a constant BTA to MetaML with the following type5:

-| BTA;

val BTA = -fn-

: 〈’a → ’b → ’c〉 → 〈 ’a → 〈 ’b → ’c〉〉.

Then, to perform BTA, we apply this constant to the source program:

-| val ap = BTA p;

val ap = 〈fn x ⇒ 〈fn y ⇒ ˜(lift (x+1))+y〉〉
: 〈int → 〈int → int〉〉

yielding the “annotated program”. The lift function is a secondary annotation that takes a ground

value and returns a code fragment containing that value. For now, the reader can view lift simply

as being fn x ⇒ 〈x〉.

The next step is specialization. It involves running the program on the input term:

-| val p5 = (run ap) 5;

val p5 = 〈fn y ⇒ 6+y〉
: 〈int → int〉

yielding, in turn, the specialized program.

Partial evaluation in general, and off-line partial evaluation in particular, have been the subject of

a substantial body of research. Much of our understanding of the applications and the limitations

of staged computation has grown out of that literature. The word “multi-stage” itself seems to

have been first introduce by Jones et al. [40]. In the illustration above, we have taken the view that

the output of BTA is simply a two-stage annotated program. This view seems to have been first

5 BTA cannot be expressed using only the staging constructs that we study in this dissertation. In partic-
ular, an analysis such as BTA requires intensional analysis, which is only addressed tangentially in this
dissertation.

11

suggested in the works of Nielson and Nielson [62] and by Gomard and Jones [32], when two-level

languages were introduced. Recently, two-level languages have been proposed as an intermediate

representation for off-line partial evaluation systems. Glück generalized two-stage off-line partial

evaluation to multi-level off-line partial evaluation and introduced multi-level languages. These

ideas where the starting point for this dissertation. For example, MetaML is essentially a multi-

level language with the addition of Run. This view of MetaML is precisely the sense in which we

use the term “multi-stage”:

Multi-Stage Language = Multi-Level Language + Run.

1.4 Multi-Stage Programming with Explicit Annotations

From a software engineering point of view, the novelty of MetaML is that it admits an intu-

itively appealing method of developing meta-programs. A multi-stage program can be developed

in MetaML as follows:

1. A single-stage program is developed, implemented, and tested.

2. The type of the single-stage program is annotated using the code type constructor to reflect

the order in which inputs arrive.

3. The organization and data-structures of the program are studied to ensure that they can be

used in a staged manner. This analysis may indicate a need for “factoring” some parts of the

program and its data structures. This step can be subtle, and can be a critical step towards

effective multi-stage programming. Fortunately, it has been thoroughly investigated in the

context of partial evaluation where it is known as binding-time engineering [40].

4. Staging annotations are introduced to specify explicitly the evaluation order of the various

computations of the program. The staged program may then be tested to ensure that it achieves

the desired performance.

The method described above, called multi-stage programming with explicit annotations, can be

summarized by the slogan:

A Staged Program = A Conventional Program + Staging Annotations.

The conciseness of meta-programs written in MetaML allows us to view meta-programs as simple

variations on conventional (that is, “non-meta-”) programs. These variations are minor, orthogonal,

and localized, compared to writing meta-programs in a general-purpose programming language,

12

a task which would be riddled by the problems described in Section 1.1. Furthermore, staging is

accurately reflected in the manifest interfaces (the types) of the MetaML programs.

Because program generation is often used for the purpose of staging, we can widen the scope of

applicability of the slogan above by restating it as:

Many a Program Generator = A Conventional Program + Staging Annotations.

1.5 Thesis and Contributions

Our thesis is that MetaML is a well-designed language that is useful in developing meta-programs

and program generators. We break down the thesis into three main hypotheses:

H1. MetaML is a useful medium for meta-programming.

H2. MetaML can be placed on a standard, formal foundation whereby staging annotations are

viewed as language constructs amenable to the formal techniques of programming languages.

H3. MetaML in particular, and multi-level languages in general, can be improved both in their

design and implementation by what we have learned while building MetaML’s formal founda-

tions.

This dissertation presents the following contributions to support the hypotheses:

Applications of MetaML (H1) We have used MetaML to develop program generators. An im-

portant benefit of the approach seems to be its simplicity and transparency. Furthermore, MetaML

has been a powerful pedagogical tool for explaining the workings of partial evaluation systems. At

the same time, we have also identified some limitations of the approach, and identified ways in

which they could be addressed in the future. In Chapter 3 we present a detailed example proto-

typical of our experience.

A Formal Basis for Multi-Stage Programming (H2) We present a formal semantics and

a type system for MetaML, and a common framework that unifies previous proposals for formal

foundations for high-level program generation and run-time code generation. We have formalized

the semantics in two different styles (big-step style in Chapter 5, and reduction style in Chapter

6) and have developed a type system (Chapter 5) for MetaML that we proved sound.

Improving the Design and Implementation of MetaML (H3) In the process of formalizing

the semantics, we have uncovered a variety of subtleties and some flaws in the early implemen-

tations of MetaML and proposed remedies for them. Examples of such findings are presented in

13

Chapter 4. Furthermore, we have identified extensions to the language and showed how they can

be incorporated in a type-safe manner. In particular, we present a proposal for extending MetaML

with a type constructor for closedness in Chapter 5.

1.6 Organization and Reading Plans

This dissertation is organized into three parts. Part I introduces MetaML, and provides examples

of multi-stage programming with explicit annotations. Part II presents the formal semantics and

type system that we propose for MetaML. Part III covers related works, a discussion of the results,

and concludes the dissertation.

The following is a detailed overview of the three parts.

1.6.1 Part I

Chapter 2 provides the basic background needed for developing multi-stage programs in MetaML,

including:

– The intuitive semantics of MetaML’s staging annotations, illustrated by some small examples.

– The design principles that have shaped MetaML. We stress the novelty and significance of two

principles, called cross-stage persistence and cross-stage safety.

– Simple two-stage examples of multi-stage programming with explicit annotations. The exam-

ples illustrates the positive role of types in the development method.

– A three-stage example of multi-stage programming with explicit annotations.

Chapter 3 presents an extended example of multi-stage programming with explicit annotations.

This example shows that while developing staged programs can be challenging, borrowing well-

known techniques from the area of partial evaluation can yield worthwhile results. We consider a

simple term-rewriting system and make a first attempt at staging it. Searching for a staged type

for this system suggests that this direct attempt might not yield an optimal result. Indeed, we find

that this is the case. We then make a second attempt using a technique that has been exploited by

users of off-line partial evaluation systems, and show that this approach yields satisfactory results.

1.6.2 Part II

Chapter 4 summarizes the problems that must be addressed when we wish to implement a multi-

stage programming language such as MetaML, and gives examples of how our study of the formal

14

semantics improved our understanding of MetaML implementations. These problems and examples

provide the motivation for the theoretical pursuit presented in the rest of Part II. We begin

by reviewing the implementation problems that were known when MetaML was first developed,

including the basic scoping and typing problems. We then describe the semantics of a simple

implementation of subset of MetaML that we call λ-M6. This simple implementation is prototypical

of how implementations of multi-stage languages are developed in practice. The implementation

allows us to point out a new set of problems, including new scoping subtleties, more typing issues,

and the need for a better understanding of what MetaML programs can be considered equivalent.

This chapter is illustrative of the state of the art in the (potentially verifiable) implementation of

multi-stage programming languages.

Chapter 5 presents a basic type system for the λ-M subset of MetaML, together with a proof of

the soundness of this type system with respect to a big-step semantics for λ-M. We then argue

for extending the type system and present a big-step semantics for the a proposed extension to

MetaML that we call λBN7. The chapter presents:

– A big-step semantics. A big-step semantics provides us with a functional semantics. It is a

partial function, and therefore resembles an interpreter for our language. Because “evaluation

under lambda” is explicit in this semantics, it is a good, realistic model of multi-stage compu-

tation. Using only capture-free substitution in such a semantics is the essence of static scoping.

Furthermore, this semantics illustrates how MetaML violates one of the basic assumptions of

many works on programming language semantics, namely, that we are dealing only with closed

terms.

– A Type-safety result. We show that a basic type system for λ-M guarantees run-time safety,

based on an augmented big-step semantics.

– Closedness types. After explaining an expressivity problem in the basic type system presented

for λ-M, we show how this problem can be remedied by introducing a special type for closed

values. This extension paves the way for a new and more expressive form of the Run construct.

This chapter represents the state of the art in (untyped) semantics and type systems for multi-stage

programming languages.

6 The letter M stands for MetaML.
7 The letters B and N stand for Box and Next, respectively, after the names of the logical modalities used

in the work of Davies and Pfenning [23, 22]. It should be noted, however, that λBN no longer has a type
for closed code, but rather, a type for closedness.

15

Chapter 6 presents a reduction semantics for a subset of MetaML that we call λ-U8. The chapter

presents:

– A reduction semantics. The reduction semantics is a set of directed rewrite rules. Intuitively,

the rewrite rules capture the “notions of reduction” in MetaML.

– Subject reduction. We show that each reduction preserves typing under the type system for

λ-M.

– Confluence. This result is an indicator of the well-behavedness of our notions of reduction.

It states that the result of any two (possibly different) sequences of reduction can always be

reduced to a common term.

– Soundness. This result has two parts. First, all what can be achieved by the λ-M big-step

semantics, can be achieved by the reductions. Second, applying the reductions to any subterm

of a program does not change the termination behavior of the λ-M big-step semantics. In

essence, this result establishes that λ-U and λ-M are “equivalent” formulations of the same

language.

This chapter presents new results on the untyped semantics of multi-stage programming languages.

1.6.3 Part III

Chapter 7 summarizes related work and positions our contributions in the context of programming

languages, partial evaluation, and program generation research. The chapter presents:

– A summary of key developments in multi-level specialization and languages.

– A brief review of the history of quasi-quotations, revisiting Quine’s original work and LISP’s

back-quote and comma mechanism.

In Chapter 8 we appraise our findings, outline directions for future works, and conclude the dis-

sertation.

Appendix A presents some remarks on an intermediate language that we do not develop fully in

this dissertation, but we intend to study in more detail in future work.

8 We call this reduction semantics λ-U to avoid asserting a priori that it is equivalent to the big-step
semantics (λ-M). The letter U is the last in the sequence R, S, T, U. Our first attempt at a calculus was
called λ-R. We have included λ-T in Appendix A because it may have applications in the implementation
of multi-stage languages, but it is not as suitable as λ-U for the purpose of equational reasoning.

16

1.6.4 Reading Plans

The reader interested primarily in the practice of writing program generators, and the relevance of

MetaML and multi-stage programming to program generation may find Chapters 1 to 3 to be the

most useful. The reader interested in understanding the difficulties in implementing multi-stage

languages such as MetaML as extensions of existing programming languages may find Chapter 4

(skipping Section 4.6.2) to be the most useful, and Chapter 2 can serve as a complete introduction.

The reader interested primarily in the formal semantics of multi-level languages may find Chapter

5 and 6 to be the most useful, and Chapter 2 (and Section 4.6.2) can again serve as a complete

introduction.

Chapter 7 is primarily for readers interested in becoming more acquainted with the related litera-

ture on multi-stage languages.

Chapter 8 is primarily for readers interested in the summary of findings presented in this disser-

tation and an overview of open problems.

Part I

The Practice of Multi-Stage

Programming

Chapter 2

MetaML and Staging

All the world’s a stage,

And all the men and women merely players:

They have their exits and their entrances;

And one man in his time plays many parts...

Jacques, Act 2, Scene 7,

As You Like it, Shakespeare

This chapter introduces staging and MetaML. We present MetaML’s staging constructs and explain

how staging, even at a fairly abstract level, can be useful for improving performance. Then, we

explain the key design choices in MetaML and illustrate MetaML’s utility in staging three well-

known functions.

2.1 MetaML the Conceptual Framework

A good formalism for staging should allow us to explain the concept of staging clearly. In essence,

staging is altering a program’s order of evaluation in order to change the cost of its execution.

MetaML is a good formalism for staging because it provides four staging annotations that can be

used to explain such alterations:

1. Brackets 〈 〉 for delaying a computation,

2. Escape ˜ for combining delayed computations,

3. Run run for executing a delayed computation, and

4. Lift lift for constructing a delayed computation from a (ground) value.

With just this abstract description of MetaML’s annotations, we can explain how one can reduce

the cost of a program using staging.

18

19

2.1.1 Staging and Reducing Cost

Although, MetaML is a call-by-value (CBV) language, the cost of executing a program under

both CBV and call-by-name (CBN) semantics can be reduced by staging. Consider the following

computation:

(fn f ⇒ (f 9)+(f 13)) (fn x ⇒ x+(7*2)).

Ignore the fact that part or all of this computation can be performed by an optimizing compiler

before a program is executed. Such optimizing compilers constitute an additional level of complexity

that we are not concerned with at the moment. Consider a cost model where we count only the

number of arithmetic operations performed. We make this choice only for simplicity. This cost

model is realistic in situations where the arithmetic operations in the program above stand in

place of more costly operations.

Evaluating the program above under CBV semantics proceeds as follows (the cost of each step is

indicated by “... n arith op(s)”):

1. ((fn x ⇒ x+(7*2)) 9)+((fn x ⇒ x+(7*2)) 13) ... 0 arith ops

2. (9+(7*2))+(13+(7*2)) ... 0 arith ops

3. 50 ... 5 arith ops

The total cost is 5 ops. Evaluating the same computation under CBN semantics proceeds in

essentially the same way. Again, the total cost is 5.

2.1.2 Staging Reduces Cost in CBV

In the CBV setting, we can stage our computation as follows:

(fn f ⇒ (f 9)+(f 13)) (run 〈fn x ⇒ x+˜(lift (7*2))〉).

Evaluating this staged computation under CBV semantics proceeds as follows:

1. (fn f ⇒ (f x)+(f y)) (run 〈fn x ⇒ x+˜(lift 14)〉) ... 1 arith op

2. (fn f ⇒ (f x)+(f y)) (run 〈fn x ⇒ x+˜〈14〉〉) ... 0 arith ops

3. (fn f ⇒ (f x)+(f y)) (run 〈fn x ⇒ x+14〉) ... 0 arith ops

4. (fn f ⇒ (f x)+(f y)) (fn x ⇒ x+14) ... 0 arith ops

5. (((fn x ⇒ x+14) 9)+((fn x ⇒ x+14) 13)) ... 0 arith ops

6. ((9+14)+(13+14)) ... 0 arith ops

7. 50 ... 3 arith ops

The staged version costs 1 op less.

20

2.1.3 Staging Reduces Cost in CBN

In the CBN setting, we can stage our computation as follows:

run 〈(fn f ⇒ (f 9)+(f 13)) (fn x ⇒ x+˜(lift (7*2)))〉.

Evaluating the staged computation above under CBN semantics proceeds as follows:

1. run 〈(fn f ⇒ (f 9)+(f 13)) (fn x ⇒ x+˜(lift 14))〉 ... 1 arith ops

2. run 〈(fn f ⇒ (f 9)+(f 13)) (fn x ⇒ x+˜〈14〉)〉 ... 0 arith ops

3. run 〈(fn f ⇒ (f 9)+(f 13)) (fn x ⇒ x+14)〉 ... 0 arith ops

4. (fn f ⇒ (f 9)+(f 13)) (fn x ⇒ x+14) ... 0 arith ops

5. (((fn x ⇒ x+14) 9)+((fn x ⇒ x+14) 13)) ... 0 arith ops

6. (9+14)+(13+14) ... 0 arith ops

7. 50 ... 3 arith ops

The cost is again 1 op less than without staging. It is in this sense that staging gives the programmer

control over the evaluation order in a manner that can be exploited to enhance performance.

Having explained the concept of staging, we are now ready to introduce MetaML the programming

language.

2.2 MetaML the Programming Language

MetaML is a functional programming language with special constructs for staging programs. In

addition to most features of SML, MetaML provides the following special support for multi-stage

programming:

– Four staging annotations, which we believe are a good basis for general-purpose multi-stage

programming.

– Static type-checking and a polymorphic type-inference system. In MetaML, a multi-stage pro-

gram is type-checked once and for all before it begins executing, ensuring the safety of all

computations in all stages. This feature of MetaML is specially useful in systems where the

later stages are executed when the original programmer is no longer around.

– Static scoping for both meta-level and object-level variables.

MetaML implements delayed computations as abstract syntax trees representing MetaML pro-

grams. The four MetaML staging constructs are implemented as follows:

21

1. Brackets 〈 〉 construct a code fragment,

2. Escape ˜ combines code fragments,

3. Run run executes a code fragment, and

4. Lift lift constructs a code fragment from a ground value, such that the code fragment repre-

sents the ground value.

In this section, we explain the intuitive semantics of each of these four constructs.

2.2.1 Brackets

Brackets can be inserted around any expression to delay its execution. MetaML implements de-

layed expressions by building a representation of the source code. While using the source code

representation is not the only way of implementing delayed expressions, it is the simplest. The

following short interactive session illustrates the behavior of Brackets in MetaML:

-| val result0 = 1+5;

val result0 = 6 : int

-| val code0 = 〈1+5〉;
val code0 = 〈1%+5〉 : 〈int〉.

The percentage signs in %+ simply indicates that + is not a free variable. The reader can treat

such percentage signs as white space until their significance is explained in Section 2.3.1.

In addition to delaying the computation, Brackets are also reflected in the type. The type in the

last declaration is 〈int〉, read “Code of Int”. The code type constructor is the primary devise that

the type system uses for distinguishing delayed values from other values and prevents the user

from accidentally attempting unsafe operations such as 1+〈5〉.

2.2.2 Escape

Escape allows the combination of smaller delayed values to construct larger ones. This combination

is achieved by “splicing-in” the argument of the Escape in the context of the surrounding Brackets:

-| val code1 = 〈(˜code0,˜code0)〉;
val code1 = 〈(1%+5,1%+5)〉 : 〈int * int〉.

This declaration binds code1 to a new delayed computation, representing a tuple of two arithmetic

expressions. Escape combines delayed computations efficiently in the sense that the combination

of the subcomponents of the new computation is performed while the new computation is being

22

constructed, rather than while it is being executed. This subtle distinction is crucial for staging. And

as we will see in examples to come, this particular behavior of Escape can make a big difference

in the run-time performance of the delayed computation.

2.2.3 Run

Run allows the execution of a code fragment. Having Run in the language is important if we want

to use code constructed using the other MetaML constructs, without going outside the language.

This added expressivity makes Run important from both practical and theoretical points of view.

From the practical point of view, having Run in a statically typed language allows us to develop

multi-stage systems as part of any program and still be sure that the whole system will be free of

run-time errors. From the theoretical point of view, it allows us to formalize the problem of safety

in multi-stage systems and to address it with formal rigor.

The use of Run in MetaML can be illustrated with the following simple example:

-| val code0 = 〈1+5〉;
val code0 = 〈1%+5〉 : 〈int〉

-| val result1 = run code0;

val result1 = 6 : int.

2.2.4 Lift

Lift allows us to inject values of ground type into a value of type code. In MetaML, base types are

types containing no arrows (function types). Examples of ground types are int, string, bool, and

int list:

-| val code2 = lift 6 ;

val code2 = 〈6〉 : 〈int〉.

While both Brackets and Lift construct code, Lift does not delay its argument. Lift first evaluates

its argument, then constructs a representation for this value:

-| val code3 = lift 1+5;

val code3 = 〈6〉 : 〈int〉.

Because Lift is implemented by producing a source-level representation of the its operand, Lift

cannot be defined for functions: Given an arbitrary function, there is no general way of computing

23

a source-level representation for that function1. However, functions can still be delayed using

Brackets:

-| val result2 = fn x ⇒ x+1;

val result2 = -fn- : int → int

-| val code4 = 〈result2 5〉;
val code4 = 〈%result2 5〉 : 〈int〉

-| val result3 = run code4;

val result3 = 6 : int.

In the first declaration, result2 is bound to the function that takes an int and returns an int. The

second declaration constructs a piece of code that uses result2 in a delayed context.

2.2.5 The Notion of Level

Determining when an Escaped expression should be performed requires a notion of level. The

level of a term is the number of surrounding Brackets minus the number of surrounding Escapes.

Escapes in MetaML are only evaluated when they are at level one.

MetaML is a multi-level language. This feature is important because it allows us to have multiple

distinct stages of execution. For example, we can write expressions such as:

-| 〈〈5+5〉〉;
val it = 〈〈5%+5〉〉 : 〈〈int〉〉

and the type reflects the number of times the enclosed integer expression is delayed.

Escapes can be also used in object-programs. In such multi-level expressions, we can also use

Escapes:

-| val code5 = 〈〈(5+5,˜(code2))〉〉;
val code5 = 〈〈(5%+5,˜(code2))〉〉 : 〈〈int*int〉〉.

The Escape is not “performed” when this expression was evaluated, because there are two Brackets

surrounding this Escape. We can Run the doubly delayed value code5 as follows:

1 Recent work on type-directed partial evaluation [18] suggests that there are practical ways of deriving
the source-level representations for functions at run-time when the executables available at run-time
are sufficiently instrumented. Sheard has investigated type-directed partial evaluation in the context of
MetaML [81]. The treatment of this subject is, however, beyond the scope of the present work.

24

-| val code6 = run code5;

val code6 = 〈(5%+5,6)〉 : 〈int*int〉.

Run eliminates one Bracket2, thus lowering the level of the Escape from 2 to 1, and the Escape is

performed.

2.3 The Pragmatics of Variables and Levels

Is it reasonable to write a program where a variable is bound at one level and is used at another?

On one hand, it seems completely justifiable to write terms such as 〈sqrt 16.0〉. It is typical in the

formal treatment of programming languages to consider sqrt to be a free variable (bound at level

0). In this case sqrt is bound at level 0 and is used at level 1. On the other hand, we do not wish to

allow terms such as 〈fn x ⇒ ˜x〉 which dictates that x be evaluated (at level 0) before it is bound

(at level 1). The first term is an example of why cross-stage persistence is desirable, and the second

term is an example of why violating cross-stage safety is undesirable.

2.3.1 Cross-Stage Persistence

We say that a variable is cross-stage persistent when it is bound at one level and is used at a higher

level. Permitting this usage of variables means allowing the programmer to take full advantage of

all primitives and bindings that are available in the current stage by reusing them in future stages.

A percentage sign is printed by the display mechanism to indicate that %a is not a variable, but

rather, a new constant. For example the program

let val a = 1+4 in 〈72+a〉 end

computes the code fragment 〈72 %+ %a〉. The percentage sign % indicates that the cross-stage

persistent variables a and + are bound in the code’s local environment. The variable a has been

bound during the first stage to the constant 5. The name “a” is printed only to provide a hint to

the user about where this new constant originated from.

When %a is evaluated in a later stage, it will return 5 independently of the binding for the variable

a in the new context. Arbitrary values (including functions) can be injected into a piece of code

using this hygienic binding mechanism.

2 Despite that, there is a sense in which evaluation and reduction both “preserve level”. Such properties
will be established as part of the formal treatment of MetaML in Part II of this dissertation.

25

2.3.2 Cross-Stage Safety

We say the that a variable violates cross-stage safety when it is bound at one level and is used at

a lower level. This violation occurs in the expression:

fn a ⇒ 〈fn b ⇒ ˜(a+b)〉.

The annotations in this expression dictate computing a+b in the first stage, when the value of b

will be available only in the second stage!

Supporting cross-stage persistence means that a type system for MetaML must ensure that “well-

typed programs won’t go Wrong”, where going wrong now includes the violation of the cross-stage

safety condition, as well as the standard notions of going wrong [48] in statically-typed languages.

In our experience, having a type system to screen out such programs is a significant aid in developing

a multi-stage program.

We are now ready to see how MetaML can be used to stage some simple functions.

2.4 Staging the List-Membership Function

Using MetaML, the programmer can stage programs by inserting the proper annotations at the

right places in the program. The programmer uses these annotations to modify the default strict

evaluation order of the program.

Let us consider staging the function that takes a list and a value and searches the list for this

value. We begin by writing the single-stage function3:

(* member1 : ”a → ”a list → bool *)

fun member1 v l =

if (null l)

then false

else if v=(hd l)

then true

else member1 v (tl l).

We have observed that the possible annotations in a staged version of a program are significantly

constrained by its type. This observation suggests that a good strategy for hand-staging a program

3 In SML, whereas type variables written as ’a are unrestricted polymorphic variables, type variables
written as ”a are also polymorphic, but are restricted to equality types, that us, types whose elements can
be tested for equality. Function types are the prototypical example of a type whose elements cannot be
tested for equality. Thus, equality type variables cannot be instantiated to functions types, for example.

26

is to first determine the target type of the desired annotated program. Thus, we will start by

studying the type of the single-stage function. Suppose the list parameter is available in the first

stage, and the element sought is available later. A natural target type for the staged function is

then

〈 ”a〉 → ”a list →〈bool〉.

This type reflects the fact that both the first argument and the result of this function will be

“late”. In other words, only the second argument is available at the current time.

Having chosen a suitable target type, we begin annotating the single-stage program. We start with

the whole expression and working inwards until all sub-expressions have been considered. At each

step, we try to find the annotations that will “correct” the type of the expression so that the whole

function has a type closer to the target type. The following function realizes the target type for

the staged member function:

(* member2 : 〈 ”a〉 → ”a list → 〈bool〉 *)

fun member2 v l =

if (null l)

then 〈false〉
else 〈if ˜v=˜(lift (hd l))

then true

else ˜(member2 v (tl l))〉.

Not all annotations are explicitly dictated by the type. The annotated term ˜(lift (hd l)) has the

same type as hd l, but it ensures that hd l is performed during the first stage. Otherwise, all

selections of the head element of the list would be delayed until the generated code is Run in a

later stage4.

The Brackets around the branches of the outermost if-expression ensure that the return value of

member2 will be a code type 〈 〉. The first branch 〈false〉 needs no further annotations and makes

the return value precisely a 〈bool〉. Moving inwards in the second branch, the condition ˜v forces

the type of the v parameter to have type 〈 ”a〉, as planned.

Just like the first branch of the outer if-statement, the inner if-statement must return bool. So,

the first branch returns true without any further annotations. But because the recursive call to

member2 has type 〈bool〉, it must be Escaped. Inserting this Escape also implies that the recursion

4 More significantly, recursive programs can be annotated in two fundamentally different ways and types
do not provide any help in this regard. We expand on this point in Chapter 7.

27

will be performed in the first stage, which is exactly the desired behavior. Thus, the result of

member2 is a recursively-constructed piece of code of type type bool.

Evaluating 〈fn x ⇒ ˜(member2 〈x〉 [1,2,3])〉 yields:

〈fn d1 ⇒
if d1 %= 1 then true

else if d1 %= 2 then true

else if d1 %= 3 then true

else false〉.

2.5 Staging the Power Function

Computing the powers of a real number is a classic example from the partial evaluation literature

[40]. Consider the following definition of exponentiation:

x0 = 1

xn+n+1 = x× xn+n

xn+n+2 = (xn+1)2

This definition can be used to compute expressions such as 1.75. More interestingly, it can be used

to compute or “generate” an efficient formula for expressions such as x72 where only the exponent

is known. We have underlined the term being expanded:

x72 = (x36)2 = (((x18)2)2)2 = ((x9)2)2 = (((x× x8)2)2)2

= (((x× (x4)2)2)2)2 = (((x× ((x2)2)2)2)2)2

= (((x× (((x× 1)2)2)2)2)2)2

This sequence of expansions is an example of symbolic computation, because we are computing

with free variables. It is also an example of staged computation, because we are doing useful work

in a stage distinct from the final stage of computation.

The computation above can be be programmed in MetaML. First, we write the single-stage “all-

inputs are known” function:

fun exp (n,x) = (* : int × real → real *)

if n = 0 then 1.0

else if even n then sqr (exp (n div 2,x))

else x * exp (n - 1,x).

Then, we add staging annotations:

28

fun exp’ (n,x) = (* : int × 〈real〉 → 〈real〉 *)

if n = 0 then 〈1.0〉
else if even n then sqr’ (exp’ (n div 2,x))

else 〈˜x-345 * ˜(exp’ (n - 1,x))〉.

We also need to stage the function sqr:

fun sqr x = (* : real → real *)

x * x;

to

fun sqr’ x = (* : 〈real〉 → 〈real〉 *)

〈let val y = ˜x in y * y end〉.

The pattern of multiplying a variable by itself after a let-binding let ... in y * y, will be evident in

the generated code. Now, we can use exp’ to generate the code for x72 as follows:

- val exp72’ = 〈fn x ⇒ ˜(exp’ (72,〈x〉))〉;
val exp72’ = 〈fn x ⇒

let val a =

let val b =

let val c = x %*

let val d =

let val e =

let val f = x %* 1.0

in f %* f end

in e %* e end

in d %* d end

in c %* c end

in b %* b end

in a %* a end〉 : 〈real → real〉.

MetaML performs an optimization on let-bindings whereby a term of the form:

let val x = (let val y = e in f end) in g end

is replaced by

let val y = e val x = f in g end

Thus, the code returned by the system is in fact simpler:

29

val exp72’ = 〈fn x ⇒
let val f = x %* 1.0

val e = f %* f

val d = e %* e

val c = x %* (d %* d)

val b = c %* c

val a = b %* b

in a %* a end〉 : 〈real → real〉.

Finally, we can re-integrate this specialized function into the run-time system using Run:

- val exp72 = run exp72’; (* : real → real *).

This new function can now be used anywhere where need to compute x72 efficiently. Having Run in

the language is essential for allowing the programmer to use an automatically generated function

anywhere a hand-written function can be used.

The recursion has been performed in the first stage. Eliminating the function calls involved in

recursion can yield a performance improvement for short lists. For longer lists, the size of the

generated expression could burden the memory management system.

2.6 Back and Forth: Two Useful Functions on Code Types

While staging programs, we found an interesting pair of functions to be useful:

fun back f = 〈fn x ⇒ ˜(f 〈x〉)〉; (* : (〈 ’a〉 → 〈 ’b〉) → 〈 ’a → ’b〉 *)

fun forth f x = 〈˜f ˜x〉; (* : 〈 ’a → ’b〉 → 〈 ’a〉 → 〈 ’b〉 *).

The function 〈back〉 takes a function f and constructs a code fragment representing a new function.

The body of the new function is the result of unfolding the function f on the argument of the new

function. The function forth takes a code fragment f and a code fragment x, and constructs a

code fragment representing the application of the first to the second. These two “computational

patterns” come up often in the course of multi-stage programmers. We have already used a similar

construction to stage the member2 function of type 〈 ”a〉 → ”a list → 〈bool〉, within the term 〈fn

x ⇒ ˜(member2 〈x〉 [1,2,3])〉 which has type 〈 ”a → bool〉.

In our experience, annotating a function to have type 〈 ’a〉 → 〈 ’b〉 requires less annotations than

annotating it to have type 〈 ’a → ’b〉 and is often easier to think about. Furthermore, perhaps

because we are functional programmers, it seemed more convenient to think of code transformers

(functions from code to code) rather than representations of functions (code of functions). Both

30

reasons lead us to avoid writing programs of the latter type except when we need to see the

generated code.

The same observations apply to programs with more than two stages. Consider the function:

(* back2 : (〈 ’a〉 → 〈〈 ’b〉〉 → 〈〈 ’c〉〉) → 〈 ’a → 〈 ’b → ’c〉〉 *)

fun back2 f = 〈fn x ⇒ 〈fn y ⇒ ˜˜(f 〈x〉 〈〈y〉〉)〉〉.

This function allows us to write a program which takes a 〈a〉 and a 〈〈b〉〉 as arguments and which

produces a 〈〈c〉〉, and turns it into a three-stage function. Our experience is that such functions

have considerably fewer annotations, and are easier to reason about. We expand on this point in

the next section.

2.7 Staging the Inner Product: A Three-Stage Example

The function for computing the inner product of two vectors has been studied in several other

works [29, 45], and its execution can be usefully separated into three distinct stages:

1. In the first stage, knowing the size of the two vectors offers an opportunity to specialize the

inner product function on that size, removing a looping overhead from the body of the function.

2. In the second stage, knowing the first vector offers an opportunity for specialization based on

the values in the vector. If the inner product of that vector is to be taken many times with

other vectors it can be specialized by removing the overhead of looking up the elements of the

first vector each time. Knowing the size and the first vector is exactly the case when computing

the multiplication of two matrices. For each row in the first matrix, the dot product of that

row will be taken with each column of the second matrix.

3. In the third stage, knowing the second vector, the computation is brought to completion.

We will present three versions of the inner product function. One (iprod) with no staging anno-

tations, the second (iprod2) with two levels of annotations, and the third (iprod3) with two levels

of annotations but constructed with the back2 function. In MetaML we quote relational operators

such as less-than < and greater-than > because of the possible confusion with Brackets.

(* iprod : int → Vector → Vector → int *)

fun iprod n v w =

if n ’>’ 0

then ((nth v n) * (nth w n)) + (iprod (n-1) v w)

else 0;

31

(* iprod2 : int → 〈Vector → 〈Vector → int〉〉 *)

fun iprod2 n = 〈fn v ⇒ 〈fn w ⇒
˜˜(if n ’>’ 0

then 〈〈(˜(lift (nth v ˜(lift n))) * (nth w ˜(lift (˜lift n)))) + (˜(˜(iprod2 (n-1)) v) w)〉〉
else 〈〈0〉〉)〉〉;

(* iprodF2 : int → 〈Vector〉 → 〈〈Vector〉〉 → 〈〈int〉〉 *)

fun iprodF2 n v w =

if n ’>’ 0

then 〈〈 (˜(lift (nth ˜v ˜(lift n))) * (nth ˜˜w ˜(lift (˜lift n)))) + ˜˜(iprodF2 (n-1) v w)〉〉
else 〈〈0〉〉;

fun iprod3 n = back2 (iprodF2 n).

As we predicted in the last section, the version written with back2 has one less annotation. More

importantly, annotating the version written with back2 seems less cumbersome. While this obser-

vation is a somewhat subjective, it may benefit future MetaML or multi-stage programming. We

emphasize that the type inference mechanism and the interactive environment are especially useful

when exploring different approaches to annotation and staging.

Another benefit of MetaML is providing us with a way to visualize multi-stage computation, in

essence, by running them stage by stage and inspecting the intermediate results. By testing iprod3

on some inputs we can immediately see the results:

-| val f1 = iprod3 3;

f1 = 〈fn d1 ⇒
〈fn d5 ⇒

(˜(lift (%nth d1 3)) %* (%nth d5 3)) %+

(˜(lift (%nth d1 2)) %* (%nth d5 2)) %+

(˜(lift (%nth d1 1)) %* (%nth d5 1)) %+

0〉〉
: 〈Vector → 〈Vector → int〉〉.

When f1 is Run, it returns a function. When this function is applied to a vector, it builds another

piece of code. This building process includes looking up each element in the first vector and splicing-

in the actual value using the Lift operator. Lift is especially useful when we wish to inspect the

generated code:

val f2 = (run f1) [1,0,4];

f2: 〈Vector → int〉 =

32

〈fn d1 ⇒ (4 %* (%nth d1 3)) %+

(0 %* (%nth d1 2)) %+

(1 %* (%nth d1 1)) %+ 0〉.

The actual values of the first array appear in the code, and the access function nth appears applied

to the second vector d1.

This code still does not take full advantage of all the information known in the second stage. For

example, we may wish to eliminate multiplications by 0 or 1. Such multiplications can be optimized

without knowing the value of the second operand. To this end, we write a “smarter” function add

which given a vector index i, an integer x from the first vector, and a piece of code y representing

the second vector, constructs a piece of code which adds the result of the x and y multiplication

to the code-valued fourth argument e.

(* add : int → int → 〈Vector〉 → 〈int〉 → 〈int〉 *)

fun add i x y e =

if x=0 then e

else if x=1 then 〈(nth ˜y ˜(lift i)) + ˜e〉
else 〈(˜(lift x) * (nth ˜y˜(lift i))) + ˜e〉.

This specialized function can now be used to build an improved version of the iprodF2 function:

(* iprodFS2 : int → 〈Vector〉 → 〈〈Vector〉〉 → 〈〈int〉〉 *)

fun iprodFS2 n v w =

if n = 1 then 〈add n (nth ˜v n) ˜w 〈0〉〉
else 〈add n (nth ˜v n) ˜w ˜(iprodFS2 (n-1) v w)〉;

fun iprodS2 n = back2 (iprodFS2 n).

Now let us look at the result of the first stage computation:

val f3 = iprodS2 3;

f3: 〈Vector → 〈Vector → int〉〉 =

〈fn d1 ⇒
〈fn d5 ⇒

˜(%add 3 (%nth d1 3) 〈d5〉
〈 ˜(%add 2 (%nth d1 2) 〈d5〉

〈˜(%add 1 (%nth d1 1) 〈d5〉
〈0〉)〉)〉)〉〉.

This code is linear in the size of the vector. If we had actually in-lined the calls to add it would

be exponential. Controlling code explosion is a side benefit of the sharing provided by cross-stage

persistent constants such as add.

33

Now let us observe the result of the second stage computation:

val f4 = (run f3) [1,0,4];

f4: 〈Vector → int〉 = 〈fn d1 ⇒ (4 %* (%nth d1 3)) %+ (%nth d1 1) %+ 0〉.

Now only the multiplications that contribute to the answer remain. If the vector is sparse, then

this sort of optimization can have dramatic effects.

Finally, note that while iprodFS2 is a three-stage function, the terms in the body of this function

involve only two levels of terms. Such implicit increase in the number of stages is a prototypical ex-

ample of how multi-stage programs develop naturally from the composition of two-stage programs,

or any lower-number-of stages programs.

Chapter 3

Staging a Simple Term-Rewriting

Implementation

And let this world no longer be a stage

To feed contention in a lingering act;

Northumberland, Act 1, Scene1,

King Henry IV, Shakespeare

In this chapter we present an extended example of applying the method of multi-stage programming

with explicit annotations. Starting with a single-stage term-rewriting function, we annotate it to

derive a two-stage function. We point out some limitations of this direct attempt to stage the

function and show how re-implementing the function in continuation-passing style (CPS) improves

the generated code substantially. Rewriting the program into CPS is an example of what is known

in the partial evaluation literature as binding-time improvement.

3.1 Term-Rewriting

Dershowitz [24] defines a term rewriting system as a set of directed rules. Each rule is made of a

left-hand side and a right-hand side. A rule may be applied to a term t if a sub-term s of t matches

the left-hand side under some substitution σ. A rule is applied by replacing s with s′, where s′ is

the result of applying the substitution σ to the right-hand side. We call the modified t term t′, and

say “t rewrites (in one step) to t′”, and write t −→ t′. The choice of which rule to apply is made

non-deterministically. As an example, the rules for a Monoid [24] are:

x+ 0 −→r1 x

0 + x −→r2 x

x+ (y + z) −→r3 (x+ y) + z

34

35

Variables x, y, and z in such rules can each match any term. If a variable occurs more than once

on the left-hand side of a rule, all occurrences must match identical terms. These rules allow us to

have derivations such as:

(a+ b) + (0 + (d+ e))

−→ by r2, σ = [(d+ e)/x]

(a+ b) + (d+ e)

−→ by r3, σ = [(a+ b)/x, d/y, e/z]

((a+ b) + d) + e

where the sub-term s being rewritten has been underlined.

Generally, such rules do not change over the life of a term-rewriting system. At the same time, the

basic form of a matching function is a simultaneous traversal of a term and the left-hand side of

the rule it is being matched against. The invariance of the rules during the normal lifetime of the

rewriting system offers an opportunity for staging: We can specialize matching over the rules in a

first stage, and eliminate the overhead of traversing the left-hand side of the rules. Not only that, but

we will see that we can also remove a significant amount of administrative computations involved

in constructing and applying the substitution σ. We expect that this staging would significantly

reduce the cost of rewriting a term.

3.2 A Single-Stage Implementation

In this section, we present the implementation of part of a simple term-rewriting system.

3.2.1 An Implementation of Terms and Patterns

Both terms and patterns can be represented using the following MetaML type:

datatype term = Var of string

| Int of int

| Op of term * string * term.

The constructors of this type are Var, Int and Op, corresponding to variables, integers, and ap-

plications of binary operators. Thus, we can represent terms such as t1 = (a + b) + (d + e) and

t2 = ((a+ b) + d) + e as:

val t1 = Op(Op(Var ”a”,”+”,Var ”b”),”+”,Op(Var ”d”,”+”,Var ”e”));

val t2 = Op(Op(Op(Var ”a”,”+”,Var ”b”),”+”,Var ”d”),”+”,Var ”e”).

36

We will represent rewrite rules as ordered pairs of terms. For example, the rules for a Monoid are

represented as:

val r1 = (Op(Var ”x”,”+”,Int 0),Var ”x”);

val r2 = (Op(Int 0,”+”,Var ”x”),Var ”x”);

val r3 = (Op(Var ”x”,”+”,Op(Var ”y”,”+”,Var ”z”)),

Op(Op(Var ”x”,”+”,Var ”y”), ”+”, Var ”z”)).

We will represent substitutions as lists of pairs of strings and terms. For example, the substitution

[(a+ b)/x, d/y, e/z] is represented as:

val s1 = [(”x”,Op(Var”a”,”+”,Var”b”)),

(”y”,Var”d”),

(”z”,Var”e”)].

Finally, because matching can succeed or fail, we will use an instance of the following simple

datatype for the return value of matching:

datatype ’a option = Nothing | Just of ’a.

The option type constructor provides a mechanism whereby one can write functions that can either

succeed and return a value of an arbitrary type ’a, or fail to return such a value and simply return

the value Nothing.

3.2.2 An Implementation of Matching

We focus on the function that tries to match a candidate term with a left-hand side of a rule. We

assume that separate helper functions take care of applying this function to all sub-terms of the

candidate term. The single-stage implementation of this matching function is as follows:

fun match1 pat msigma t =

case msigma of

Nothing ⇒ Nothing

| Just (sigma) ⇒
(case pat of

Var u ⇒ (case find u sigma of

Nothing ⇒ Just ((u,t) :: sigma)

| Just w ⇒ if w = t then Just sigma else Nothing)

| Int n ⇒ (case t of

Int u ⇒ if u=n then msigma else Nothing

| ⇒ Nothing)

37

| Op(t11,s1,t12) ⇒ (case t of

Op (t21,s2,t22) ⇒ (if s2 = s1

then (match1 t11

(match1 t12 msigma t22) t21)

else Nothing)

| ⇒ Nothing)).

The match1 function takes a pattern pat, a substitution msigma, a candidate term t, and tries

to compute a substitution that would instantiate the pattern to the term. First, match1 inspects

msigma. If msigma is Nothing, this means that a failure has occurred in a previous match, and

we simply propagate this failure by returning Nothing. Otherwise, a case analysis on the pattern

pat is performed. If the pattern is a variable, the substitution is extended appropriately after

checking for consistency with the new binding. We check consistency by looking up the name u

in the environment sigma. Then, if there is no binding for that name, then we simply extend the

environment. If there is already a binding for that name, and it is the same as the one we wish to

add, then there is no need to perform the extension. If there is already a binding for that name,

but it is different from the one we wish to add, then we fail.

If the pattern is an integer, then the term must also be an integer with the same value. In this case

the original substitution is returned. If the pattern is an operator, we check that the term is also

an operator with the same operation, and then the right- and left-hand sides of the pattern and

the term are recursively matched, possibly extending the substitution. In all other cases, match1

returns Nothing to indicate that it has failed.

The match1 function has type:

term→ (string ∗ term) list option→ term→ (string ∗ term) list option

The two occurrences of option in the type can be explained as follows: First, match1 returns a

substitution option, because it can fail to match the pattern to the term. Such failure occurs in all

places where match1 returns Nothing. Second, the result of one call to match1 gets fed-back into

another call to match1, hence the incoming and outgoing substitutions must have exactly the same

type. This threading of the substitution happens in the case of an Op pattern:

...

(match1 t11

(match1 t12 msigma t22) t21)

... .

38

But matching the right operand t22 can also fail, in which case the whole match should fail. So,

if match1 is passed an invalid substitution Nothing, then the outer case-statement immediately

returns Nothing, thus correctly propagating the failure of matching t22.

3.2.3 Helper Functions

To use match1, we need some helper functions:

fun find v [] = Nothing

| find v ((n,t)::bs) = if v=n then Just t else find v bs.

This function takes a variable name and a substitution and returns the term corresponding to this

name, if any. Again, we use the option type for dealing with failure. Applying the substitution is

performed by the following function:

fun subst1 sigma pat =

case pat of

Var v ⇒ (case find v sigma of Just w ⇒ w)

| Int i ⇒ Int i

| Op(t1,s,t2) ⇒ Op (subst1 sigma t1, s, subst1 sigma t2).

This function takes a substitution and a pattern, and applies the substitution to the pattern.

The function works by recursively traversing the pattern and replacing any variables by the corre-

sponding binding in the substitution msigma. Applying a rewrite rule is performed by the following

function:

fun rewrite1 (lhs,rhs) t =

case match1 lhs (Just []) t of

Nothing ⇒ t

| Just (sigma) ⇒ subst1 sigma rhs.

This function takes a rule and a term, and uses match1 to try to compute a unifying substitution.

If matching is successful, it applies the substitution using subst1. Otherwise, it returns the term

unchanged.

3.2.4 What to Expect from Staging

Often, we can appraise the success of staging qualitatively, without need for quantitative bench-

marking. Such an appraisal can be achieved by inspecting an intermediate result of a staged

computation, comparing it to what can be achieved by hand-programming a specialized version of

39

the desired program, based on the contextual information that is available. For example, a good

hand-crafted version of rewrite1 specialized for the rule r1 : x+ 0→ x is as follows:

fun rewriteR1 term =

case term of

Op (t1,s,t2) ⇒ if s = ”+” then (case t2 of Int n ⇒ if n=0 then t1 else term

| ⇒ term)

else term

| ⇒ term.

This function takes a term, checks if it is a binary operation, the operation is an addition, the

second argument is an integer, and the integer is 0, then returns the first argument. If any of the

checks fails, it returns the term unchanged. This function does not pay the interpretive overhead

of traversing the pattern, and the effect of the substitution operation has also been computed in

advance.

In the rest of this chapter, we will study how far MetaML can take us towards turning our single-

stage program into a generator that produces such highly specialized code.

3.3 A First Attempt at Staging

Defer no time, delays have dangerous ends;

Reignier, Act 3, Scene 2,

King Henry VI, Shakespeare

In this section we analyze the type of the match1 function and develop a target type for a two-stage

matching function based on match1. We then present the two-stage matching function. Finally, we

inspect the generated code and contrast it to the goal that we have set in Section 3.2.4.

3.3.1 Designing the Multi-Stage Type

We have already decided that we will consider the candidate term to be available only in the

second stage. This choice means that a first approximation of our target for the type of the staged

function is:

term→ (string ∗ term) list option→ 〈term〉 → (string ∗ term) list option.

But based on our knowledge of the algorithm, we know that the substitution returned by the match

function must contain sub-terms of the term being matched. Thus, the resulting substitution is

going to be a partially-static datatype. In particular, what we will get back is a skeleton of a list of

40

pairs, where the first element in the pair is a string, but the second element will not yet be known.

Thus, a second approximation of the desired type is:

term→ (string ∗ term) list option→ 〈term〉 → (string ∗ 〈term〉) list option.

Going back to the algorithm, recall that we thread the substitution through two recursive calls to

the match function in the case of matching binary operations. This threading means that, in a

staged implementation of match1, the result of the term match1 t12 msigma t22 will also have to

have type (string * 〈term〉) list option. The change in the type of this term forces us to change the

type of the substitution passed to the staged match function:

term→ (string ∗ 〈term〉) list option→ 〈term〉 → (string ∗ 〈term〉) list option.

The “If” Problem The type above looks promising. Unfortunately, there is a subtlety in our

matching algorithm that forces us to reflect more delays in the staged type. We say unfortunately

because having more delays in the type usually suggests that we will not be able to stage this

function as effectively as we would like. The problem with our algorithm is that the option part

of the return value depends on testing the equality of terms in the substitutions. In particular,

testing the consistency of a new binding with the existing substitution is performed by equating

terms. This test is carried out in the statement:

...

if w = t then Just sigma else Nothing

... .

When the condition of an if-statement is delayed, the result of the whole if-statement must also

be considered as delayed. The reason is that we will not know which branch to pursue until all

the information for the condition becomes available. Thus, the return type for the staged match

function will have to be 〈 option〉. We are left with the following target type:

term→ 〈(string ∗ term) list option〉 → 〈term〉 → 〈(string ∗ term) list option〉

This type indicates that only the pattern is inspected in the first stage and the result is a specialized

function that can be Run in the second stage. In the following subsection, we will see how well we

can take advantage of this information in a multi-stage program.

3.3.2 A Two-Stage Implementation

Following a similar process to that described for staging the list membership function (Section 2.4),

we arrive at the following two-stage version of match1:

41

fun match2 pat msigma t =

〈case ˜msigma of

Nothing ⇒ Nothing

| Just (sigma) ⇒
˜(case pat of

Var u ⇒ 〈case find u sigma of

Nothing ⇒ Just ((u,˜t) :: sigma)

| Just w ⇒ if w = ˜t then Just sigma else Nothing〉
| Int n ⇒ 〈case ˜t of

Int u ⇒ if u=˜(lift n) then ˜msigma else Nothing

| ⇒ Nothing〉
| Op(t11,s1,t12) ⇒ 〈case ˜t of

Op (t21,s2,t22) ⇒ (if s2 = s1

then ˜(match2 t11

(match2 t12 msigma 〈t22〉) 〈t21〉)
else Nothing)

| ⇒ Nothing〉)〉.

Note that if we erase the annotations from the source for match2, we get the source for match1.

We will also need to stage the helper function rewrite1:

fun rewrite2 (lhs,rhs) t =

〈case ˜(match2 lhs 〈Just []〉 t) of

Nothing ⇒ ˜t

| Just (sigma) ⇒ subst1 sigma rhs〉.

We are now ready to inspect the code generated by this function and to appraise its quality.

3.3.3 Using the Two-Stage Implementation

We can use the rewrite2 function to generate code specialized for r1 : x+ 0→ x as follows:

-| rewrite2 r1;

val it = fn : 〈term〉 → 〈term〉

-| 〈fn x ⇒ ˜(it 〈x〉)〉;
val it =

〈fn a ⇒
(case (case a of

Op(e,d,c) ⇒ if d %= %s1’1230

then (case (case c of

42

Int h ⇒ if h %= 0 then Just ([]) else Nothing

| ⇒ Nothing) of

Nothing ⇒ Nothing

| Just f ⇒ (case %find %u’1237 f of

Nothing ⇒ Just (::((%u’1237,e),f))

| Just g ⇒ if g %= e then Just f else Nothing))

else Nothing

| ⇒ Nothing) of

Nothing ⇒ a

| Just b ⇒ %subst1 b %rhs)〉
: 〈term → term〉.

The traversal of the pattern has been performed. But compared to the target code we wrote by

hand, there are still too many nested case-statements, and the call to subst1 and the test for

consistency with the substitution were not performed.

Closer inspection of the generated code shows that it ought be possible to reduce the nested case-

statements by some meaning-preserving transformations. If the outer case-statements could be

“pushed” through the inner ones, then we would be able to simplify all the values at the leaves

of the inner if-statements. In particular, at every point where we return Nothing we ought to be

able to simply return a, and every point where we return Just σ, we ought to be able to return the

result of applying the substitution subst σ rhs.

3.4 A Second Attempt

It is not unusual that the first attempt at staging does not yield the best results. Even when

staging is automated, as is the case with BTA, it is common for users of offline partial evaluators

to restructure their programs to help BTA yield better results [39]. Just because we place binding-

time annotations manually does not exempt us from this requirement. But because MetaML allows

us to “touch, see, and experiment” with both the explicit annotations and the code produced, it

helps us better understand the problem of staging a particular algorithm. We believe that a strength

of MetaML is the mental model it provides for reasoning about multi-stage computation.

3.4.1 An Implementation of Matching in Continuation-Passing Style

One possible approach to improving the generated code is to rewrite match1 in continuation-passing

style (CPS). This technique has been found to be quite useful in partial evaluation systems [15].

Intuitively, a continuation is a function that specifies how the computation will “continue”. A

43

function written in CPS always takes a continuation k as an argument, and applies k to the results

it would normally just return. When a CPS function calls another CPS function, it passes k as

the new continuation to the second function. Furthermore, whenever there is any sequencing of

function calls involved, a function in CPS must explicitly pass around and extend the continuation

k as necessary.

This subtle change to the form of the algorithm gives us an extra degree of freedom that provides a

new opportunity for a better design for our multi-stage type, and in turn, for a better multi-stage

program.

The CPS matching function takes a continuation k of type (string * term) list option → ’a. Infor-

mally, we can read this type as saying that the continuation is some “consumer of substitutions”.

The CPS matching function is defined as follows:

fun matchK1 pat k msigma t =

case (msigma) of

Nothing ⇒ k Nothing

| Just (sigma) ⇒
(case pat of

Var u ⇒ (case find u sigma of

Nothing ⇒ k (Just ((u,t) :: sigma))

| Just w ⇒ if w = t then k (Just sigma) else k Nothing)

| Int n ⇒ case t of

Int u ⇒ if u= n then k msigma else k Nothing

| ⇒ k Nothing

| Op(p11,s1,p12) ⇒ case t of

Op(t21,s2,t22) ⇒ if s1 = s2

then (matchK1 p11

(fn msig ⇒ matchK1 p12 k msig t22)

msigma t21)

else k Nothing

| ⇒ k Nothing).

The threading of the substitution in the case of Op patterns has been replaced by one call to

matchK1, which itself takes the second call to matchK1 as part of its continuation. More impor-

tantly, the continuation has been explicitly placed on the branches of the if-expression, as opposed

to just around the whole expression. This minor variation will have a significant effect on what

can be achieved by staging the matching function.

44

To use a function written in CPS, one must provide an initial continuation. Intuitively, the initial

continuation is the final step of the computation. The initial continuation can simply be the identity

function, specifying no further computation on the final result. In the case of the matchK1 function,

however, we need a more interesting continuation: the application of the final substitution to the

right-hand side of the rewrite rule. To pass this continuation to matchK1, we write a new version

of rewrite1 as follows:

fun rewriteK1 (lhs,rhs) =

fn t ⇒ (matchK1 lhs

(fn Nothing ⇒ t

| Just s ⇒ substK2 s rhs) (Just []) t).

The continuation that we pass to matchK1 first inspects the final result of matching. If it was a

failure, the result is returned unchanged. Otherwise, the substitution is applied to the right-hand

side of the rewrite rule. As usual, the call to matchK1 is also passed an empty substitution and the

term.

3.4.2 Re-Designing the Multi-Stage Type

The type of the CPS matching function is:

((string ∗ term) list option→ ′a)→ (string ∗ term) list option→ term→ ′a

This function has a polymorphic type because nothing constrains the value returned by the con-

tinuation k. But note that we should not read the “return” type of this function as ’a, but rather

as the type of the argument of the continuation, which is the first occurrence of the type (string *

term) list option.

In contrast to the first attempt at designing a multi-stage type for the matching function, nothing

forces us to “return” a delayed option type. Recall from Section 3.3.1 that the difficulty in achieving

a type for the staged function was caused by the if-statement that tested for the equality of two

terms. This test forced the whole if-expression to be delayed. Now, the dependencies have changed:

...

if u=n then k msigma else k Nothing

... .

The unavailability of the condition of the if-statement no longer matters. Because we have an

explicit handle on the continuation, we do not have to “freeze” both branches of the if-statement.

Instead we can pursue both possible ways in which the computation might continue. Pursuing the

45

continuations could mean eliminating many superfluous Nothing and Just constructs. For example,

the initial continuation passed to matchK1 by rewriteK1 is a case analysis over the result. As such

the initial continuation eliminates the constructs of the option type. Furthermore, the only time

we extend the continuation is when we are matching binary operators:

...

(matchK1 p11

(fn msig ⇒ matchK1 p12 k msig t22)

msigma t21)

... .

As long as match continues to “consume” the option constructors of sigma, the new continuation

will also be a “consumer”. This observation suggests that the delayed computations generated

by both branches of the if-statement may be free of any option constructors. At the same time,

eliminating these constructors should coincide with eliminating the complex nested case-statements

that infested the output of our first attempt at staging the match function.

In summary, now there is no reason why we cannot achieve the type:

((string ∗ 〈term〉) list option→ 〈 ′a〉)→ (string ∗ 〈term〉) list option→ 〈term〉 → 〈 ′a〉.

3.4.3 A Two-Stage Continuation-Passing Style Implementation

Adding staging annotations to matchK1 we arrive at the following two-stage function:

fun matchK2 pat k msigma t =

case (msigma) of

Nothing ⇒ k Nothing

| Just (sigma) ⇒
(case pat of

Var u ⇒ (case find u sigma of

Nothing ⇒ k (Just ((u,t) :: sigma))

| Just w ⇒ 〈if ˜w = ˜t then ˜(k (Just sigma)) else ˜(k Nothing)〉)
| Int n ⇒ 〈case ˜t of

Int u ⇒ if u= ˜(lift n) then ˜(k msigma) else ˜(k Nothing)

| ⇒ ˜(k Nothing)〉
| Op(p11,s1,p12) ⇒ 〈case ˜t of

Op(t21,s2,t22) ⇒ if ˜(lift s1) = s2

then ˜(matchK2 p11

(fn msig ⇒ matchK2 p12 k msig 〈t22〉)

46

msigma 〈t21〉)
else ˜(k Nothing)

| ⇒ ˜(k Nothing)〉).

The type of the substitutions must change: The skeleton of the list and the first projection of

each binding (the variable names) are now available in the first stage. Thus, we can rewrite the

substitution function to take advantage of this information:

fun substK2 sigma pat =

case pat of

Var v ⇒ (case find v sigma of Just w ⇒ w)

| Int i ⇒ 〈Int ˜(lift i)〉
| Op(t1,s,t2) ⇒ 〈Op (˜(substK2 sigma t1), ˜(lift s), ˜(substK2 sigma t2))〉.

Finally, we also need to annotate the CPS rewriting function:

fun rewriteK2 (lhs,rhs) =

〈fn t ⇒ ˜(matchK2 lhs

(fn Nothing ⇒ 〈t〉
| Just s ⇒ substK2 s rhs) (Just []) 〈t〉)〉.

3.4.4 Using the Two-Stage Continuation-Passing Style Implementation

The output of the CPS rewrite function for the rule r1 is as follows:

-| rewriteK2 r1;

val it = 〈(fn a ⇒
case a of

Op(d,c,b) ⇒ if ”+” %= c then (case b of Int e ⇒ if e%=0 then d else a | ⇒ a)

else a

| ⇒ a)〉
: 〈term → term〉.

The generated code is both compact and free of reducible nested case-statements, calls to subst, and

tests on the consistency of the substitution. Furthermore, it is virtually identical to the idealized

code we presented for rewriteR1 in Section 3.2.4: It contains no superfluous redices, and rather,

only those that really depend on the parameter to the variable a.

The code generated for the more involved r3 is also concise:

-| rewriteK2 r3;

val it = 〈fn a ⇒

47

(case a of

Op(d,c,b) ⇒ if ”+” %= c then (case b of

Op(g,f,e) ⇒ if ”+” %= f then Op(Op(d,”+”,g),”+”,e)

else a

| ⇒ a)

else a

| ⇒ a)〉
: 〈term → term〉.

3.4.5 Remark on the Role of MetaML in Multi-Stage Programming

If the reader is not familiar with type systems and with programming languages such as SML, it

may appear that designing the type for the staged version (Sections 3.3.1 and 3.4.2) is a black

art. What we have described in this chapter as “designing the multi-stage type” is essentially

what binding-time analysis (BTA) performs automatically. MetaML provides pedagogical help in

“removing the magic” from BTA in two ways:

1. It provides a formal semantic basis for multi-stage programs. This foundation is needed, for

example, to prove that MetaML can indeed have a “staging-sensitive” type system, and that

this type system ensures that well-typed programs are indeed safe.

2. It provides a system for executing multi-stage programs. For example, having the type inference

system and the interactive section provided by the implementation gives the programmer an

automatic tool that will point out all the problems that we described in the last subsection.

Thus, the programmer can begin learning multi-stage programming by trial-and-error. The

interactive type system will always tell you when you try to do something unsafe!

In our experience, the feedback provided by the type system helped greatly in developing the right

insights and intuitions about the structure of the algorithms that we were interested in staging.

Even after a programmer has gained the necessary expertise and has become fluent at staging

programs, the type inference system will automatically check the programmer’s annotations to

ensure that they are indeed sound.

3.4.6 Remark on the Specialization of Term-Rewriting Systems

Bondorf seems to have been the first to systematically study the application of partial evaluation

to term-rewriting systems [7]. For the reader interested in the specialization of term-rewriting

systems, we recommend consulting Bondorf’s thesis [8].

Part II

The Theory of Multi-Stage

Programming

Chapter 4

How Do We Implement MetaML?

Or, the Basic Semantic Concerns

I test my bath before I sit,

And I’m always moved to wonderment

That what chills the finger not a bit

Is so frigid upon the fundament.

Samson Agonistes, Ogden Nash

In previous chapters, we have introduced MetaML, staging, multi-stage programming with explicit

annotations, cross-stage persistence, and cross-stage safety. In this chapter we explain the basic

challenges in implementing and typing a multi-stage programming language such as MetaML. We

break down these problems into two sets: Ones that were known when the early implementations

of MetaML were developed, and new ones that we recognized while using these implementations.

This chapter is illustrative of the state of the art in the (potentially verifiable) implementation of

multi-stage programming languages.

4.1 Known Concerns

We begin by explaining the need for renaming of bound variables in quoted expressions and why

such renaming is necessary for implementing static scoping. We also explain why retaining static

scoping is desirable from the point of view of the design goals of MetaML. We then present the

syntax and type system for a toy functional language and explain how the type system must be

changed to accommodate extending this toy language with staging annotations.

49

50

4.1.1 Scoping and the h Function

A name-generating function (“gensym”) can be used to avoid accidental name capture in multi-

level languages. The use of such a function has been associated with use of back-quote and comma

in LISP ever since they were introduced [88]. The back-quote and comma mechanism is an early

ancestor of Brackets and Escape (See Section 7.4.2.) Various works have studied and explained the

need for run-time renaming of bound variables [13]. In what follows, we present a brief explanation

of the need for renaming, and why it must be performed at run-time. To illustrate this point, we

will introduce a simple function called h that we use throughout this chapter.

The Need for Renaming In a multi-level language, object-level bound variables must be re-

named. Consider the function T from Chapter 1:

fun T e = 〈fn x ⇒ x + ˜e〉.

The function T takes an expression e and returns a new expression representing a function that

takes an argument x and adds it to e. We can use T as follows:

val e = 〈fn y ⇒ ˜(T 〈y〉)〉.

And the result is:

〈fn y ⇒ fn x ⇒ x + y〉.

If we do not rename bound variables while constructing a piece of code, we run into the following

problem. If, in e, we had called the local variable x instead of y, then we would get the result:

〈fn x ⇒ fn x ⇒ x + x〉.

This term represents a function that is very different from the first one, because it simply ignores

its first argument, and returns the result of adding the second argument to itself. We consider this

dynamic capture of names unsatisfactory, because we wish to maintain a relatively simple relation

between our multi-level programs and their “unannotated counterparts”. In particular, if we erase

the annotations from T and e we get:

fun T’ e = fn x ⇒ x + e

val e’ = fn x ⇒ T’ x.

The standard semantics for a CBV language does not confuse the two occurrences of the name x

in this declaration. We can check this fact using an implementation of SML:

- e’ 4 5;

val it = 9 : int.

51

Renaming Cannot Be Performed at Compile-Time If we consider only examples such as

the function T, it may seem enough to rename variables in a program before we begin executing it.

But renaming before execution is not enough: Bound variables in object-terms must be repeatedly

renamed at run-time. To illustrate this point, we will present two versions of a function that we

call h. The first, single-stage version is called h1, and second, two-stage version is called h2. The

single-stage h1 function is defined as follows:

fun h1 n z = if n=0 then z else (fn x ⇒ (h1 (n-1) x+(z))) n.

This function takes two integer arguments. If the first argument is 0, then it simply returns the

second argument. Otherwise, it makes a recursive call to itself after subtracting one from the first

argument and adding the first argument to the second. Note however that we use a local variable

x as a local name for the second argument n. This fact is inconsequential to the result of h1, but

will be significant when we analyze the staged version h2:

fun h2 n z = if n=0 then z else 〈(fn x ⇒ ˜(h2 (n-1) 〈 x+(˜z)〉)) n〉.

Note that any renaming of this one variable before run-time is inconsequential: It will still be one

variable. Without renaming at run-time, the application h2 3 〈4〉 evaluates to:

〈(fn x ⇒ ((fn x ⇒ ((fn x ⇒ x+(x+(x+4))) 1)) 2)) 3〉

and all the occurrences of the name x in the arithmetic expression refer to the argument from the

innermost binding. But this accidental capture of all references by the innermost binder should

not take place. If we follow the execution of the program closely, we find that each occurrence of

an x should be associated to a different binding in the following manner:

〈(fn x1 ⇒ ((fn x2 ⇒ ((fn x3 ⇒ x3+(x2+(x1+4))) 1)) 2)) 3〉.

Again, the reader can verify that the result of evaluating this last code fragment is more closely

related to the “unannotated” semantics of the h function.

In Section 4.3.2, we will show how this renaming is performed in the implementation.

4.1.2 Typing Functional Languages and MetaML (λ and λ-M)

Most functional programming languages are inspired by the lambda calculus [1]. In order to begin

developing the semantics and type system for MetaML, we focus on a minimal subset of MetaML

that can be studied as an extension of the lambda calculus. In what follows, we introduce the

syntax and type system of a lambda calculus extended to include integers, and then explain how

the type judgement must be extended in order to be able to express the notion of staging.

52

The λ Language: Terms and Type System A basic lambda calculus [1] extended to include

integer constants has the following syntax:

e ∈ E := i | x | λx.e | e e

where E is the set of expressions. Expressions can be integers from the set I, lambda-abstractions,

free occurrences of variables x, or applications e e of one expression to another. A lambda-abstraction

λx.e introduces the variable x so that it can occur free in the expression e, which is called the body

of the lambda term.

Type systems allow us to restrict the set of programs that we are interested in (For an introduction,

see [2, 10, 12, 36, 104].) For example, in the language presented above, we might not be interested

in programs that apply integers to other expressions. Thus, a common restriction on application

is to allow only terms that have a function type to be applied. Types have the following syntax:

τ ∈ T := int | τ → τ

The two productions stand for integers and for function types, respectively. This simple language

includes type terms such as:

– int,

– int→ int,

– int→ (int→ int), usually written simply as int→ int→ int, and

– (int→ int)→ int.

To build a type system, we usually also need a notion of a type environment (or type assignment).

Such environments simply associate variable names to types, and can be represented as follows1:

Γ ∈ D := [] | x : τ ;Γ

A type system for the λ language can be specified by a judgment Γ ` e : τ where e ∈ E, τ ∈ T ,

Γ ∈ D. Intuitively, the type judgement will associate the term int, which up until now was mere

syntax, with integers, and the type term τ1 → τ2 with partial functions that take an argument of

type τ1 and may return a result of type τ2 (or diverge). Because terms can contain free variables2,

1 Technically, elements of D represent (or implement) finite mappings of names to types. For this imple-
mentation to be correct, we also need the additional assumption of having a variable occur at most once
in the environment.

2 Free variables must be addressed even if we are considering only closed terms. In particular, typing
judgements are generally defined by induction on the structure of the expression that we wish to assign
a type to. In the case of lambda-abstraction, the judgement must go “under the lambda”. In the body
of this lambda-abstraction, the bound variable introduced by the lambda is free. To give a concrete
example, try to see what happens when we wish to establish that the (closed expression) λx.x has type
int → int under the empty environment [].

53

the type judgement involves an environment that simply associates the free variables in the given

term with a single type.

The type system, or more precisely, the derivability of the typing judgment is defined by induction

on the structure of the term e as follows:

Γ ` i : int
Int

Γ (x) = τ

Γ ` x : τ
Var

x : τ ′;Γ ` e : τ

Γ ` λx.e : τ ′ → τ
Lam

Γ ` e2 : τ ′ Γ ` e1 : τ ′ → τ

Γ ` e1 e2 : τ
App

The rule for Integers (Int) says that an integer i can have type int under all environments. The rule

for variables (Var) says that a variable x has type τ under all environments where x was bound to

type τ . The rule for lambda-abstractions (Lam) says that an abstraction can have an arrow type

from τ ′ to τ under all environments as long as the body of the abstraction can be shown to have

type τ when the environment is extended with a binding of the variable x with the type τ ′. Finally,

the rule for application (App) says that an application can have type τ under all environments

where the operator can be shown to have type τ ′ → τ and the argument to have type τ ′.

The λ-M Language: Terms and Type System The first step to extending the λ language

with staging constructs is adding Brackets, Escape, and Run3 to the syntax:

e ∈ E := i | x | e e | λx.e | 〈e〉 | ˜e | run e.

The second step is extending the type system. Extending the type system involves extending the

type terms to include a type term for code:

τ ∈ T := b | τ1 → τ2 | 〈τ〉

We will also need to extend the type environments to keep track of the level at which a variable is

bound. To represent environments we will need a representation of the naturals:

n,m ∈ N := 0 | n+

With a slight abuse of notation, we will also write:

n+ 0 := n

n+ (m+) := (n+m)+

3 We drop Lift from the rest of our treatment because it does not introduce any unexpected complications.

54

The two productions stand for 0 and for “next” number, respectively. Now we can present the type

environments that will be used for typing λ-M:

Γ ∈ D := [] | x : τn;Γ

To be able to address the issue of cross-stage safety in a type system, we introduce a level-index

into the typing judgment. The type judgment is thus extended to have the form Γ `n e : τ where

e ∈ E, τ ∈ T , Γ ∈ D, and n ∈ N . The judgement Γ `n e : τ is read “e has type τ at level n under

environment Γ”. It is important to note that the level n is part of the judgement and not part of

the type.

τ ∈ T := b | τ1 → τ2 | 〈τ〉

Γ ∈ D := [] | x : τn;Γ

Note that we have also extended type assignments to keep track of the level at which a variable

is bound. The level index on the judgement combined with the level-annotations on variables will

be used to reject terms where a variable violates cross-stage safety.

The type judgment is defined by induction on the structure of the term e as follows4:

Γ `n i : int
Int

Γ (x) = τ (n−m)

Γ `n x : τ
Var

x : τ ′n;Γ `n e : τ

Γ `n λx.e : τ ′ → τ
Lam

Γ `n e2 : τ ′ Γ `n e1 : τ ′ → τ

Γ `n e1 e2 : τ
App

Γ `n+ e : τ

Γ `n 〈e〉 : 〈τ〉
Brk

Γ `n e : 〈τ〉
Γ `n+ ˜e : τ

Esc
Γ `n e : 〈τ〉
Γ `n run e : τ

Run

The rule for Integers (Int) allows us to assign the type int to any integer i, at any level n, and

under any environment Γ .

The rule for variables (Var) allows us to assign any type τ to any variable x at any level n under

any environment where x has been associated with the same type τ and with any level less than

or equal to n.

The rule for lambda-abstractions (Lam) works essentially in the same way as for the lambda

language. The noteworthy difference is that it associates the level n with the variable x when

it is used to extend the environment. The lambda rule is the only rule where level bindings are

introduced into the environments, and is essential for ensuring cross-stage safety.

4 Warning: We have not yet proved whether these rules are sound or not. The soundness of these rules is
discussed in Section 4.4.2.

55

The rule for application (App) is also essentially the same as before, the only difference being that

we type the subexpressions under the same level n as the whole expression.

The rule for Brackets (Bra) “introduces” the code type, and at the same time, increments the

level at which we type its subexpression to n+. This change to the level index on the judgement

ensures that the level-index on our type system is counting the number of surround Brackets for

any subexpression consistently.

The rule for Escapes (Esc) “eliminates” the code type, and at the same time, decrements the level

at which we type its subexpression to n. This change to the level index on the judgement ensures

that the level-index on our type system is counting the number of surrounding Escapes for any

subexpression consistently. Note that the type system does not allow Escapes to occur at level 0.

The rule for Run (Run) “eliminates” the code type without any constraints on the level or the

environment.

4.2 A Simple Approach to Implementing a Functional Language

4.2.1 Values

An elegant implementation of a toy functional language can be developed around a datatype

containing functions (See for example [75].) An element of this datatype represents the value of a

term in the toy functional language.

A datatype containing functions can be declared in SML as follows:

datatype value = VI of int (* Integer values *)

| VF of value → value (* Function values *).

This datatype allows us to pass around values corresponding to the interpretation of functions

such as

1. Identity: fn x ⇒ x,

2. Function composition: fn f ⇒ fn g ⇒ fn x ⇒ f (g x),

3. Square: fn x ⇒ x ∗ x, or

4. Factorial: fn x ⇒ x!, where ∗ and ! are the integer multiplication and factorial functions.

These values can be represented in the datatype value:

val id = VF (fn x ⇒ x);

val compose = VF (fn (VF f) ⇒ VF (fn (VF g) ⇒ VF (fn x ⇒ f (g x))));

56

val square = VF (fn (VI x) ⇒ (VI (x*x)));

val bang = let fun fact n = if n=0 then 1 else n*(fact (n-1)

in VF (fn (VI x) ⇒ (VI (fact x))) end.

The last example illustrates how this encoding allows us to take features of the meta-language (in

this case SML) and embed them into the value domain of our toy object-language. In the factorial

example, we are taking advantage of the following features of the meta-language:

– recursion,

– conditionals,

– arithmetic operations,

to introduce factorial into the object-language.

4.2.2 Expressions

Just as we implemented values in the datatype value, a datatype to implement the expressions of

our language can be declared in SML as follows:

datatype exp = EI of int (* Integers *)

| EA of exp * exp (* Applications *)

| EL of string * exp (* Lambda-abstractions *)

| EV of string (* Variables *).

Closed terms such as fn x ⇒ x and fn f ⇒ fn g ⇒ fn x ⇒ f (g x) can be encoded into the datatype

exp as follows:

val ID = EL (”x”, EV ”x”);

val COMPOSE = EL (”f”, EL (”g”, EL (”x”, EA (EV ”f”, EA (EV ”g”, EV ”x”))))).

There are no closed terms in the syntax of our (typed) object-language that can express the

functions square and bang5. However, we will see how they can expressed as open terms using a

sufficiently rich environment.

4.2.3 Environments

The job of our interpreter will be to take terms such as ID and COMPOSE and produce the values

id and compose, respectively. We can write a very concise interpreter ev0 having the following type:

exp→ env→ value

5 We are not aware of any proof of this statement. Negative results on expressivity are generally a sub-
stantial challenge. Thus the reader should take this statement as nothing more than folklore.

57

where env is the type of an environment. The environment associates a value to each free variable

in the expression being evaluated. For simplicity, we will take env to simply be string → value,

that is, we will represent environments by a function that takes a variable name and returns a

value. All we need to support this simple implementation of environments is to define the empty

environment, and an environment extension function:

exception NotBound

val env0 = fn x ⇒ raise NotBound

fun ext env x v = fn y ⇒ if x=y then v else env y.

The empty environment is a function that takes a variable and raises an exception to indicate that

this variable is not bound. Raising this exception is one of the ways in which our semantics “can

go Wrong” and it is the role of the type system to ensure that any well-typed program does not

go wrong when it is being evaluated (or interpreted).

The environment extension function takes an environment, a variable name, and a value, and

returns a new function of type string → value (which is the new environment). This function

returns v when it is applied to x and returns env applied to y otherwise.

4.2.4 Interpretation

We can now define a CBV interpreter for the λ language in a mere six lines:

fun ev0 env e =

(case e of

EI i ⇒ VI i

| EA (e1,e2) ⇒ (case (ev0 env e1, ev0 env e2) of (VF f, v) ⇒ f v)

| EL (x,e1) ⇒ VF (fn v ⇒ ev0 (ext env x v) e1)

| EV x ⇒ env x).

This interpreter is easy to use. By equational reasoning at the level of the meta-language (SML),

we can see that the interpretation for ID and COMPOSE under the empty environment env0 should

produce the values id and compose, respectively. But because these values contain function types,

they are not printable, so we cannot “see” the output. We can, however, see the output of the

interpreter when the result is an integer. For example, we would expect the object-term (fn x ⇒

x) 5 to evaluate to 5. The encoding of the term is simply EA (ID, EI 5). Applying the interpreter

ev0 to this term under the empty environment env0 produces the expected result:

- ev0 env1 (EA (EL (”x”,EV ”x”), EI 5));

val it = VI 5 : value.

58

4.2.5 Introducing Constants

The implementation technique described above is appealing, partly because it allows us to in-

troduce a rich set of constants into our language by simply extending the environment, rather

than modifying the interpreter itself. Such constants can include an addition function or even a

fixed-point operator (allowing us to implement recursion).

We can easily extend the object-language without modifying the syntax, the set of values, or the

interpreter itself. A lot of expressivity can be added to the object-language by simply extending

the initial environment under which the terms of the language are evaluated. For example, we can

define the following meta-level constants:

val plus = VF (fn (VI x) ⇒ VF (fn (VI y) ⇒ VI (x+y)));

val minus = VF (fn (VI x) ⇒ VF (fn (VI y) ⇒ VI (x-y)));

val times = VF (fn (VI x) ⇒ VF (fn (VI y) ⇒ VI (x*y))).

With these constants, we can express terms that evaluate to square. Such terms can contain free

variables that are bound in an extended environment. For example, we can construct an environ-

ment binding a variable called * to the function value times:

val env1 = ext env0 ”*” times.

We encode the term fn x ⇒ x*x using the following open term6:

val SQUARE = EL (”x”, EA (EA (EV ”*”, EV ”x”), EV ”x”)).

Now we can use ev0 to evaluate square 5:

- ev0 env0 (EA (SQUARE, EI 5));

val it = VI 25 : value.

Which produces an encoding of the integer value 25, as expected.

Introducing Conditionals through a Constant We can introduce a conditional statement

into the language through a constant. In general, the use of conditional statements can be replaced

by using the following function:

val Z = fn n ⇒ fn tf ⇒ fn ff ⇒ if n=0 then tf 0 else ff n.

6 Our convention is that x*y is syntactic sugar for (* x) y, where * is a free variable. This convention is
different from the SML convention where the same term is syntactic sugar for * (x,y). Using the SML
convention would require introducing tuples or at least pairs into our toy language.

59

This function takes an integer n, a function from integers to booleans, and a second function from

integers to booleans. If the integer is 0, it is simply passed to the first function7 and the result is

returned. Otherwise, the integer is passed to the second function and the result is returned. So, in

general, we can replace any expression

case e1 of 0 ⇒ e2 | n ⇒ e3

by an expression with one less conditional statement:

Z e1 (fn 0 ⇒ e2) (fn n ⇒ e3)

The function Z can be represented in the datatype value as:

val ifzero = VF (fn (VI n) ⇒ VF (fn (VF tf) ⇒ VF (fn (VF ff) ⇒ if n=0 then tf (VI 0)

else ff (VI n)))).

Introducing Recursion through a Constant Recursion can also be introduced into the lan-

guage through a fixed-point function8. In essence, the function we need is9:

val Y = let fun Y’ f = f (fn v ⇒ (Y’ f) v) in Y’ end.

Now, a declaration:

fun f n = ... f ...

can be replaced by another declaration containing one fewer recursive expression:

val f = Y (fn f ⇒ fn n ⇒ ... f ...)

The function Y can be implemented in the datatype value as:

val recur = let fun recur’ (VF f) =

f (VF (fn v ⇒
case (recur’ (VF f)) of VF fp ⇒ fp v))

in VF recur’ end.

Now, equipped with a way of expressing conditionals and recursion, we can express a wide variety

of interesting programs in our toy functional language.

7 If our meta-language (SML) and our toy language were CBN rather than CBV, the conditional statement
would have been slightly simpler. In particular, we would not need to pass the 0 to the first function. In
a CBV language, this otherwise obsolete argument is needed to maintain correct termination behavior.
But because both the MetaML implementation and SML are CBV, we chose the definitions presented
in this chapter.

8 Again, in a CBN setting, the definition of the fixed-point operator would have been slightly simpler.
9 Y is the name usually used for the fixed-point combinator, of which this function is an instance.

60

4.2.6 Expressing and Executing the h Function

The h1 function of Section 4.1.1 can be expressed in our language. To demonstrate this, we will

first show how we can construct an environment that contains all the necessary ingredients for

expressing this function, and then we will show how each use of a non-λ construct can be replaced

by the use of a constant from this environment.

All the meta-level concepts presented above can be introduced directly into the object-language

by including them in the initial environment:

val env1 = ext (ext (ext (ext (ext env0 ”+” plus) ”-” minus) ”*” times) ”Z” ifzero) ”Y” recur.

Given this extended environment, we can express and evaluate terms such as the h function dis-

cussed above. The interesting part of this task is encoding the term into our representation of terms.

In a complete interpreter, this encoding is performed by a parser. Here we do it by clarifying the

mechanics of the interpreter. The original declaration was:

fun h1 n z = if n=0 then z else (fn x ⇒ (h1 (n-1) (x+z))) n.

To avoid the need for tuples in our language, we minimize the parameters of the recursive function

declaration to the one that the recursion really depends on:

fun h1 n = fn z ⇒ if n=0 then z else (fn x ⇒ (h1 (n-1) (x+z))) n.

Using the Y function we turn recursion into lambda abstractions, applications, and a conditional:

val h1 = Y (fn h1’ ⇒ fn n ⇒ fn z ⇒ if n=0 then z else

(fn x ⇒ (h1’ (n-1) (x+z))) n).

Similarly, using the function Z, we turn the if-statement used in the function h1 into lambda-

abstractions and applications:

val h1 = Y (fn h1’ ⇒ fn n ⇒ fn z ⇒
Z n (fn ⇒ z) (fn n ⇒ (fn x ⇒ (h1’ (n-1) (x+z))) n)).

Finally, we encode this SML program into the datatype for representing the syntax of our toy

language:

- val H1 = EA (EV ”Y”, EL (”h1’”, ...));

- val IT = EA (EA (H1, EI 3), EI 4);

- val answer = ev0 env1 IT;

val answer = VI 10 : value.

where the final result represents the integer value 10.

61

4.3 Extending the Simple Implementation with Staging Annotations

The first two implementations of MetaML were based on an interpreter similar to the one presented

above. The hypothesis was that we can introduce staging constructs into the language without

adding too much complexity to the interpreter. In this section, we will discuss what is involved

in extending this simple implementation with MetaML’s staging annotations. We will show that

a number of subtle problems arise, some of which are not easily addressed. The significance of

these difficulties comes from the fact that extending an existing implementation of a programming

language to include staging annotations is prototypical of how multi-stage languages are developed

in practice (See for example [3, 26, 84, 97].) As such, the existence of these problems underlines the

potential dangers of this widespread practice and the importance of studying the formal semantics

of multi-stage languages.

4.3.1 Values and Expressions

To extend the interpreter to deal with a multi-stage language such as λ-M of Section 4.1.2, we

must enrich the expression datatype exp with new variants to represent the constructs Brackets,

Escape, Run, and cross-stage persistent constants. We must also enrich the value datatype value

with a variant to represent code fragments. The definitions of exp and value will now be mutually

recursive because we can have expressions in values and values in expressions:

datatype exp = EI of int (* Integers *)

| EA of exp * exp (* Applications *)

| EL of string * exp (* Lambda-abstractions *)

| EV of string (* Variables *)

| EB of exp (* Brackets *)

| ES of exp (* Escape *)

| ER of exp (* Run *)

| EC of value (* Cross-stage constants *)

and value = VI of int (* Integer Values *)

| VF of value → value (* Function Values *)

| VC of exp; (* Expressions (object-code) *).

We now have all the infrastructure necessary for defining an interpretation function.

62

4.3.2 Environments and Bound Variable Renaming

To address the renaming problem described in the Section 4.1.1, the extended interpreter must

explicitly rename bound variables in object-programs. One way of performing the renaming is to

use the environment to carry the new names that we assign to object-level bound variables at

run-time. This technique is used in the interpreter of Jones et al. [40]. To perform this renaming,

we use a stateful function NextVar that computes a “new name” for a variable:

val ctr = ref 0;

fun NextVar s = let val = (ctr := (!ctr +1)) in s∧(Integer.makestring (!ctr)) end.

To distinguish between the instances when we are using the environment to carry around real

values and when we are simply using it to implement renaming, we generalize our interpreter by

weakening the type of environments. One way of achieving this weakening is by changing the type

of the environment to string→ exp instead of string→ value. This change in types is not too drastic,

as our datatypes exp and val are mutually recursive, and are essentially of the same expressivity.

Using exp instead of val simply makes our interpreter more concise. Now, normal bindings of a

name x to a value v will be replaced by bindings to the expression EC v.

For reasons that will become apparent in the next section, it will also be useful to change the

default behavior of the empty environment on variables. In particular, the empty environment will

now simply return a variable expression for any variable:

fun env0 x = EV x.

Now, we extend our interpretation function to deal with Brackets, Run, and cross-stage constants

as follows:

fun ev1 env e =

(case e of

EI i ⇒ VI i

| EA (e1,e2) ⇒ (case (ev1 env e1, ev1 env e2) of (VF f, v) ⇒ f v)

| EL (x,e1) ⇒ VF (fn v ⇒ ev1 (ext env x (EC v)) e1)

| EV x ⇒ (case (env x) of EC v ⇒ v)

| EB e1 ⇒ VC (eb1 1 env e1)

| ER e1 ⇒ (case (ev1 env e1) of VC e2 ⇒ ev1 env0 e2)

| EC v ⇒ v).

The first four cases are essentially the same as before. The only difference is that the variable case

requires the variable to be associated with a constant in the environment. If the variable is not

associated with a constant, a run-time error occurs.

63

We postpone explaining the case of Brackets momentarily, as their interpretation uses the rebuild-

ing function eb1. Note also that there is no case for Escapes, because Escapes are not treated by

the evaluation function, but rather, the rebuilding function.

The case of Run is interpreted by first interpreting the argument to get a code fragment and then

re-interpreting this code fragment in the empty environment. Cross-stage persistent constants are

interpreted as simply the value they carry.

The case of Brackets makes a call to a rebuilding function eb1. The primary role of rebuilding is

to evaluate any Escapes at level 1. Evaluating Escapes is performed by traversing the inside of a

Bracketed expression until a level 1 Escape is encountered, at which point, the Escaped expression

is evaluated, and the result of this evaluation is “spliced-into” the current context. The rebuilding

function eb1 is defined in mutual recursion with ev1:

and eb1 n env e =

(case e of

EI i ⇒ EI i

| EA (e1,e2) ⇒ EA (eb1 n env e1, eb1 n env e2)

| EL (x,e1) ⇒ let val x’ = NextVar x in EL (x’, eb1 n (ext env x (EV (x’))) e1) end

| EV y ⇒ env y

| EB e1 ⇒ EB (eb1 (n+1) env e1)

| ES e1 ⇒ (if n=1 then (case (ev1 env e1) of VC e ⇒ e) else ES (eb1 (n-1) env e1))

| ER e1 ⇒ ER (eb1 n env e1)

| EC v ⇒ EC v).

The parameter n is the level of the expression being rebuilt. Rebuilding integer expressions leaves

them unchanged. Rebuilding all other expressions (except Escape at level 1) involves rebuilding

the subexpressions with an appropriate correction to the level parameter. For example, rebuilding

the subexpression of a Bracket expression requires adding one to the level. Rebuilding the subex-

pressions of an Escape at level higher than 1 requires subtracting one from the level. The level

parameter is never changed otherwise. Because of the way we chose to type our environment, re-

building variables works in a simple way: If the environment is carrying a new name, then it simply

replaces the old one. If the environment is carrying a “real” value, then it is already equipped with

a surround EC, which is exactly the form we need to have a value so that it can replace a variable

in an expression.

Rebuilding a lambda term involves producing a new name for the bound variable and extending

the environment with this new name so that the old name is replaced with the new one when it is

encountered.

64

4.3.3 Introducing Constants

We can use extended initial environments in essentially the same manner as before. To accom-

modate the change in the type of environments, we modify the way we extend the environment

slightly:

val env1 = ext (ext (ext (ext (ext env0

”+” (EC plus))

”-” (EC minus))

”*” (EC times))

”Z” (EC ifzero))

”Y” (EC recur).

Evaluating the encoding of h1 4 4 produces exactly the same result as before.

4.3.4 Expressing and Executing the Staged h Function

Now we can express the staged h function in our toy language:

fun h2 n z = if n=0 then z else 〈(fn x ⇒ ˜(h2 (n-1) 〈 x+(z)〉)) 1〉.

We modify this definition slightly to make it amenable to encoding into exp:

val h2 = Y (fn h2’ ⇒ fn n ⇒ fn z ⇒
Z n (fn ⇒ z)

(fn n ⇒ 〈(fn x ⇒ ˜(h2’ (n-1) 〈x+ ˜z〉)) n 〉)).

Now the definition contains only applications, abstraction, variables, and integers, all of which we

can express in the syntax of our language. It also contains the free variables Y, Z, and +, all of

which we already know how to include in the initial environment. The encoding of this function is

essentially:

- val H2 = EA (EV ”Y”, EL (”h2’”, ...));

- val IT = EA (EA (H2, EI 3), EB (EI 4));

- val answer = ev1 env1 IT;

val it = VC (EA (EL (”x1”,EA (EL (”x2”,EA ...),EI 2)),EI 3)) : value.

corresponding to the result we expected:

〈(fn x1 ⇒ ((fn x2 ⇒ ((fn x3 ⇒ x3+(x2+(x1+4))) 1)) 2)) 3〉.

65

4.4 New Concerns

One of our hypotheses is that studying the formal semantics of MetaML can improve our un-

derstanding of this language, and in turn, allow us to improve implementations of MetaML. It is

difficult to explain accurately how studying the formal semantics of a language enhances our under-

standing of how the language can and should be implemented. In some cases, studying the formal

semantics helps us solve problems and in other cases, it helps us identify problems. Developing the

type systems presented in the rest of this dissertation are examples of where our study helped us

solve a problem. It has also been the case that our scrutiny of the MetaML implementation has

brought to light previously unknown problems. This section describes two new anomalies identified

in the course of our study, and which constitute ample justification for the pursuit of a rigorous

semantics of MetaML.

4.4.1 Scoping, Cross-Stage Persistence, and Hidden Free-Variables

Cross-stage persistence gets in the way of the bound-variable renaming strategy used in the inter-

preter above. In particular, ev1 performs renaming using the rebuilding function itself. This usage

of rebuilding is a limited kind of substitution, namely one variable name for another. But cross-

stage persistent constants can be functions. Because we cannot “traverse” functions, rebuilding

does not “go inside” cross-stage persistent constants. Thus, the renaming strategy fails. We call

this the hidden free-variable problem.

How did the Formal Semantics Help? (I) Identifying this failure came as a direct result of

studying the formal semantics of MetaML. We observed this problem while developing an early

version of the reduction semantics presented in Chapter 6. We may have run into a similar problem

while testing the existing implementation, but when examining an implementation that does not

(yet) have an associated formal specification, it is hard to distinguish between what is merely an

implementation mistake and what is a more fundamental problem with our understanding of how

the language should be implemented. The reduction semantics allowed us to see clearly that using

functions to represent the values of functions can make performing the renaming difficult. Indeed,

shortly after making this observation, we synthesised the following concrete counter-example that

caused the MetaML implementation to exhibit anomalous behavior:

- val puzzle = 〈fn a ⇒ ˜((fn x ⇒ 〈x〉) (fn x ⇒ 〈a〉)) 0〉;
- (run puzzle) 5.

66

As we will see in the rest of the dissertation, the term is well typed, and under fairly simple

specifications of MetaML semantics, should evaluate to 〈5〉. In the implementations however, we

get a different result.

To see the problem, note that the Escaped computation constructs a code fragment containing a

cross-stage persistent function, which itself contains a dynamic variable in its body. Thus, the code

fragment we get back to “splice” into context contains a cross-stage persistent constant carrying

a value that itself contains a free object-level variable. The conceptual error in the design of ev1

and eb1 was that we assumed that values carried by cross-stage persistent constants are “fully

developed” in the sense that they do not need further processing.

The function ev1 is a faithful model of the implementations, and so we will use ev1 to illustrate

puzzle problem. The application of the result of Running the puzzle on 5 presented above can be

encoded and evaluated as follows:

- val PUZZLE = (EA(ER(EB(EL(”a”,EA(ES(EA(EL(”x”,EB(EV ”x”)),

EL(”x”,EB (EV ”a”)))), EI 0)))), EI 5));

- ev1 env0 PUZZLE

val it = VC (EV ”a1”) : value.

The obscure result represents 〈a1〉: A bound variable has escaped from the scope of its binding

abstraction. This anomaly should not occur in a statically scoped language, where all occurrences

of a variable should remain syntactically inside the scope of their binder.

How did the Formal Semantics Help? (II) In the next section, we present a current proposal

for modifying the implementation to deal with this problem. This proposal is based primarily on an

operational view of how λ-M implementation presented in this chapter can be corrected. Both this

problem and the proposed solution were identified during the development of the formal semantics

of MetaML. We present our proposal not just because we expect it to solve the problem, but also

because the sheer complexity of the solution is our final argument for the need to study the formal

semantics MetaML and multi-stage programming languages. The puzzle problem does not arise at

all if we simply use a standard (formal) notion of substitution, as is done in all the formulations

of MetaML semantics in the rest of part II.

4.4.2 Typing and the Failure of Cross-Stage Safety

As was the case with the scoping problem above, we ran into a number of obscure “bugs” involving

the use of the Run construct. We documented these as simply being implementation mistakes. It

67

was not until we presented a version of a formal soundness proof of MetaML’s type system that

Rowan Davies pointed out that soundness of the type system does not hold. Rowan presented the

following expression:

〈fn x ⇒ ˜(run (run 〈〈x〉〉))〉

This expression is well-typed under the type systems presented in Section 4.1.2, but it is not well-

behaved. Encoding and executing this expression in the implementation presented above leads to

a run-time error.

The root cause of the problem presented in this subsection is that Run dynamically changes the

level of a term. In the expression above, x starts off at level 2. When the expression is executed,

the level of x drops to 0. An attempt is therefore made to evaluate x by looking up an associated

value in the environment, but no such value is available yet.

The problem presented in this subsection is a result of a flaw in the type system rather than in

the “implementation” of MetaML. In Chapter 5, we will present two solutions to this problem and

explain why we prefer one of these solutions to the other.

4.5 Covers: A Plausible Solution to the Hidden Free-Variables Problem

Before we go on to describe more subtle reasons for studying the formal semantics of MetaML,

we will consider a possible solution to the problem of hidden free-variables. We will see how the

solution itself is quite complex, and even though the solution may seem plausible, formally verifying

its correctness remains a non-trivial task.

Because cross-stage persistent constants carry “values”, it may seem that rebuilding does not need

to “go inside” cross-stage persistent constants. As we mentioned earlier, this fallacy arises because

one generally expects “values” to be fully developed terms, thus requiring no further processing.

This confusion results from the fact that cross-stage persistent constants carry (SML) values of

type value. Unfortunately, not all things represented by our value datatype are values in the sense

of well-formed interpretations of λ-M terms. The counter-example puzzle presented at the end of

the previous subsection is evidence of this problem. The result of evaluating PUZZLE using ev1

can be represented in value, but it does not correspond to anything that we accept as a MetaML

value.

As we hinted earlier, the problem with evaluating PUZZLE is that renaming does not go inside

cross-stage persistent constants. Making renaming go inside cross-stage persistent constants is

tricky because it is not obvious how we can rename free variables inside function values in the

68

value datatype. The solution we propose here is based on what we have called a cover. Intuitively,

a cover allows us to perform a substitution on a datatype containing functions. Alternatively, a

cover can be viewed as a delayed environment. The essential idea is to perform substitution on

non-function terms in the normal manner and then to cover functions by making the functions

themselves apply the substitution to their own results whenever these results become available.

This way, a free variable that has been eliminated by a substitution (or a renaming) should never

be able to escape from the scope of its binding occurrence.

We define two mutually recursive functions to cover both expressions and values as follows:

fun CoverE env e =

(case e of

EI i ⇒ EI i

| EA (e1,e2) ⇒ EA (CoverE env e1, CoverE env e2)

| EL (y,e1) ⇒ EL (y,CoverE env e1)

| EV y ⇒ env y

| EB e1 ⇒ EB (CoverE env e1)

| ES e1 ⇒ ES (CoverE env e1)

| ER e1 ⇒ ER (CoverE env e1)

| EC v ⇒ EC (CoverV env v))

and CoverV env v =

(case v of

VI i ⇒ VI i

| VF f ⇒ VF ((CoverV env) o f)

| VC e ⇒ VC (CoverE env e)).

We revised the definition of our interpreter as follows:

fun ev2 env e =

(case e of

EI i ⇒ VI i

| EA (e1,e2) ⇒ (case (ev2 env e1, ev2 env e2) of (VF f, v) ⇒ f v)

| EL (x,e1) ⇒ VF (fn v ⇒ ev2 (ext env x (EC v)) e1)

| EV x ⇒ (case (env x) of EC v ⇒ v)

| EB e1 ⇒ VC (eb2 1 env e1)

| ER e1 ⇒ (case (ev2 env e1) of VC e2 ⇒ ev2 env0 e2)

| EC v ⇒ CoverV env v)

and eb2 n env e =

(case e of

EI i ⇒ EI i

69

| EA (e1,e2) ⇒ EA (eb2 n env e1, eb2 n env e2)

| EL (x,e1) ⇒ let val x’ = NextVar x in EL (x’, eb2 n (ext env x (EV (x’))) e1) end

| EV y ⇒ env y

| EB e1 ⇒ EB (eb2 (n+1) env e1)

| ES e1 ⇒ (if n=1 then (case (ev2 env e1) of VC e ⇒ e) else ES (eb2 (n-1) env e1))

| ER e1 ⇒ ER (eb2 n env e1)

| EC v ⇒ EC (CoverV env v)).

The only changes to the evaluation and rebuilding functions are in the cases of cross-stage persistent

constants: Cross-stage persistent constants are covered using the current environment before they

are returned. Cross-stage persistent variables are covered even during rebuilding, to address the

possibility of them being added to the environment and then moved under another dynamic lambda,

which could then incorrectly capture a dynamic variable that originated from the cross-stage

persistent constant.

Now, evaluating the term PUZZLE under this semantics produces the expected result:

- ev2 env0 PUZZLE;

val it = VC (EC (VI 5)) : value.

Finally, we point out that the accumulation of such wrappers can lead to unnecessary performance

degradation, especially for cross-stage persistent constants which do not contain any code. This

problem can be alleviated by postponing the application of covers until a code fragment is actually

encountered. This idea is similar in spirit to what can be done with calculi of explicit substitutions

[4]. As of yet, this optimization is still unexplored.

4.6 More Concerns

The concerns described in the last section are “bugs”: they are instances where the implementation

and the type system break. There are other more qualitative concerns that we have identified. We

present two in this section:

1. The need for validating certain run-time optimizations of object-code, and

2. The seeming existence of interesting intrinsic properties that the MetaML code type might

enjoy.

We revisit the first concern at the end of Chapter 6.

70

4.6.1 Optimization on Generated Code

While the interpretation presented above was considered sufficient for executing MetaML pro-

grams, it was known that the code generated by such programs would contain some superfluous

computations. Not only can these superfluous computations make it more costly to execute the gen-

erated programs, but it can also make the code larger and hence harder for humans to understand.

In this section, we explain the need for these optimizations.

Safe β Reduction It is not uncommon that executing a multi-stage program will result in the

construction of many applications that we would like to eliminate. Consider the following example:

val g = 〈fn x ⇒ x * 5〉;
val h = 〈fn x ⇒ (˜g x) - 2〉.

If we use the interpreter presented above, the declaration for h evaluates to 〈fn d1⇒ ((fn d2⇒ d2 *

5) d1) - 2〉. But the MetaML implementation returns 〈fn d1 ⇒ (d1 * 5) - 2〉 because it attempts to

perform a kind of safe β reduction whenever a piece is code is Escaped into another. Generally, a β

reduction is safe if it does not affect semantics properties, such as termination10. There is one safe

case which is particularly easy to recognize: An application of a lambda-abstraction to a constant

or a variable. We would like to know that such an application can always be reduced symbolically

without affecting termination. Furthermore, restricting this optimization to the cases when the

argument is a small constant or a variable allows us to avoid the possibility of code explosion.

This rebuilding-time optimization can be easily incorporated into the interpretation by modifying

the application case in the rebuilding function eb2:

...

| EA (e1,e2) ⇒ case (eb2 n env e1, eb2 n env e2) of

(EL (x,e3), EI i) ⇒ eb2 n e3 (ext env0 x (EI 1))

| (EL (x,e3), EV x) ⇒ eb2 n e3 (ext env0 x (EV x))

| (e4,e5) ⇒ EA (e4,e5)

... .

This optimization requires that the β rule is expected to hold at all levels. Verifying this claim

is not trivial. In fact, without a simple formal semantics for MetaML, this claim is practically

impossible to verify. We return to the issue of β in Chapter 6.

10 Respecting termination behavior is sufficient if the only effect in the language is termination. In richer
languages, a safe β reduction may also need to respect other semantic properties.

71

Safe Rebuilding Rebuilding expressions in a multi-level language can be more costly than nec-

essary. The following example is somewhat unnatural, but it allows us to exhibit a behavior that

can arise in more “natural” programs:

val a = 〈〈5〉〉; val b = 〈〈˜˜a〉〉.

If we use the interpreter presented above, the declaration for b evaluates to 〈〈˜〈5〉〉〉. Computing

this result involved rebuilding 〈5〉 and, in turn, rebuilding 5. Then, Running b would involve the

rebuilding of 5 again. Our concern is that the last rebuilding is redundant because we know that

rebuilding has already been performed before. If in place of 5 we had a larger expression, the cost

of this redundancy could be substantial.

The MetaML implementation alleviates this problem by checking the result of rebuilding inside

an Escape at levels greater than 1. If the result of rebuilding inside an Escape was a Bracketed

expression, the Escape and the Brackets are eliminated, and the result is just the expression itself.

This optimization would be correct if ˜ 〈e〉 were always equal to e. But again, this equality is

not obvious, and cannot be supported or refuted without a rigourous definition of the semantics

of MetaML. Furthermore, such a semantics must be fairly simple for any proofs to be practical

and reliable. Again, our need to determine whether this optimization was sound or not is further

motivation for seeking an equational theory for MetaML. We will outline an elementary equational

theory at the end of the Chapter 6 which would support this optimization.

Again, this optimization can be incorporated into the rebuilding function by changing the Escape

case of eb2 as follows:

...

| ES e1 ⇒ (if n=1 then (case (ev2 env e1) of VC e ⇒ e)

else case (eb2 (n-1) env e1) of

EB e2 ⇒ e2

| e3 ⇒ ES e3

... .

Finally, because the two optimization described in this subsection eliminate some redices that

the user might expect to see in the generated code, these optimization could, in principle, make

it hard to understand why a particular program was generated. In our experience, the resulting

smaller, simpler programs have been easier to understand and seemed to make the optimizations

worthwhile.

72

4.6.2 A Conjecture on an Isomorphism

All great truths begin as blasphemies.

George Bernard Shaw

We conclude this chapter by describing a simple yet controversial observation that we made shortly

after we began programming in MetaML11. The purpose of this section is not only to present this

observation, but to emphasize that programming in MetaML has illuminated the way for deep

insights into the nature of multi-stage programming.

We say that there is an isomorphism between two types when there is a pair of functions f and g

that go back and fourth between the two types and the composition of the two functions is equal

to identity (See for example Di Cosmo [25].) More precisely, we are referring to the situation where

two terms f and g represent functions, and the representation of their compositions is provably

equal to λx.x in an equational theory12. A simple example of two isomorphic types are ’a * ’b

and ’b * ’a. In this example, the pair of functions f and g are identical and are fn (x,y) ⇒ (y,x).

While working with the implementation of MetaML, we began to wonder if the functions back and

forth (of Section 2.6) are two such functions. They are not. Let us recall the definition of the two

functions:

fun back f = 〈fn x ⇒ ˜(f 〈x〉)〉; (* : (〈 ’a〉 → 〈 ’b〉) → 〈 ’a → ’b〉 *)

fun forth f x = 〈˜f ˜x〉; (* : 〈 ’a → ’b〉 → 〈 ’a〉 → 〈 ’b〉 *).

The reason these function do not form an isomorphism is that if back is applied to a non-terminating

function, it fails to terminate (instead of returning the code of a non-terminating function). But

at the same time, functions that take a code fragment and diverge immediately thereafter are

not likely to be useful functions. In particular, “code fragments” in MetaML are not an inductive

structure: The programmer cannot take apart code fragments or “look inside” them in any way

other than by Running them13. It is therefore not clear why a useful function that takes such a

code fragment would fail to terminate. Thus, we continued to search for a counter-example, that

11 This section may be safely skipped by the reader not interested in the details of the formal semantics
of MetaML. The section requires familiarity with the formal notion of an equational theory.

12 It is important to emphasize that we are taking an equational-theoretic view, and not a view where we
are concerned with domain-theoretic interpretations of the types. The latter view is interesting, but is
not our present subject.

13 Close inspection of the interpreter presented in this chapter will reveal that the environment can indeed
be enriched with constants that would allow us to take apart a piece of code. This possibility is an
artifact of the implementation, and not what the language studied in this dissertation is intended to
do. The fragile nature of the distinction between what is implemented (and is therefore formal) and
what is intended (and is therefore possibly still informal) made it harder for us to make the argument
presented in this subsection. This difficulty was therefore further incentive to seek alternative (stronger)
formulations of MetaML’s semantics. We present instances of such semantics in the rest of Part II.

73

is, a useful MetaML function for which the composition of the two functions back and forth is not

identity. To date, we have not found such a function.

Thus, we conjectured that back and forth form an isomorphism between two interesting subsets of

the types 〈 ’a〉 → 〈 ’b〉 and 〈 ’a → ’b〉. These subsets must exclude, for example, non-terminating

functions in the type 〈 ’a〉 → 〈 ’b〉. This choice is not too restrictive, because such functions seem

generally uninteresting (no useful induction can be performed on a 〈 〉 type).

Finally, Danvy et al. have observed that two-level η-expansions can be used for binding-time im-

provement [20, 21]. The two functions, back and forth are closely related to two-level η-expansions.

The application of multi-level expansions for improving staged programs has not been studied ex-

plicitly in this dissertation, and remains an important open question. The relation between our two

functions and two-level η-expansion has been further motivation for us to validate our conjecture

on type isomorphisms.

Chapter 5

Big-Step Semantics, Type Systems,

and Closedness

The art of research is the ability to look

at the details, and see the passion.

Daryl Zero, The Zero Effect

This chapter presents a formal semantics for MetaML in the big-step style, and a type system that

we have proven to be type-safe with respect to the big-step semantics. The resulting language,

albeit useful as is, has an expressivity limitation. We show how this shortcoming can be overcome

by explicating the notion of a Closed value at the level of types. On these grounds, we propose

that MetaML be extended with a new type for Closed values, and present a big-step semantics

and a sound type system for the proposal.

This chapter represents the state of the art in (untyped) semantics and type systems for multi-stage

programming languages.

5.1 A Big-Step Semantics for CBV and CBN λ

Formalizing a big-step semantics (see for example Gunter [33]) allows us to specify the semantics

as a function that goes directly from expressions to values. We begin by reviewing the big-step

semantics for the λ language.

Recall from Chapter 4 that syntax for the λ language is as follows:

e ∈ E := i | x | λx.e | e e.

74

75

The CBV big-step semantics for λ is specified by a partial function ↪→ : E → E, where E is the

set of λ expressions1:

i ↪→ i
Int

λx.e ↪→ λx.e
Lam

e1 ↪→ λx.e e2 ↪→ e3 e[x := e3] ↪→ e4

e1 e2 ↪→ e4

App.

Note that there are terms for which none of the rules in this semantics can apply (either because

they get “stuck” or the semantics “goes into an infinite loop”).

The rule for integers says that they evaluate to themselves. The rule for lambda-abstractions

says that they too evaluate to themselves. The rule for applications says that they are evaluated

by evaluating the operator to get a lambda-abstraction, substituting the result of evaluating the

operand into the body of the lambda-abstraction, and evaluating the result of the substitution. The

definition of substitution is standard and is denoted by e1[x := e2] for the capture-free substitution2

of e2 for the free occurrences of x in e1. This semantics is a partial function associating at most

one unique value to any expression in its domain.

Note that there is no need for an environment that keeps track of bindings of variables: whenever a

value is available for a variable, we immediately substitute the value for the variable. This substi-

tution is performed in the rule for applications. It is possible to implement the λ language directly

by mimicking the big-step semantics. We should point out, however, that a direct implementation

based on this big-step semantics would be somewhat inefficient, as every application would require

a traversal of the body of the lambda-abstraction. Most realistic implementation do not involve

traversing terms at run-time to perform substitution, and thus, are more similar in spirit to the

simple interpreter discussed in Chapter 4.

The Closedness Assumption The semantics presented above for the λ language is fairly stan-

dard, but it contains an important assumption that will be violated when we extend the language

to a multi-level one. In particular, the big-step semantics above has no rule for evaluating vari-

ables. The key observation is that evaluating a closed λ term using this big-step semantics does not

involve evaluating open sub-terms. This claim can be established as a property of the derivation

tree induced by this definition of the semantics. The proof proceeds by induction on the height

of the derivation: The claim is true in the base cases of integers and lambda-abstractions, and it

1 Typically, such a semantics is defined only for closed terms. We do not impose this restriction on our
semantics.

2 Capture-free substitution means that no free variables of e2 are captured by bound variables in e1.

76

is true by induction in the case of applications. In the case of application, we also need to have

established that evaluating a closed expression returns a closed expression.

5.2 A Big-Step Semantics for CBV λ-M

Recall from Chapter 4 that the terms of λ-M are:

e ∈ E := i | x | λx.e | e e | 〈e〉 | ˜e | run e.

To define the big-step semantics, we employ a finer classification of expressions. For example, the

evaluation of a term ˜e does not interest us because Escapes should not occur at top level. Thus,

we introduce expression families3:

e0 ∈ E0 := x | λx.e0 | e0 e0 | 〈e1〉 | run e0

en+ ∈ En+ := x | λx.en+ | en+ en+ | 〈en++〉 | ˜en | run en+.

Lemma 5.2.1 (Basic Properties of Expressions Families) ∀n ∈ N.

1. En ⊆ E
2. En ⊆ En+

3. ∀e1 ∈ En, e2 ∈ E0. e1[x := e2] ∈ En

Proof. All parts of this lemma are proven by easy inductions.

We illustrate the proof of the first part of this lemma. We prove that:

∀n ∈ N.∀e ∈ En. e ∈ E.

The proof proceeds by induction on the derivation of e ∈ En. If e ≡ x then x ∈ E by definition

of ∈ E. If e ≡ e1 e2 then by the definition of ∈ En we know that e1, e2 ∈ En. By the induction

hypothesis, we have e1, e2 ∈ E. By the definition of ∈ E we have e1 e2 ∈ E. The treatment of the

rest cases proceeds in the same manner.

The second and the third parts are similar. The third part is by induction on the derivation of

e1 ∈ En. ut

3 This presentation of the sets of expressions and values is a slight abuse of notation. The definition of level
annotated terms is “essentially” BNF in that it defines a set of terms by simple induction. Technically,
this set is defined by induction on the height of a set membership judgment e ∈ En, and properties
of this set are established by induction on the height of the derivation of this judgment. This can be
expressed in more traditional notation as follows:

x ∈ En

e ∈ En

λx.e ∈ En

e1, e2 ∈ En

e1 e2 ∈ En

e ∈ En+

〈e〉 ∈ En

e ∈ En

˜e ∈ En+

e ∈ En

run e ∈ En .

We will use the BNF notation as a shorthand for such definitions. The shorthand is especially convenient
for defining the sets of workable and stuck terms presented in Chapter 6.

77

Syntax:

e ∈ E := i | x | e e | λx.e | 〈e〉 | ˜e | run e

Big-Step Rules:

i
n
↪→ i

Int
λx.e

0
↪→ λx.e

Lam

e1
0
↪→ λx.e

e2
0
↪→ e3

e[x := e3]
0
↪→ e4

e1 e2
0
↪→ e4

App

e1
0
↪→ 〈e2〉 e2

0
↪→ e3

run e1
0
↪→ e3

Run
x

n+
↪→ x

Var+
e1

n+
↪→ e3 e2

n+
↪→ e4

e1 e2
n+
↪→ e3 e4

App+

e1
n+
↪→ e2

λx.e1
n+
↪→ λx.e2

Lam+
e1

n+
↪→ e2

〈e1〉
n
↪→ 〈e2〉

Brk
e1

n+
↪→ e2

run e1
n+
↪→ run e2

Run+

e1
n+
↪→ e2

˜e1
n++
↪→ ˜e2

Esc++
e1

0
↪→ 〈e2〉

˜e1
1
↪→ e2

Esc

Fig. 5.1. The (Coarse) CBV Big-Step Semantics for λ-M

The CBV big-step semantics for λ-M is specified by a partial function
n
↪→ : En → En. We

proceed by first defining the coarse function
n
↪→ : E → E, and then show that we can restrict

the type of this function to arrive at the fine function
n
↪→ : En → En. Figure 5.1 summarizes

the coarse CBV big-step semantics for λ-M4. Taking n to be 0, we can see that the first three rules

correspond to the rules of λ.

The rule for Run at level 0 says that an expression is Run by first evaluating it to get a Bracketed

expression, and then evaluating the Bracketed expression. The rule for Brackets at level 0 says that

they are evaluated by rebuilding the expression they surround at level 1: Rebuilding, or “evaluating

at levels higher than 0”, eliminates level 1 Escapes. Rebuilding is performed by traversing expres-

sions while correctly keeping track of level. Thus rebuilding simply traverses a term until a level

1 Escape is encountered, at which point the evaluation function is invoked in the Esc rule. The

Escaped expression must yield a Bracketed expression, and then the expression itself is returned.

4 For regularity, we use
0

↪→ instead ↪→ . This way, both evaluation and rebuilding as (described
in Chapter 4) are treated as one partial function that takes a natural number as an extra argument.
The extra argument can still be used to distinguish between evaluation (the extra argument is 0) and
rebuilding (the extra argument is greater than zero).

78

An immediate benefit of having such a semantics is that it provides us with a formal way of finding

what result an implementation of MetaML should return for a given expression. For example, it is

easy to compute the result of evaluating the application of the result of Running puzzle to 5 (see

Section 4.4.1):

(run 〈λa.˜((λx.〈x〉) (λx.〈a〉)) 0〉) 5
0
↪→ 〈5〉.

5.2.1 Basic Properties of Big-Step Semantics

Next we establish some properties of the operational semantics. Values are a subset of terms that

denote the results of computations. Because of the relative nature of Brackets and Escapes, it is

important to use a family of sets for values, indexed by the level of the term, rather than just one

set. Values are defined as follows:

v0 ∈ V 0 := λx.e0 | 〈v1〉

v1 ∈ V 1 := x | v1 v1 | λx.v1 | 〈v2〉 | run v1

vn++ ∈ V n++ := x | vn++ vn++ | λx.vn++ | 〈vn+++〉 | ˜vn+ | run vn++

Intuitively, level 0 values are what we get as a result of evaluating a term at level 0, and level

n+ values are what we get from rebuilding a term at level n+. Thus, the set of values has three

important properties: First, a value at level 0 can be a lambda-abstraction or a Bracketed value,

reflecting the fact that lambda-abstractions and terms representing code are both considered ac-

ceptable results from a computation. Second, values at level n+ can contain applications such as

〈(λy.y) (λx.x)〉, reflecting the fact that computations at these levels can be deferred. Finally, there

are no level 1 Escapes in level 1 values, reflecting the fact that having such an Escape in a term

would mean that evaluating the term has not yet been completed. Evaluation is not complete, for

example, in terms like 〈˜(f x)〉.

The following lemma establishes a simple yet important property of λ-M:

Lemma 5.2.2 (Strong Value Reflection for Untyped Terms) ∀n ∈ N.

V n+ = En.

Proof. By simple induction. ut

The lemma has two parts: One saying that every element of in a set of (code) values is also an

element of a set of expressions, and the other, saying the converse. As we mentioned in Chapter 1,

both of these properties can be interpreted as positive qualities of a multi-level language. The first

79

part tells us that every object-program (value) can be viewed as a meta-program, and the second

part tells us that every meta-program can viewed as an object-program (value). Having established

reflection, it is easy to verify that the big-step semantics at level n (e
n
↪→ v) always returns a value

v ∈ V n:

Lemma 5.2.3 (Basic Properties of Big-Step Semantics) ∀n ∈ N.

1. V n ⊆ V n+,
2. ∀e, e′ ∈ En. e

n
↪→ e′ =⇒ e′ ∈ V n.

Proof. Part 1 is by a simple induction on the derivation of v ∈ V n to prove that:

∀n ∈ N.∀v ∈ V n. v ∈ V n+.

Part 2 is also a simple induction on the derivation of e
n
↪→ e′. Reflection (Lemma 5.2.2) is needed

in the case of Run. ut

Corollary 5.2.4 (Level Preservation) ∀n ∈ N.∀e1 ∈ En.∀e2 ∈ E.

e1
n
↪→ e2 =⇒ e2 ∈ En.

Proof. Noting that V 0 ⊆ E0 and V n+ = En ⊆ En+, this result is immediate from the previous

lemma. ut

Remark 5.2.5 (Fine Big-Step Function) In the rest of the dissertation, we will only be con-

cerned with the fine big-step semantic function
n
↪→ : En → En for λ-M. We will also refer to it

simply as the big-step semantics.

The Closedness Assumption Violated The semantics is standard in its structure, but note

it has the unusual feature that it manipulates open terms. In particular, rebuilding goes “under

lambda” in the rule Lam+, and Escape at level 1 re-invokes evaluation during rebuilding. Thus,

even though a closed term such as 〈λx.˜〈x〉〉 evaluates to 〈λx.x〉 (that is 〈λx.˜〈x〉〉 0
↪→ 〈λx.x〉) the

derivation of this evaluation involves the sub-derivation 〈x〉 0
↪→ 〈x〉 which itself is the evaluation of

the open term 〈x〉.

5.3 A Basic Type System for MetaML

As in Chapter 4, we introduce a level-index into the typing judgment. The type judgment is thus

extended to have the form Γ `n e : τ where e ∈ E, τ ∈ T , Γ ∈ D, and n ∈ N . The judgement

Γ `n e : τ is read “e has type τ at level n under environment Γ”. Again, it is important to note

that the level n is part of the judgement and not part of the type. Figure 5.2 summarizes the λ-M

type system that we study in this section.

80

Syntax:

e ∈ E := i | x | e e | λx.e | 〈e〉 | ˜e | run e

Types and Type Environments:

τ ∈ T := b | τ1 → τ2 | 〈τ〉
Γ ∈ D := [] | x : τn;Γ

Operations on Type Environments:

Γ+(x) ∆= τn+ where Γ (x) = τn

Type Rules:

Γ `n i : int
Int

Γ (x) = τ (n−m)

Γ `n x : τ
Var

x : τ ′n;Γ `n e : τ
Γ `n λx.e : τ ′ → τ

Lam
Γ `n e2 : τ ′ Γ `n e1 : τ ′ → τ

Γ `n e1 e2 : τ
App

Γ `n+ e : τ
Γ `n 〈e〉 : 〈τ〉

Brk
Γ `n e : 〈τ〉
Γ `n+ ˜e : τ

Esc
Γ+ `n e : 〈τ〉
Γ `n run e : τ

Run

Fig. 5.2. The λ-M Type System

5.3.1 Basic Properties of Type System

We will now present some technical lemmas for λ-M that are needed to establish type-safety.

These lemmas establish the basic properties of the type system that are needed for establishing

more interesting properties:

Lemma 5.3.1 (Weakening) ∀n,m ∈ N, e ∈ E,Γ ∈ D, τ, σ ∈ T.

Γ `n e : τ ∧ x 6∈ dom(Γ) ∧ x 6∈ FV(e) =⇒ Γ ;x : σm `n e : τ.

Proof. By induction on the structure of the derivation Γ `n e : τ . ut

A key lemma needed for proving type-safety of the system is the following:

Lemma 5.3.2 (Persistence of Typability) ∀n ∈ N, Γ ∈ D, τ ∈ T.∀e ∈ En.

Γ `n e : τ ⇐⇒ Γ+ `n+ e : τ.

Proof. Each direction of the implication is by a simple induction on the height of the typing

judgement in the assumption. The forward direction is routine. The backward direction is also

straightforward, but the case of Escape is notable. In particular, we only prove that Γ+ `n++ ˜e : τ

implies Γ `n+ ˜e : τ , because ˜e is only in En+ and not in E0. ut

81

Notation 5.3.3 We write Γ1, Γ2 for the environment determined by the (disjoint) union of the

two environments Γ1 ∈ D and Γ2 ∈ D.

The following lemma says that any term remains typable when we reduce the level of any of the

variables in the environment under which the term is typable.

Lemma 5.3.4 (Co-Promotion) ∀n ∈ N, e ∈ E,Γ1, Γ2 ∈ D, τ ∈ T.

Γ1, Γ
+
2 `n e : τ =⇒ Γ1, Γ2 `n e : τ.

Proof. By a simple induction on the derivation of Γ1, Γ2 `n e : τ . ut

We will now introduce a simple notation that we have found useful for writing the kind of proofs

used in this dissertation.

Notation 5.3.5 (Proofs on Derivations) Whenever convenient, proofs will be laid out in 2-

dimensions to reflect that we are relating one derivation tree to another. Symbols such as R⇑, R⇐⇒,

and R⇓ will be used for (one- or two-way) implications, where R is the list of rules used to achieve

this implication. For rules, we instantiate R with ` when we have applied the rules of the type

system, ± for arithmetic, and IH for use of the induction hypothesis.

Proofs start from the left and proceed either up, down, or right. We go up or down depending on

the normal orientation of the particular rule that is being used in an implication.

Horizontal implications are aligned with their precedents and antecedents.

Lemma 5.3.6 (Substitution) ∀n,m ∈ N, Γ1, Γ2 ∈ D, τ, σ ∈ T.∀e1 ∈ En, e2 ∈ Em.

Γ1, Γ2;x : σm `n e1 : τ ∧ Γ2 `m e2 : σ =⇒ Γ1, Γ2 `n e1[x := e2] : τ.

Proof. By induction on the derivation of the judgement Γ1, Γ2;x : σm `n e1 : τ .

– Variables I: e1 ≡ y 6≡ x, we already know Γ1, Γ2;x : σm `n e2 : τ and by weakening we have

Γ1, Γ2 `n e2 : τ .

– Variables II: e1 ≡ x, then from the typing rule for variables we know that n = m + m′ and

that σ ≡ τ , for some natural number m′. We already know Γ1 `m e2 : σ. By weakening we

have Γ1, Γ2 `m e2 : σ. By persistence of typability we have Γm′

1 , Γm′

2 `m+m′
e2 : σ. By m′

applications of co-promotion we have Γ1, Γ2 `m+m′
e2 : σ and we are done.

– Lambda-abstraction I: e1 ≡ λy.e, and y 6≡ x. By Barendregt’s convention, y 6∈ FV(e2).

`⇑
Γ1, Γ2;x : σm; y : τ3n `n e : τ4
Γ1, Γ2;x : σm `n λy.e : τ3 → τ4

IH=⇒ Γ1, Γ2; y : τ3n `n e[x := e2] : τ4
Γ1, Γ2 `n λy.e[x := e2] : τ3 → τ4

`,:=⇓

– Lambda-abstraction II: e1 ≡ λy.e, and y ≡ x. By weakening, we have Γ1, Γ2 `n λy.e : τ3 → τ4

and we are done.

82

– Applications:

`⇑

Γ1, Γ2;x : σm `n e3 : τ1 → τ

Γ1, Γ2;x : σm `n e4 : τ1
Γ1, Γ2;x : σm `n e3 e4 : τ

IH=⇒
IH=⇒

Γ1, Γ2 `n e3[x := e2] : τ1 → τ

Γ1, Γ2 `n e4[x := e2] : τ1
Γ1, Γ2 `n (e3 e4)[x := e2] : τ

`,:=⇓

– Brackets:

`⇑
Γ1, Γ2;x : σm `n+1 e : τ

Γ1, Γ2;x : σm `n 〈e〉 : 〈τ〉

IH=⇒ Γ1, Γ2 `n+1 e[x := e2] : τ

Γ1, Γ2 `n 〈e〉[x := e2] : 〈τ〉
`,:=⇓

– Escapes:

`⇑
Γ1, Γ2;x : σm `n e : 〈τ〉
Γ1, Γ2;x : σm `n+1 ˜e : τ

IH=⇒ Γ1, Γ2 `n e[x := e2] : 〈τ〉
Γ1, Γ2 `n+ ˜e[x := e2] : τ

`,:=⇓

– Run:

`⇑
Γ+1

1 , Γ+1
2 ;x : σm+1 `n e : 〈τ〉

Γ1, Γ2;x : σm `n run e : τ

IH=⇒ Γ+1
1 , Γ+1

2 `n e[x := e2] : 〈τ〉
Γ1, Γ2 `n run e[x := e2] : τ

`,:=⇓

ut

5.4 Type-Safety

While the statement and proof of the Type-Safety lemma for λ-M will seem quite straightforward,

we cannot over-emphasize the importance of defining carefully what is meant by type-safety for a

particular language. We specify the occurrence of a run-time error by first augmenting the big-step

semantics to return an error value err when an undesirable condition takes place. Thus, the type

of the big-step semantic function becomes
n
↪→ : En → (En ∪ {err}). Second, we introduce an

additional set of rules to propagate this value if it is returned by sub-computations. The first set

of rules that must be added to the big-step semantics is as follows:

x
0
↪→ err

VarErr
e1

0
↪→ e3 e3 6≡ λx.e

e1 e2
0
↪→ err

AppErr

e1
0
↪→ e2 e2 6≡ 〈e〉

run e1
0
↪→ err

SRnErr
e1

0
↪→ e2 e2 6≡ 〈e〉

˜e1
1
↪→ err

Esc1Err

.

We also add propagation rules that simply return an error if the result of a sub-computation is an

error.

The most subtle of these error cases to identify has been the one for variables. In particular, it is

very easy to forget to add this rule as an error-emitting case, and then it becomes very hard to see

why it is still possible to “prove” incorrect type-safety theorems.

Finally, it is instructive to note that there is a slight redundancy in this typed treatment of λ-M:

83

Lemma 5.4.1 ∀n ∈ N,∀e ∈ E,Γ ∈ D, τ ∈ T.

Γ `n e : τ =⇒ e ∈ En.

Proof. By a simple induction on the derivation of Γ `n e : τ . ut

Thus, if we are only interested in typed terms, we do not (strictly speaking) need the family

classification on expressions. However, as we will see in Chapter 6, this classification is significant

to the treatment of the untyped language.

Reflection for a typed multi-level language can be viewed as the existence of a correspondence

between programs ∅ `0 e : τ and program representations ∅ `0 〈v〉 : 〈τ〉. This property holds for

λ-M. It is an instance of the following result:

Lemma 5.4.2 (Strong Value Reflection for Typed Terms) ∀n ∈ N, Γ ∈ D, τ ∈ T, v ∈
V n+, e ∈ En.

1. Γ+ `n+ v : τ =⇒ Γ `n v : τ ,

2. Γ `n e : τ =⇒ (Γ+ `n+ e : τ ∧ e ∈ V n+).

Proof. Part 1 is by induction on the derivation of Γ+ `n+ v : τ , and case analysis on v ∈ V n+.

Part 2 is by induction on the derivation of Γ `n e : τ . ut

Lemma 5.4.3 (Basic Property of Augmented Semantics) ∀n ∈ N.∀e, e′ ∈ En.

e
n
↪→ e′ =⇒ e′ ∈ (V n ∪ {err}).

Proof. By a simple induction on the derivation of e
n
↪→ e′. Reflection (Lemma 5.2.2) is needed in

the case of Run. ut

The Closedness Assumption Refined As we have pointed out earlier, an important feature

in the λ language is that reductions always operate on closed terms. We have also pointed out

that this assumption is violated in the big-step semantics of λ-M, because rebuilding goes “under

lambda”. A crucial observation allows us to continue the formal development of MetaML in the

usual manner: All terms are closed with respect to variables bound at level 0. This observation

dictates the general form of the statement of the Type Preservation Theorem:

Theorem 5.4.4 (Type Preservation for CBV λ-M) ∀n ∈ N, Γ ∈ D, τ ∈ T. e ∈ En, v ∈ V n.

Γ+ `n e : τ ∧ e n
↪→ v =⇒ Γ+ `n v : τ.

Proof. By induction on the derivation of e
n
↪→ v. The case for application uses Substitution.

The case analysis proceeds as follows:

84

– Variables I: n = 0 is vacuous, because we can never derive the type judgment in this case.
– Variables II: n > 0 is trivial because x

n+
↪→ x.

– Lambda-abstraction I: Interestingly, no induction is needed here. In particular, λx.e
0
↪→ λx.e.

By definition, λx.e ∈ V 0, and from the premise Γ+ `0 λx.e : τ .
– Lambda-abstraction II: Straightforward induction:

`⇑
Γ+;x : τn

1 `n e : τ

Γ+ `n λx.e : τ1 → τ
↪→⇑

e
n+
↪→ e′

λx.e
n+
↪→ λx.e′

IH=⇒ e′ ∈ V n+

λx.e′ ∈ V n+
V ⇓

Γ+;x : τn
1 `n e′ : τ

Γ+ `n λx.e′ : τ1 → τ
`⇓

Application I and Run I follow a more involved but similar pattern. The other cases are by straight-

forward induction.

– Applications I: First, we use the induction hypothesis (twice) , which gives us a result that we

can use with the substitution lemma (:=):

`⇑

Γ+ `n e1 : τ1 → τ

Γ+ `n e2 : τ1
Γ+ `n e1 e2 : τ

↪→⇑

e1
n
↪→ λx.e

e2
n
↪→ e′2

e[x := e′2]
n
↪→ e′

e
n
↪→ e′

IH=⇒
IH=⇒

Γ+;x : τn
1 `n e : t

Γ+ `n λx.e : τ1 → τ
`⇑

Γ+ `n e′2 : τ1
Γ+ `n e[x := e′2] : τ

:=⇓

Note that we we are also using the judgment Γ+;x : τn
1 `n e : τ when we apply the substitution

lemma. Then, based on this information about e[x := e2] we apply the induction hypothesis

for the third time to get e′ ∈ V n and Γ+ `n e′ : τ .
– Applications II:

`⇑

Γ+ `n e1 : τ1 → τ

Γ+ `n e2 : τ1
Γ+ `n e1 e2 : τ

↪→⇑

e1
n+
↪→ e′1

e2
n+
↪→ e′2

e1 e2
n+
↪→ e′1 e

′
2

IH=⇒
IH=⇒

e′1 ∈ V n+

e′2 ∈ V n+

e′1 e
′
2 ∈ V n+

V ⇓

Γ+ `n e′1 : τ1 → τ

Γ+ `n e′2 : τ1
Γ+ `n e′1 e

′
2 : τ

`⇓

– Bracket:

`⇑
Γ+ `n+ e : τ

Γ+ `n 〈e〉 : 〈τ〉
↪→⇑

e
n+
↪→ e′

〈e〉 n+
↪→ 〈e′〉

IH=⇒ e′ ∈ V n

〈e′〉 ∈ V n+
V ⇓

Γ+ `n+ e′ : τ

Γ+ `n 〈e′〉 : 〈τ〉
`⇓

– Escape I:

`⇑
Γ+ `0 e : 〈τ〉
Γ+ `1 ˜e : τ

↪→⇑
e

0
↪→ 〈e′〉

e
0
↪→ e′′

IH=⇒
e′ ∈ V 1

〈e′〉 ∈ V 0
V ⇑

Γ++ `1 e′ : τ

Γ++ `0 〈e′〉 : 〈τ〉
`⇑

– Escape II:

`⇑
Γ+ `n e : 〈τ〉
Γ+ `n+ ˜e : τ

↪→⇑
e

n+
↪→ e′

˜e
n+
↪→ ˜e′

IH=⇒ e′ ∈ V n

˜e′ ∈ V n+
V ⇓

Γ+ `n e′ : 〈τ〉
Γ+ `n+ ˜e′ : τ

`⇓

85

– Run I: Similar to application, except that we use persistence of typability. First, we apply the

induction hypothesis once, then reconstruct the type judgment of the result:

`⇑
Γ++ `0 e : 〈τ〉
Γ+ `0 run e : τ

↪→⇑

e
0
↪→ 〈e′〉

e′ ↓ 0
↪→ e′′

e
0
↪→ e′′

IH=⇒
Γ++ `1 e′ : τ

Γ++ `0 〈e′〉 : 〈τ〉
`⇑

By applying persistence of typability to the top-most result in we get Γ+ `0 e′ : τ . Applying

the induction hypothesis again we Γ+ `0 e′′ : τ .
– Run II:

`⇑
Γ++ `n e : 〈τ〉
Γ+ `n run e : τ

↪→⇑
e

n+
↪→ e′

run e
n+
↪→ run e′

IH=⇒ e′ ∈ V n+

run e′ ∈ V n+
V ⇓

Γ++ `n e′ : 〈τ〉
Γ+ `n run e′ : τ

`⇓

ut

Theorem 5.4.5 (Type-Safety for CBV λ-M) ∀n ∈ N, Γ ∈ D, τ ∈ T.∀e ∈ En, v ∈ V n.

Γ+ `n e : τ ∧ e n
↪→ v =⇒ v 6≡ err.

Proof. Follows directly from Type Preservation. ut

5.5 A Big-Step Semantics for CBN λ-M

The difference between the CBN semantics and the CBV semantics for λ-M is only in the evaluation

rule for application at level 0. For CBN, this rule becomes

e1
0
↪→ λx.e e[x := e2]

0
↪→ v

e1 e2
0
↪→ v

App–CBN.

Figure 5.3 summarizes the full semantics. The Type Preservation proof need only be changed for

the application case.

Theorem 5.5.1 (Type Preservation for CBN λ-M) ∀n ∈ N, Γ ∈ D, τ ∈ T. e ∈ En, v ∈ V n

Γ+ `n e : τ ∧ e n
↪→ v =⇒ Γ+ `n v : τ.

5.6 A Limitation of the Basic Type System: Re-integration

The basic type system presented in the previous chapter has a problem that renders it unsuitable

for supporting multi-stage programming with explicit annotations: It cannot type some simple yet

very useful terms. For example, in Chapter 2, we re-integrated the dynamically generated function

as follows:

86

Syntax:

e ∈ E := i | x | e e | λx.e | 〈e〉 | ˜e | run e

Big-Step Rules:

i
n
↪→ i

Int
λx.e

0
↪→ λx.e

Lam

e1
0
↪→ λx.e

e[x := e2]
0
↪→ e3

e1 e2
0
↪→ e3

App–CBN

e1
0
↪→ 〈e2〉 e2

0
↪→ e3

run e1
0
↪→ e3

Run
x

n+
↪→ x

Var+
e1

n+
↪→ e3 e2

n+
↪→ e4

e1 e2
n+
↪→ e3 e4

App+

e1
n+
↪→ e2

λx.e1
n+
↪→ λx.e2

Lam+
e1

n+
↪→ e2

〈e1〉
n
↪→ 〈e2〉

Brk
e1

n+
↪→ e2

run e1
n+
↪→ run e2

Run+

e1
n+
↪→ e2

˜e1
n++
↪→ ˜e2

Esc++
e1

0
↪→ 〈e2〉

˜e1
1
↪→ e2

Esc

Fig. 5.3. The (Coarse) CBN Big-Step Semantics for λ-M

- val exp72 = run exp72’; (* : real → real *).

But this declaration was only typable in the faulty type system presented in Chapter 4, and not

in type system presented above. In fact, we cannot even type the following simple sequence of

declarations in the above type system:

- val a = 〈1〉;
- val b = run a;

This sequence is not typable because (with the standard interpretation of let) it corresponds to the

lambda term (λa.run a) 〈1〉, which is not typable. Without overcoming this problem, we cannot

achieve multi-stage programming “as advertised” in Chapters 1 to 3.

Understanding this problem and its significance requires understanding the relation between the

types and the method of multi-stage programming. To this end, we begin by an analysis of the types

of the six major artifacts produced at the end of the six main steps of the method of multi-stage

programming. It is then clear that the type system does not allow for a general way of conducting

the last step of the method. We then argue that the root of the problem lies in the lack of an

effective mechanism for tracking free variables. We propose a solution to this problem at the level

of types, and show how the new types can be a basis for a refined method that can be supported

by a provably sound type system.

87

5.6.1 Types of the Artifacts of Multi-Stage Programming

The main steps of multi-stage programming are:

1. Write the conventional program

program : tS → tD → t

where tS is the type of the “static” or “known” parameters, tD is the type of the “dynamic”,

or “unknown” parameters, and t is the type of the result of the program.

2. Add staging annotations to the program to derive

annotated program : tS → 〈tD〉 → 〈t〉

3. Compose the annotated program with an unfolding combinator back : (〈A〉 → 〈B〉)→ 〈A→ B〉

code generator : tS → 〈tD → t〉

4. Construct or read the static inputs:

s : tS

5. Apply the code generator to the static inputs to get

specialized code : 〈tD → t〉

6. Run the specialized code to re-introduce the generated function as a first-class value in the

current environment:

specialized program : tD → t

All the steps of the method except the last one can be carried out within the type system presented

in the previous chapter. The last step, however, is problematic.

5.6.2 The Problem of Abstracting Run

The root of the expressivity problem described above seems to be that there is no general type

safe way for going from a MetaML value of code type 〈A〉 to a MetaML value of type A. At the

level of language constructs, MetaML provides a construct Run. Run is a construct that allows the

execution of a code fragment and has the type rule:

Γ+ `n e : 〈τ〉
Γ `n run e : τ

Run

88

For example, run 〈3 + 4〉 is well-typed and evaluates to 7. But Run still has limited expressivity.

In particular, it is not a function, and cannot be turned into a function, because the lambda-

abstraction λx.run x is not typable using the type system of Section 5.2. Without such a function

code fragments declared at top-level can never be executed using well-typed terms. At the same

time, adding a function such as unsafe run : 〈A〉 → A breaks the safety of the type system presented

in the previous section, because it is equivalent to reintroducing the faulty Run rule presented in

Chapter 4. (Thus, the same counterexample to type safety applies.)

Despite a long search, we have not been able to find reasonable type systems where a function

unsafe run : 〈A〉 → A can exist5. Thus we are inclined to believe that a single parametric type

constructor 〈 〉 for code does not allow for a natural way of executing code. This observation can

be interpreted as saying that “generated code” cannot be easily integrated with the rest of the

run-time system.

A Closer Look at What Goes Wrong Operationally, a code fragment of type 〈A〉 can contain

“free dynamic variables”. Because the original code type of MetaML does not provide us with any

information as to whether or not there are “free dynamic variables” in the fragment, there is no

way of ensuring that this code fragment can be safely executed.

Thus, there is a need for a finer typing mechanism that provides a means for reasoning about

free variables. As this observation holds in a very minimal language for multi-stage programming

language, we believe that it is very likely to hold for many multi-stage languages.

5.7 The λBN Language. Or Adding Closedness to λ-M

Our proposal is to add a special type constructor to mark Closed terms to MetaML. Closed terms

evaluate to closed values, that is, values containing no free variables. The viability of this proposal

will be demonstrated by adding a Closed type to λ-M, and presenting a provably sound type

system. The extended language is called λBN and adds the Closed type [] to the types of λ-M:

τ ∈ T := b | τ1 → τ2 | 〈τ〉 | [τ]

Γ ∈ D := [] | x : τn;Γ

5 It is tempting here to say that we were searching for a “first-class function”, but any function in a
functional language becomes a “first-class citizen”, and an operator that is not a function is not a first-
class citizen. Looking for a way to fit an operator into a functional language as a function is the same
as looking for a way to fit the operator into the functional language as a first-class citizen.

89

The λBN language refines λ-M by adding constructs for marking and un-marking Closed terms,

replacing Run with a new construct called Safe-run, and by providing an explicit form of cross-stage

persistence for only closed values:

e ∈ E := c | x | λx.e | e e | 〈e〉 | ˜e | close e with {xi = ei|i ∈ m} | open e | safe run e | up e

The first production allows the use of any set of constants such as integers, strings, and so on.

The next three productions are the standard ones in a λ-calculus. Bracket and Escape are the

same as we have seen before. The Close-with construct will assert (when we have imposed a type

system on these terms) that e is closed except for a set of variables xi, each of which is bound to a

Closed term ei. Open allows us to forget the Closedness assertion on e. Safe-run executes a Closed

Code fragment and returns a Closed result. Finally, Up allows us to use any Closed expression at

a higher level, thus providing cross-stage persistence for Closed values.

5.7.1 Big-Step Semantics for λBN

The big-step semantics of λBN is very similar to that of λ-M, and is summarized in Figure 5.4.

The first two evaluation rules are those of evaluation in the λ language. The next rule says that

evaluating Bracketed expression is done by rebuilding the expression. The next two rules are new,

and specify the semantics of the Closedness annotations.

The evaluation rule for Close-with says that it first evaluates the expressions in the with-clause,

and then substitutes these results in place of the variables in the body of the Close-with. The result

of the substitution is then evaluated, and returned as the final result. The rule for Open says that

it simply evaluates its argument to get a Closed result, and returns that result. The next two rules

are also new, and specify the semantics of two new operations that exploit a useful interaction

between the Closed and Code types.

The definition for rebuilding is essentially the same as before, with level annotations being changed

only in the cases of Brackets and Escapes.

Note that this semantics does not explicitly specify any renaming on bound object-level variables

when we are rebuilding code. The capture-free substitution performed in the application rule takes

care of all the necessary renaming. For example, the expression

〈λx.˜((λz.〈λx.x+ ˜z〉)〈x〉)〉

evaluates at level 0 to:

〈λx.λy.y + x〉.

90

Syntax:

e ∈ E := c | x | λx.e | e e | 〈e〉 | ˜e | close e with {xi = ei|i ∈ m} | open e | safe run e | up e

Shorthands:

close e for close e with ∅
close e with xi = ei for close e with {xi = ei|i ∈ m}

Big-Step Rules at level 0 (Evaluation):

λx.e
0
↪→ λx.e

Lam
e1

0
↪→ λx.e e2

0
↪→ v1 e[x := v1]

0
↪→ v2

e1 e2
0
↪→ v2

App

e
1
↪→ v

〈e〉 0
↪→ 〈v〉

Brk

ei
0
↪→ vi e[xi := vi]

0
↪→ v

close e with xi = ei
0
↪→ close v

Clos
e

0
↪→ close v

open e
0
↪→ v

Opn

e
0
↪→ close 〈v′〉 v′

0
↪→ v

safe run e
0
↪→ close v

SRn
e

0
↪→ close v′

up e
1
↪→ close v′

Up

.

Big-Step Rules at level n+ 1 (Rebuilding):

c
n+
↪→ c

Const+

x
n+
↪→ x

Var+
e

n+
↪→ v

λx.e
n+
↪→ λx.v

Lam+
e1

n+
↪→ v1 e2

n+
↪→ v2

e1 e2
n+
↪→ v1 v2

App+

e
n++
↪→ v

〈e〉 n+
↪→ 〈v〉

Brk+
e

0
↪→ 〈v〉

˜e
1
↪→ v

Esc1
e

n+
↪→ v

˜e
n++
↪→ ˜v

Esc

ei
n+
↪→ vi

close e with xi = ei
n+
↪→ close e with xi = vi

Clo+
e

n+
↪→ v

open e
n+
↪→ open v

Opn+

e
n+
↪→ v

safe run e
n+
↪→ safe run v

SRn+
e

n+
↪→ v′

up e
n++
↪→ up v′

Up+

Fig. 5.4. The CBV Big-Step Semantics for λBN

91

Because capture-free substitution renames the bound variable when it goes inside a lambda, there

was no inadvertent capture of the variable x in the value 〈x〉 during substitution.

It is also worth noting that there is a rule for rebuilding constants, which says that they remain

unchanged. There are, however, no evaluation rules for Escapes, because Escapes are only intended

to occur inside Brackets, and are meaningless at level 0. When the language is extended with specific

constants (and specific rules for evaluating them), one will have to ensure that these rules do not

violate any properties (such as Type-Safety, for example).

5.7.2 Type System for λBN

Typing judgments for λBN have the form Γ `n e : τ , where Γ ∈ G and n is a natural number

called the level of the term. The level of the term is the number of Brackets surrounding this term

less the number of Escapes surrounding this term. Figure 5.5 summarizes the type system for λBN.

The rule for a constant says that it has the type associated with that constant. The next three

rules are essentially the same as before, but note that the variable rule no longer allows “implicit”

cross-stage persistence. Now, variables can only be used at the level at which they are bound. But

we will see how one of the rules allows us to achieve a restricted form of cross-stage persistence.

The next two rules are for Brackets and Escape, and are exactly the same as before. The next

two rules are new, and specify the typing of the Closedness annotations. The rule for Close-with

says it is typable if all the bindings in the with-clause are Closed, and the term in the body of

the Close-with is typable at level 0 assuming that all the variables in the with-clause are available

at level 0. In essence, this ensures that a Closed expression can only contain variables that are

themselves bound to Closed expressions. The rule for open simply forgets the Closed type. The rule

for Safe-run allows us to eliminate the Code type when it occurs under the Closed type. Finally,

the rule for Up allows us to lift any Closed value from any level to the next, thus providing us with

a limited form of cross-stage persistence: cross-stage persistence for Closed values.

5.7.3 Remark on Up, Covers, and Performance

It is worth noting that if we build an implementation along the lines of Chapter 4 for a language

that only has cross-stage persistence for Closed values, there should be no need for the covers

discussed in Section 4.5. In particular, cross-stage persistent constants in such an implementation

can never carry free variables. To see this claim, recall that:

1. covers are used to perform substitution on functional values,

92

Syntax:

e ∈ E := c | x | λx.e | e e | 〈e〉 | ˜e | close e with {xi = ei|i ∈ m} | open e | safe run e | up e

Types and Type Environments:

τ ∈ T := b | τ1 → τ2 | 〈τ〉 | [τ]
Γ ∈ D := [] | x : τn;Γ

Operations on Type Environments:

Γ+(x) ∆= τn+ where Γ (x) = τn

Type Rules:

Γ `n c : τc
Const

Γ (x) = τn

Γ `n x : τ
Var

Γ ;x : τn
1 `n e : τ2

Γ `n λx.e : (τ1 → τ2)
Lam

Γ `n e1 : (τ1 → τ2) Γ `n e2 : τ1
Γ `n e1 e2 : τ2

App

Γ `n+ e : τ
Γ `n 〈e〉 : 〈τ〉

Brk
Γ `n e : 〈τ〉
Γ `n+ ˜e : τ

Esc

Γ `n ei : [τi] {xi : [τi]
0|i ∈ m} `0 e : τ

Γ `n close e with xi = ei : [τ]
Clo

Γ `n e : [τ]

Γ `n open e : τ
Opn

Γ `n e : [〈τ〉]
Γ `n safe run e : [τ]

SRn
Γ `n e : [τ]

Γ `n+ up e : [τ]
Up

Fig. 5.5. The λBN Type System

93

2. functional values arise only inside cross-stage persistent constants,

3. Closed cross-stage persistent constants do not contain free variables.

For example, the puzzle term of Chapter 4

〈fn a ⇒ ˜((fn x ⇒ 〈x〉) (fn x ⇒ 〈a〉)) 0〉

is no longer acceptable by the type system, because a cross-stage persistent variable such as x in

the first lambda-abstraction must be of Closed type, and at the same time, a is a free variable in

the second lambda-abstraction and so the lambda-abstraction cannot have Closed type.

As covering involves adding an extra function composition and a latent traversal of code every time

a cross-stage persistent variable is evaluated (independently of whether it contains any hidden free-

variables or not), covering is a costly operation. The observations above also suggest that covering

can be avoided completely if we restrict cross-stage persistence to Closed values.

5.7.4 Basic Properties of Type System

We now present some technical lemmas for λBN needed to establish type-safety.

Lemma 5.7.1 (Weakening) ∀n,m ∈ N, e ∈ E,Γ ∈ D, τ, σ ∈ T.

Γ `n e : τ ∧ x 6∈ dom(Γ) ∧ x 6∈ FV(e) =⇒ Γ ;x : σm `n e : τ.

Proof. Same as for λ-M. ut

Lemma 5.7.2 (Substitution) ∀n,m ∈ N, e1, e2 ∈ E,Γ1, Γ2 ∈ D, τ, σ ∈ T.

Γ1, Γ2;x : σm `n e1 : τ ∧ Γ2 `m e2 : σ =⇒ Γ1, Γ2 `n e1[x := e2] : τ.

Proof. Same as Substitution for λ-M. ut

5.7.5 Type-Safety

The first set of rules that must be added to the big-step semantics is as follows:

x
0
↪→ err

VarErr
e1

0
↪→ e3 e3 6≡ λx.e

e1 e2
0
↪→ err

AppErr

e1
0
↪→ e2 e2 6≡ close v

open e1
0
↪→ err

OpnErr
e1

0
↪→ e2 e2 6≡ close 〈v〉

safe run e1
0
↪→ err

SRnErr

e1
0
↪→ e2 e2 6≡ close v

up e1
1
↪→ err

UpErr
e1

0
↪→ e2 e2 6≡ 〈v〉

˜e1
1
↪→ err

Esc1Err

.

Again, the propagation rules simply return an error if the result of a sub-computation is an error.

94

5.7.6 Basic Properties of Big-Step Semantics

Values for λBN are defined as follows:

v0 ∈ V 0 := λx.e | 〈v1〉 | close v0

v1 ∈ V 1 := c | x | v1 v1 | λx.v1 | 〈v2〉 | close e with xi = v1
i | open v1 | safe run v1

vn++ ∈ V n++ := c | x | vn++ vn++ | λx.vn++ | 〈vn+++〉 | ˜vn+ |

up vn+ | close e with xi = vn++
i | open vn++ | safe run vn++

Lemma 5.7.3 (Values) ∀n ∈ N.

1. v ∈ V n =⇒ v ∈ V n+

2. ∀e, e′ ∈ En. e
n
↪→ e′ =⇒ e′ ∈ (V n ∪ {err})

Proof. Just as for λ-M. ut

The key property to establish for λBN is that a value produced by evaluating an expression of

Closed type will actually be a closed value. The following lemma formalizes this claim by saying

that a value of Closed type is typable under the empty environment:

Lemma 5.7.4 (Closedness) ∀v ∈ V 0, Γ ∈ D, τ ∈ T.

Γ `0 v : [τ] =⇒ ∅ `0 v : [τ].

Proof. Immediate from the definition of values. ut

Lemma 5.7.5 (Strong Value Reflection for Typed Terms) ∀n ∈ N, Γ ∈ D, τ ∈ T, v ∈
V n+, e ∈ En.

1. Γ+ `n+ v : τ =⇒ Γ `n v : τ ,
2. Γ `n e : τ =⇒ (Γ+ `n+ e : τ ∧ e ∈ V n+).

Proof. Just as for λ-M. ut

Theorem 5.7.6 (Type Preservation for CBV λBN) ∀n ∈ N, e ∈ E,Γ ∈ D, τ ∈ T. v ∈ V n

Γ+ `n e : τ ∧ e n
↪→ v =⇒ Γ+ `n v : τ.

Proof. By induction on the derivation of e
n
↪→ v. The case for application uses Substitution. The

case for Up involves Closedness, Reflection, and Weakening, in addition to applying the induction

hypothesis. The case for Safe-run involves Reflection. ut

Theorem 5.7.7 (Type-Safety for CBV λBN) ∀n ∈ N, e ∈ E,Γ ∈ D, τ ∈ T.∀v ∈ V n.

Γ+ `n e : τ ∧ e n
↪→ v =⇒ v 6≡ err.

Proof. Follows directly from Type Preservation. ut

95

5.7.7 CBN λBN

As for λ-M, the difference between the CBN semantics and the CBV semantics for λBN is only in

the evaluation rule for application at level 0. For CBN, the application rule becomes

e1
0
↪→ λx.e e[x := e2]

0
↪→ v

e1 e2
0
↪→ v

App–CBN

Again, the Type Preservation proof need only be changed for the application case.

Theorem 5.7.8 (Type Preservation for CBV λBN) ∀n ∈ N,∀e ∈ E,Γ ∈ D, τ ∈ T. v ∈ V n

Γ+ `n e : τ ∧ e n
↪→ v =⇒ Γ+ `n v : τ.

Theorem 5.7.9 (Type-Safety for CBN λBN) ∀n ∈ N, e ∈ E,Γ ∈ D, τ ∈ T.∀v ∈ V n.

Γ+ `n e : τ ∧ e n
↪→ v =⇒ v 6≡ err.

5.8 Refining the Types

The crucial insight presented in this chapter is that there are useful type systems where a function

safe run : [〈A〉] → [A] exists. Safe-run has the same operational behavior that unsafe run was

intended to achieve, namely running code. The difference is only in the typing of this function. In a

nutshell, safe run allows the programmer to exploit the fact that closed code can be safely executed.

5.8.1 Refining the Method

We propose a refinement of multi-stage programming with explicit assertions about closedness,

and where these assertions are checked by the type system:

1. Write the conventional program (exactly the same as before)

program : tS → tD → t.

2. Add staging and Closedness annotations to the program to achieve

closed annotated program : [tS → 〈tD〉 → 〈t〉].

Almost the same as before. The difference is that the programmer must now use the Closed

type constructor [] to demonstrate to the type system that the annotated program does not

introduce any “free dynamic variables”. This new requirement means that, in constructing the

annotated program, the programmer will only be allowed to use Closed values.

96

3. Compose the annotated program with an unfolding combinator to get

closed code generator : [tS → 〈tD → t〉].

Now back must itself be Closed if we are to use it inside a Closed value, that is, we use a

slightly different combinator closed back : [(〈A〉 → 〈B〉)→ 〈A→ B〉]

4. Turn the Closed code-generator into

generator of closed code : [tS]→ [〈tD → t〉].

This new program is exhibited by applying a combinator closed apply : [A→ B]→ [A]→ [B].

5. Construct or read the static inputs as Closed values:

cs : [tS]

This step is similar to multi-stage programming with explicit annotations. However, requiring

the input to be Closed is much more specific than in the original method. Thus, we now have

to make sure that all combinators used in constructing this value are themselves Closed.

6. Apply the code generator to the static inputs to get

closed specialized code : [〈tD → t〉].

7. Run the result above to get:

closed specialized program : [tD → t].

This step exploits an interaction between the Closed and Code types in our type system. The

step is performed by applying a function safe run : [〈A〉]→ [A].

8. Forget that the specialized program is Closed:

specialized program : tD → t.

The step is performed by applying a function open:[A]→ A.

The full development of various multi-stage programming examples from previous chapter can be

expressed in λBN.

5.9 Staging the Power Function Revisited

Recall the power function that we staged in Section 2.5:

97

fun exp (n,x) = (* : int × real → real *)

if n = 0 then 1.0

else if even n then sqr (exp (n div 2,x))

else x * exp (n - 1,x).

Staging this function in λBN is essentially the same as staging it in MetaML. The difference is that

we surround the MetaML-style staged function with Closedness annotations. We use Close-with

to mark a term as Closed, and we use Open to “forget” the Closedness of the free variables that

we wish to use in defining the Closed term. Thus, the program is annotated as follows:

val exp” = (* : [int × 〈real〉 → 〈real〉] *)

close let val even = open even” (* : int → bool *)

val sqr’ = open sqr” (* : 〈real〉 → 〈real〉 *)

fun exp’ (n,x) = (* : int × 〈real〉 → 〈real〉 *)

if n = 0 then 〈1.0〉
else if even n then sqr’ (exp’ (n div 2,x))

else 〈˜x * ˜(exp’ (n - 1,x))〉;
in exp’ end

with even” = even”, sqr” = sqr”.

where even” and sqr” are versions of the even and the sqr’ functions Closed in the same manner as

above6. For example, sqr” is defined as:

val sqr” = (* : [〈real〉 → 〈real〉] *)

close let fun sqr’ x = (* : 〈real〉 → 〈real〉 *)

〈let val y = ˜x in y * y end〉;
in sqr’ end.

Note that the fun exp’ part of the val exp” declaration is exactly the text for the exp function

staged in MetaML. (See Section 2.5.)

In general, we have to explicitly Close all values that we wish to use in constructing a bigger Closed

value, with the exception of primitive operations. Programs produced in this way are somewhat

verbose, but we believe that this problem can be alleviated by a careful separation of Closed and

non-Closed values in the environment. The study of this separation is left for future work.

6 The operationally unnecessary re-binding with even” = even”, sqr” = sqr” is needed for type-checking
(see type system). Operationally, it is no different from writing (λy.(λx.e)) y x.

98

5.10 The Refined Method is Intuitively Appealing

MetaML’s original type system (Section 4.1.2) has one Code type constructor, which tries to

combine the features of open and closed code type constructors: The constructor was supposed

to allow us to “evaluate under lambda” (thus work with open code) and to run code (for which

it must be closed). This combination leads to the typing problem discussed in Section 4.4.2. In

contrast, λBN’s type system incorporates separate open-code and closed-value type constructors,

thereby providing correct semantics for the following natural and desirable functions:

1. open : [τ] → τ . This function allows us to forget the Closedness of its argument. The λBN

language has no function of the inverse type τ → [τ].

2. up : [τ]→ 〈[τ]〉. This function corresponds to cross-stage persistence for Closed values. In fact,

it embeds any Closed value into a code fragment, including values of functional type. Such a

function does not exist in λ© [22]. At the same time, λBN has no function of the inverse type

〈[τ]〉 → [τ], reflecting the fact that there is no general way of going backwards.

3. safe run : [〈τ〉]→ [τ]. This function allows us to execute a Closed piece of code to get a Closed

value. It can be viewed as the essence of the interaction between the Bracket and the Closed

types.

Chapter 6

Reduction Semantics

I am the one who was seduced by The Impossible.

I saw the moon, I jumped high, high in the sky.

Reached it — or not; what do I care?

Now that my heart was quenched with joy!

Quatrians, Salah Jaheen

In this chapter we begin by explaining why defining a reduction semantics for MetaML is challeng-

ing. We then present a strikingly simple reduction semantics for MetaML that is confluent, and is

sound with respect to the big-step semantics.

This chapter presents new results on the untyped semantics of multi-stage programming languages.

6.1 A Reduction Semantics for CBN and CBV λ

A formal semantics, in general, provides us with a means for going from arbitrary expressions

to values, with the provision that certain expressions may not have a corresponding value. An

important conceptual tool for the study of a programming language is a reduction semantics. A

reduction semantics is a set of rewrite rules that formalize the “notions of reduction” for a given

language. Having such a semantics can be useful in developing an equational theory1. We will first

review how this semantics can be specified for the λ language of Section 4.1.2.

1 In our experience, it has also been the case that studying such a semantics has helped us in developing
the first type system presented in Chapter 5. It is likely that a reduction semantics can be helpful in
developing a type system. In particular, an important property of an appropriate type system is that it
should remain invariant under reductions (Subject Reduction). Because reduction semantics are often
simple, they can help language designers eliminate many inappropriate type systems.

99

100

Recall that the set of expressions and the set of values for the λ language can be defined as follows:

e ∈ E := i | x | λx.e | e e

v ∈ V := i | λx.e.

In order, the productions for expressions are for integers, lambda abstractions, and applications.

Values for this language are integers and lambda-abstractions.

Intuitively, expressions are “commands” or “computations”, and values are the “answers”, “ac-

ceptable results” or simply “expressions that require no further evaluation”. Note that we allow

any value to be used as an expression with no computational content. In order to build a mech-

anism for going from expressions to values, we need to specify a formal rule for eliminating both

variables and applications from a program. In a reduction semantics, (see for example Barendregt

[1]) this elimination process is specified by introducing rewrite rules called “notions of reduction”.

The well-known β rule helps us eliminate both applications and variables at the same time:

(λx.e1) e2 −→β e1[x := e2].

This rule says that the application of a lambda-abstraction to an expression can be simplified to

the substitution the expression into the body of the lambda-abstraction. The CBN semantics is

based on this rule. A similar rule is used for CBV:

(λx.e) v −→βv e[x := v],

where the argument is restricted to be a CBV value2, thus forcing it be evaluated before it is

passed to the function. The MetaML implementation is CBV, but we will simply use β in the rest

of this chapter, emphasizing the applicability of the work to a CBN language3.

Using the β rule, we build a new relation −→ (with no subscript) that allows us to perform

this rewrite on any subexpressions. (See for example Section 3.1.) More formally, for any two

expressions C[e] and C[e′] which are identical everywhere but in exactly one hole filled with e and

e′, respectively, we can say:

e −→β e
′ =⇒ C[e] −→ C[e′]

When there is more than one rule in our reduction semantics, the left hand side of this condition

is the disjunction of the rewrites from e to e′ using any of the rules in our rewrite system. Thus

2 CBV values are slightly different from CBN values, most notably, in that CBV values typically include
variables also. Note also that this distinction only arises for reduction semantics, and not for big-step
semantics.

3 It should be noted that, due to time limitations, we have only formally verified confluence and soundness
for CBN MetaML, and not for CBV MetaML. However, we expect these properties to hold.

101

the relation −→ holds between any two terms if exactly one of their subterms is rewritten using

any of the rules in our reduction semantics.

6.1.1 Coherence and Confluence

Two important concepts that will be central to this chapter are coherence and confluence (For

confluence, see for example Barendregt [1]). Recall from Section 3.1 that a term-rewriting system

is non-deterministic. Therefore, depending on the order in which we apply the rules, we might get

different results. When this is the case, our semantics could reduce a program e to either 0 or 1.

We say a reduction semantics is coherent when any path that leads to a ground value leads to

the same ground value. A semantics that lacks coherence is not satisfactory for a deterministic

programming language.

Intuitively, knowing that a rewriting system is confluent tells us that the reductions can be applied

in any order, without affecting the set of results that we can reach by applying more reductions.

Thus, confluence of a term-rewriting system is a way of ensuring coherence. Conversely, if we lose

coherence, we lose confluence.

We now turn to the problem of how to extend the reduction semantics of λ to a multi-stage

language.

6.2 Extending the Reduction Semantics for λ

A first attempt at extending the set of expressions and values of λ to incorporate the basic staging

constructs of MetaML yields the following set of expressions and values:

e ∈ E := i | x | λx.e | e e | 〈e〉 | ˜e | run e,

and we add the following two rules to the β rule:

˜〈e〉 −→E e

run 〈e〉 −→R e.

But there are several reasons why this naive approach is unsatisfactory. In the rest of this chapter,

we will explain the problems with this approach, and explore the space of possible improvements

to this semantics.

6.3 Intensional Analysis Conflicts with β on Raw MetaML Terms

Our first observation is that there is a conflict between the β rule and supporting intensional

analysis. Support for intensional analysis means adding constructs to MetaML that would allow a

102

program to inspect a piece of code, and possibly change its execution based on either the structure

or content of that piece of code. This conflict is an example of a high-level insight that resulted

from studying the formal semantics of MetaML. In particular, MetaML was developed as a meta-

programming language, and while multi-stage programming does not need to concern itself with

how the code type is represented, the long-term goals of the MetaML project have at one time

included support for intensional analysis. The idea is that intensional analysis could be used, for

example, to allow programers to write their own optimizers for code.

It turns out that such intensional analysis is in direct contention with allowing the β-rule on

object-code (that is, at levels higher than 0). To illustrate the interaction between the β rule and

intensional analysis, assume that we have a minimal extension to core MetaML that tests a piece

of code to see if it is an application. This extension can be achieved using a simple hypothetical

construct with the following semantics:

-| IsApp 〈(fn x ⇒ x) (fn y ⇒ y)〉;
val it = true : bool.

Allowing β on object-code then means that 〈(fn x ⇒ x) (fn y ⇒ y)〉 can be replaced by 〈fn y

⇒ y〉. Such a reduction could be performed by an optimizing compiler, and could be justifiable,

because it eliminates a function call in the object-program. But such an “optimization” would have

a devastating effect on the semantics of MetaML. In particular, it would also allow our language

to behave as follows:

-| IsApp 〈(fn x ⇒ x) (fn y ⇒ y)〉;
val it = false : bool.

When the reduction is performed, the argument to IsApp is no longer an application, but simply

the lambda term 〈fn y⇒ y〉. In other words, allowing both intensional analysis and object-program

optimization implies that we can get the result false just as well as we can get the result true. This

example illustrates a problem of coherence of MetaML’s semantics with the presence of β reduction

at higher levels, and code inspection. While this issue is what first drew our attention to the care

needed in specifying what equalities should hold in MetaML, there are more subtle concerns that

are of direct relevance to multi-stage programming, even in the absence of intensional analysis.

6.4 Level-Annotated MetaML Terms and Expression Families

In order to control the applicability of the β at various levels, we developed the notion of level-

annotated terms. Level-annotated terms carry around a natural number at the leaves to reflect the

103

level of the term. Such terms keep track of meta-level information (the level of a subterm) in the

terms themselves, so as to give us finer control over where different reductions are applicable.

Level-annotated terms induce an infinite family of sets E0, E1, E2, ... where each annotated term

lives. The family of level-annotated expressions and values is defined as follows:

e0 ∈ E0 := i0 | x0 | λx.e0 | e0e0 | 〈e1〉 | run e0

en+ ∈ En+ := in+ | xn+ | λx.en+ | en+en+ | 〈en++〉 | ˜en | run en+

v0 ∈ V 0 := i0 | λx.e0 | 〈v1〉

v1 ∈ V 1 := i1 | x1 | λx.v1 | v1v1 | 〈v2〉 | run v1

vn++ ∈ V n++ := in++ | xn++ | λx.vn++ | vn++vn++ | λx.vn++ | 〈vn+++〉 | ˜vn+ | run vn++.

The key difference between level-annotated terms and raw terms is in the “leaves”, namely, the

variables and integers. In level-annotated terms, variables and integers explicitly carry around a

natural number that represents their level. For all other constructs, we can simply infer the level

of the whole term by looking at the subterm. For Brackets and Escapes, the obvious “correction”

to levels is performed.

Note that whenever we “go inside” a Bracket or an Escape, the index of the expression set is

changed in accordance with the way the level changes when we “go inside” a Bracket or an Escape.

6.5 Escapes Conflict with β on Annotated MetaML terms

There is a problematic interaction between the β rule at higher levels and Escape. In particular, β

does not preserve the syntactic categories of level annotated terms. Consider the following term:

〈(fn x ⇒ ˜x0) ˜〈40〉〉.

The level of the whole term is 0. If we allow the β rule at higher levels, this term can be reduced

to:

〈˜˜〈40〉〉.

This result contains two nested Escapes. Thus, the level of the whole term can no longer be 0.

The outer Escape corresponds to the Bracket, but what about the inner Escape? Originally, it

corresponded to the same Bracket, but after the β reduction, what we get is an expression that

cannot be read in the same manner as the original term.

104

6.6 Substitution Conflicts with β on Level 0 Annotated Terms

One possibility for avoiding the problem above is to limit β to level 0 terms:

(λx.e01) e
0
2 −→β e

0
1[x := e02].

At first, this approach seems appealing because it makes the extension of MetaML with code

inspection operations less problematic. But consider the following term:

(fn x ⇒ 〈x1〉) (fn y ⇒ (fn x ⇒ x0) 50).

There are two possible β reductions at level 0 in this term. The first is the outermost application,

and the second is the application inside the argument. If we do the first application, we get the

following result:

〈fn y ⇒ (fn x ⇒ x1) 51〉.

The level annotations need to be adjusted after substitution. (See Section A.1.1.) But first note

that there are no β reductions at level 0 left in this term. If we do the second application first, we

get

(fn x ⇒ 〈x1〉) (fn y ⇒ 50).

and then we can still go back and perform the outermost application to get:

〈fn y ⇒ 51〉.

Again, in the presence of code inspection, this example illustrates an incoherence problem. But

even in the absence of code inspection, we still lose the confluence of our reductions, despite the fact

that we have sacrificed β reductions at higher-levels. Intuitively, the example above illustrates that

cross-stage persistence arises naturally in untyped MetaML terms, and that cross-stage persistence

makes it hard to limit β to level 0 in a consistent (that is, confluent) way. In the example above,

applying the lift-like term fn x⇒ 〈x〉 to a function causes all the redices in the body of that function

to be frozen.

105

6.7 A Reduction Semantics for CBN λ-U

No Nightingale did ever chaunt

More welcome notes to weary bands

Of travellers in some shady haunt,

Among Arabian sands:

A voice so thrilling ne’er was heard

In spring-time from the Cuckoo-bird,

Breaking the silence of the seas

Among the farthest Hebrides.

The Solitary Reaper, William Wordsworth

The syntax of λ-U consists of the set of raw expressions and values defined as follows:

e0 ∈ E0 := v | x | e0 e0 | 〈e1〉 | run e0

en+ ∈ En+ := 〈en〉 | i | x | en+ en+ | λx.en+ | 〈en++〉 | ˜en | run en+

v ∈ V := i | λx.e0 | 〈e0〉.

The essential subtlety in this definition is in the last production in the set of values: Inside the

Brackets of a code value, what is needed is simply an expression of level 0.

The CBN notions of reduction of λ-U are simply:

(λx.e01) e
0
2 −→βU

e01[x := e02]

˜〈e0〉 −→EU
e0

run 〈e0〉 −→RU
e0.

Just like the rules for λ, these rules are intended to be applied in any context. This calculus allows

us to apply the β rule to any expression that looks like a level 0 application. By restricting the

body of the lambda term and its argument to be in E0, the λ-U language avoids the conflict

between Escapes and β that we discussed earlier on in this chapter, because level 0 terms are free

of top-level Escapes.

6.7.1 Subject Reduction

Figure 6.1 summarizes the language CBN λ-U that we present and study in this section. Note

that CBN λ-U also enjoys the cleanliness of being defined in terms of the standard notion of

substitution.

It is fairly straightforward to establish that λ-U preserves typability, where the notion of typing is

that of the type system presented in Section 5.3:

106

Syntax:

e0 ∈ E0 := v | x | e0 e0 | 〈e1〉 | run e0

en+ ∈ En+ := 〈en〉 | i | x | en+ en+ | λx.en+ | 〈en++〉 | ˜en | run en+

v ∈ V := i | λx.e0 | 〈e0〉

Reductions:

(λx.e01) e
0
2 −→βU

e01[x := e02]
˜〈e0〉 −→EU

e0

run 〈e0〉 −→RU
e0

Fig. 6.1. The CBN λ-U Language

Theorem 6.7.1 (Subject Reduction for CBN λ-U) ∀n ∈ N, Γ ∈ D, τ ∈ T.∀e1, e2 ∈ En.

Γ `n e1 : τ ∧ e1 −→ e2 =⇒ Γ `n e2 : τ.

Proof. The proof builds on the basic properties of the type system that we have already established

in Chapter 5. There are only three cases that need to be considered:

– e3, e4 ∈ E0 and e1 = (λx.e3) e4 −→ e3[x := e4] = e2. Then by ∈ E0 we know that e1 ∈ E0.

We are given Γ `n (λx.e3) e4 : τ . Then, by typing, we know Γ `n e4 : σ and Γ `n (λx.e3) :

σ → τ . Again, by typing, we also know Γ ;x : σn `n e3 : τ . By substitution we know that

Γ `n e3[x := e4] : τ and we are done.

– e3 ∈ E0 and e1 ≡ run 〈e3〉 −→ e3 ≡ e2. We are given Γ `n run 〈e3〉 : τ . By typing we get

Γ+ `n 〈e3〉 : 〈τ〉, and then Γ+ `n+ e3 : τ . By persistence of typability we get Γ `n e3 : τ and

we are done.

– e3 ∈ E0 and e1 ≡ run 〈e3〉 −→ e3 ≡ e2. We are given Γ `n+ ˜〈e3〉 : τ . By typing we get

Γ `n 〈e3〉 : 〈τ〉, and then Γ `n+ e3 : τ and we are done.

ut

6.8 Confluence

Establishing the confluence property in the presence of the β rule can be involved, largely because

substitution can duplicate redices, and establishing that these redices are not affected by substitu-

tion can be non-trivial. Barendregt presents a number of different ways for proving confluence, and

discusses their relative merits [1]. Recently, Takahashi has produced a concise yet highly rigorous

technique for proving confluence, and demonstrated its application in a variety of settings, includ-

ing proving some subtle properties of reduction systems such as standardization [96]. The basic

idea that Takahashi promotes is the use of an explicit notion of a parallel reduction. While the idea

107

goes back to the original and classic (yet unpublished) works of Tait and Martin-Löf, Takahashi

emphasizes that the rather verbose notion of residuals (see Barendregt [1], for example,) can be

completely avoided.

In this section, we present a proof of the confluence of CBN λ-U that follows closely the development

in the introduction to Takahashi’s paper. The CBN reductions of λ-U do not introduce any notable

complications to the proof, and it is as simple, concise, and rigorous as the one presented by

Takahashi.

Definition 6.8.1 (Context) A Context is an expression with exactly one hole [].

C ∈ C := [] | λx.C | C e | eC | 〈C〉 | ˜C | run C.

We write C[e] for the expression resulting from replacing (“filling”) the hole [] in the context C

with the expression e.

Lemma 6.8.2 (Basic Property of Contexts) ∀C ∈ C.∀e ∈ E.

C[e] ∈ E.

Proof. By an induction on the derivation of C ∈ C. ut

Remark 6.8.3 Filling a hole in a context can involve variable capture, in the sense that given

C ≡ λx.[], C[x] ≡ λx.x, and the binding occurrence of x in C is not renamed.

Definition 6.8.4 (Parallel Reduction) The parallel reduction relation � ⊆ E×E is defined

as follows:

1.
x� x

2.
e1 � e2

λx.e1 � λx.e2

3.
e1 � e3 e2 � e4

e1e2 � e3e4

4.
e01 � e3 e02 � e04

(λx.e01)e
0
2 � e3[x := e04]

5.
e1 � e2

〈e1〉 � 〈e2〉

6.
e1 � e2

˜e1 � ˜e2

108

7.
e01 � e02

˜〈e01〉 � e02

8.
e1 � e2

run e1 � run e2

9.
e01 � e02

run 〈e01〉 � e02
.

Remark 6.8.5 (Idempotence) By ignoring rules 4,7, and 9 in the definition above, it is easy

to see that e� e.

Lemma 6.8.6 (Parallel Reduction Properties) ∀e1 ∈ E.

1. ∀e2 ∈ E. e1 −→ e2 =⇒ e1 � e2

2. ∀e2 ∈ E. e1 � e2 =⇒ e1 −→∗ e2

3. ∀e3 ∈ E. e2, e4 ∈ E0. e1 � e3, e
0
2 � e04 =⇒ e1[y := e02]� e3[y := e04].

Proof. The first is proved by induction on the context of the redex, and the second and third by

induction on e1. ut

Remark 6.8.7 From 1 and 2 above we can see that that �∗=−→∗.

The Church-Rosser theorem [1] for −→ follows from Takahashi’s property [96]. The statement of

Takahashi’s property uses the following notion.

Definition 6.8.8 (Star Reduction) The star reduction function ∗ : E → E is defined as fol-

lows:

1. x∗ ≡ x
2. (λx.e1)∗ ≡ λx.e∗1
3. (e1e2)∗ ≡ e∗1e∗2 if e1e2 6≡ (λx.e03)e

0
4

4. ((λx.e01)e
0
2)
∗ ≡ (e01)

∗[x := (e02)
∗]

5. 〈e1〉∗ ≡ 〈e∗1〉
6. (˜e1)∗ ≡ ˜(e∗1) if ˜e1 6≡ ˜〈e02〉
7. (˜〈e01〉)∗ ≡ (e01)

∗

8. (run e1)∗ ≡ run (e∗1) if run e1 6≡ run 〈e02〉
9. (run 〈e01〉)∗ ≡ (e01)

∗.

Remark 6.8.9 By a simple induction on e, we can see that e� e∗.

Theorem 6.8.10 (Takahashi’s Property) ∀e1, e2 ∈ E.

e1 � e2 =⇒ e2 � e∗1.

109

Proof. By induction on e1. ut

The following two results then follow in sequence:

Notation 6.8.11 (Relation Composition) For any two relations ⊕ and ⊗, we write a⊕ b⊗ c
as a shorthand for (a⊕ b) ∧ (b⊗ c).

Lemma 6.8.12 (Parallel Reduction is Diamond) ∀e1, e, e2 ∈ E.

e1 � e� e2 =⇒ (∃e′ ∈ E. e1 � e′ � e2).

Proof. Take e′ = e∗ and use Takahashi’s property. ut

Theorem 6.8.13 (CBN λ-U is Confluent) ∀e1, e, e2 ∈ E.

e1 ←−∗ e −→∗ e2 =⇒ (∃e′ ∈ E. e1 −→∗ e′ ←−∗ e2).

6.9 The Soundness of CBN λ-U Reductions under CBN λ-M Big-Steps

In this section, we show that CBN λ-U reductions preserve observational equivalence4, where our

notion of observation is simply the termination behavior of the level 0 λ-M big-step evaluation.

Recall from Chapter 5, Figure 5.3, that the CBN λ-M semantics is specified by a partial function
n
↪→ : En → En as follows:

i
n
↪→ i

Int
λx.e

0
↪→ λx.e

Lam

e1
0
↪→ λx.e

e[x := e2]
0
↪→ e3

e1 e2
0
↪→ e3

App

e1
0
↪→ 〈e2〉 e2

0
↪→ e3

run e1
0
↪→ e3

Run
x

n+
↪→ x

Var+
e1

n+
↪→ e3 e2

n+
↪→ e4

e1 e2
n+
↪→ e3 e4

App+

e1
n+
↪→ e2

λx.e1
n+
↪→ λx.e2

Lam+
e1

n+
↪→ e2

〈e1〉
n
↪→ 〈e2〉

Brk
e1

n+
↪→ e2

run e1
n+
↪→ run e2

Run+

e1
n+
↪→ e2

˜e1
n++
↪→ ˜e2

Esc++
e1

0
↪→ 〈e2〉

˜e1
1
↪→ e2

Esc.

4 A reduction semantics for a lambda calculus is generally not “equal” to a big-step semantics. For example,
the reduction semantics for the lambda calculus can do “reductions under lambda”, and the big-step
semantics generally does not. The reader is referred to textbooks on the semantics for more detailed
discussions [50, 103].

110

Definition 6.9.1 (Level 0 Termination) ∀e ∈ E0.

e⇓ ∆= (∃v ∈ V 0. e
0
↪→ v).

Definition 6.9.2 (Observational Equivalence) We define ≈n∈ En × En as follows: ∀n ∈
N.∀e1, e2 ∈ En.

e1 ≈n e2
∆= ∀C ∈ C. C[e1], C[e2] ∈ E0 =⇒ (C[e1]⇓ ⇐⇒ C[e2]⇓).

Remark 6.9.3 The definition says that two terms are observationally equivalent exactly when they

can be interchanged in every level 0 term without affecting the level 0 termination behavior of the

term.

Notation 6.9.4 We will drop the U subscript from −→U in the rest of this chapter.

Theorem 6.9.5 (CBN λ-U Reduction is Sound under λ-M Big-Steps) ∀n ∈ N.∀e1, e2 ∈
En.

e1 −→ e2 =⇒ e1 ≈n e2.

Proof. By the definition of ≈n, to prove our goal

∀n ∈ N.∀e1, e2 ∈ En. e1 −→ e2 =⇒ e1 ≈n e2

is to prove

∀n ∈ N, C ∈ C.∀e1, e2 ∈ En. e1 −→ e2 ∧ C[e1], C[e2] ∈ E0 =⇒ (C[e1]⇓ ⇐⇒ C[e2]⇓).

Noting that by the compatibility of −→, we know that ∀n ∈ N, C ∈ C.∀e1, e2 ∈ En. e1 −→ e2 =⇒
C[e1] −→ C[e2], it is sufficient to prove a stronger statement:

∀n ∈ N, C ∈ C.∀e1, e2 ∈ En. C[e1] −→ C[e2] ∧ C[e1], C[e2] ∈ E0 =⇒ (C[e1]⇓ ⇐⇒ C[e2]⇓).

Noting further that ∀n ∈ N, C ∈ C.∀a, b ∈ En. a ≡ C[b] ∈ E0 =⇒ a ∈ E0, it is sufficient to prove

an even stronger statement:

∀e1, e2 ∈ E0. e1 −→ e2 =⇒ (e1⇓ ⇐⇒ e2⇓).

This goal can be broken down into two parts:

S1

∀e1, e2 ∈ E0. e1 −→ e2 =⇒ (e1⇓ =⇒ e2⇓),

and

111

S2

∀e1, e2 ∈ E0. e1 −→ e2 =⇒ (e2⇓ =⇒ e1⇓).

Let us consider S1. By definition of termination, it says:

∀e1, e2 ∈ E0. e1 −→ e2 =⇒ ((∃v ∈ V 0. e1
0
↪→ v) =⇒ (∃v ∈ V 0. e2

0
↪→ v)).

We will show that big-step evaluation is included in reduction (Lemma 6.9.6). Thus, to prove S2

it is enough to prove:

∀e1, e2 ∈ E0. e1 −→ e2 =⇒ ((∃v ∈ V 0. e1 −→∗ v) =⇒ (∃v ∈ V 0. e2
0
↪→ v)).

Confluence (Theorem 6.8.13) tell us that any two reduction paths are joinable, so we can weaken

our goal as follows:

∀e1, e2 ∈ E0. e1 −→ e2 =⇒ ((∃v ∈ V 0, e3 ∈ E. e1 −→∗ v −→∗ e3 ∧ e2 −→∗ e3) =⇒ (∃v ∈ V 0. e2
0
↪→ v))

We will show (Lemmas 6.9.15 and Remark 6.8.7) that any reduction that starts from a value can

only lead to a value (at the same level). Thus we can weaken further:

∀e1, e2 ∈ E0. e1 −→ e2 =⇒ ((∃v, v3 ∈ V 0. e1 −→∗ v −→∗ v3 ∧ e2 −→∗ v3) =⇒ (∃v ∈ V 0. e2
0
↪→ v))

In other words, we already know that e2 reduces to a value, and the question is really whether it

evaluates to a value. Formally:

∀e1, e2 ∈ E0. e1 −→ e2 =⇒ ((∃v3 ∈ V 0. e2 −→∗ v3) =⇒ (∃v ∈ V 0. e2
0
↪→ v)).

In fact, the original assumption is no longer necessary, and we will prove:

T1

∀e2 ∈ E0. ((∃v3 ∈ V 0. e2 −→∗ v3) =⇒ (∃v ∈ V 0. e2
0
↪→ v)).

Now consider S2. By definition of termination, it says:

∀e1, e2 ∈ E0. e1 −→ e2 =⇒ ((∃v ∈ V 0. e2
0
↪→ v) =⇒ (∃v ∈ V 0. e1

0
↪→ v)).

Again, by the inclusion of evaluation in reduction, we can weaken:

∀e1, e2 ∈ E0. e1 −→ e2 =⇒ ((∃v ∈ V 0. e2 −→∗ v) =⇒ (∃v ∈ V 0. e1
0
↪→ v)).

Given the first assumption in this statement we can also say:

∀e1, e2 ∈ E0. e1 −→ e2 =⇒ ((∃v ∈ V 0. e1 −→∗ v) =⇒ (∃v ∈ V 0. e1
0
↪→ v)),

and we no longer need the assumption as it is sufficient to show:

112

T2

∀e1 ∈ E0. ((∃v ∈ V 0. e1 −→∗ v) =⇒ (∃v ∈ V 0. e1
0
↪→ v)).

But note that T1 and T2 are identical goals. They state:

T

∀e ∈ E0. ((∃v ∈ V 0. e −→∗ v) =⇒ (∃v ∈ V 0. e
0
↪→ v)).

This statement is a direct consequence of Lemma 6.9.7. ut

It is easy to show that e0
0
↪→ v =⇒ e0 −→∗ v, as it follows directly from the following result:

Lemma 6.9.6 (CBN λ-M is in CBN λ-U) ∀n ∈ N.∀e ∈ En, v ∈ V n.

e
n
↪→ v =⇒ e −→∗ v.

Proof. By a straightforward induction on the height of the judgement e
n
↪→ v. ut

What is harder to show is the “converse”, that is, that e0 −→∗ v =⇒ (∃v′ ∈ V 0.e0
0
↪→ v′). It is a

consequence of the following stronger result:

Lemma 6.9.7 (CBN λ-U is in CBN λ-M) ∀e ∈ E0, v1 ∈ V 0.

e −→∗ v1 =⇒ (∃v3 ∈ V 0. e
0
↪→ v3 −→∗ v1).

Proof. We arrive at this result by an adaptation of Plotkin’s proof for a similar result for the CBV

and CBN lambda calculi [68]. The main steps in the development are:

1. We strengthen our goal to become:

e −→∗ v1 =⇒ (∃v3 ∈ V 0. e
0
↪→ v3 −→∗ v1).

2. We define a left reduction function n7−→ (Definition 6.9.10) such that (Lemma 6.9.13): ∀e ∈
E0, v ∈ V 0.

e
07−→
∗
v ⇐⇒ e

0
↪→ v

and ∀e1, e2 ∈ E0. e1
07−→ e2 =⇒ e1 −→ e2 (Lemma 6.9.12). Thus, big-step evaluation (or

simply evaluation) is exactly a chain of left reductions that ends in a value.

3. Our goal is restated as:

e −→∗ v1 =⇒ (∃v3 ∈ V 0. e
07−→
∗
v3 −→∗ v1).

113

4. For technical reasons, the proofs are simpler if we use a parallel reduction relation � (Defini-

tion 6.9.14) similar to the one introduced in the last section. Our goal is once again restated

as:

e�∗
v1 =⇒ (∃v3 ∈ V 0. e

07−→
∗
v3 �

∗
v1).

5. The left reduction function induces a very fine classification on terms (Definition 6.9.8). In

particular, any term e ∈ En must be exactly one of the following three (Lemma 6.9.9):
(a) a value e ∈ V n,
(b) a workable e ∈Wn, or
(c) a stuck e ∈ Sn,
where membership in each of these three sets is defined inductively over the structure of the

term. We write vn, wn and sn to refer to a member of one of the three sets above, respec-

tively. Left reduction at level n is a total function exactly on the members of the set Wn

(Lemma 6.9.11). Thus, left reduction is strictly undefined on non-workables, that is, it is un-

defined on values and on stuck terms. Furthermore, if the result of any parallel reduction is a

value, the source must have been either a value or a workable (Lemma 6.9.15). We will refer

to this property of parallel reduction as monotonicity.
6. Using the above classification, we break our goal into two cases, depending on whether the

starting point is a value or a workable:
G1 ∀v1, v ∈ V 0.

v �∗
v1 =⇒ (∃v3 ∈ V 0. v = v3 �

∗
v1),

G2 ∀w ∈W 0, v ∈ V 0.

w �∗
v1 =⇒ (∃v3 ∈ V 0. w

07−→
+
v3 �

∗
v1).

It is obvious that G1 is true. Thus, G2 becomes the current goal.
7. By the monotonicity of parallel reduction, it is clear that all the intermediate terms in the

reduction chain w0 �∗
v0
1 are either workables or values. Furthermore, workables and values

do not interleave, and there is exactly one transition from workables to values in the chain.

Thus, this chain can be visualized as follows:

w0
1 � w0

2 � ...w0
k−1 � w0

k � v0 �∗
v0
1 .

We prove that the transition w0
k � v0 can be replaced by an evaluation (Lemma 6.9.18):

R1 ∀w ∈W 0, v ∈ V 0.

w � v =⇒ (∃v2 ∈ V 0. w
07−→

+
v2 � v).

With this lemma, we know that we can replace the chain above by one where the evaluation

involved in going from the last workable to the first value is explicit:

w0
1 � w0

2 � ...w0
k−1 � w0

k
07−→

+
v0
2 �

∗
v0
1 .

114

What is left is then to “push back” this information about the last workable in the chain to the

very first workable in the chain. This is achieved by a straightforward iteration (by induction

over the number of k of workables in the chain) of a result that we prove (Lemma 6.9.20):
R2 ∀w1, w2 ∈W 0, v1 ∈ V 0.

w1 � w2
07−→

+
v1 =⇒ (∃v2 ∈ V 0. w1

07−→
+
v2 � v1).

With this result, we are able to move the predicate 07−→
+
v0
3 �

∗
v0 all the way back to the

first workable in the chain. This step can be visualized as follows. With one application of R2

we have the chain:

w0
1 � w0

2 � ...w0
k−1

07−→
+
v0
3 �

∗
v0
1 ,

and with k − 2 applications of R2 we have:

w0
1

07−→
+
v0

k+1 �
∗
v0
1 ,

thus completing the proof.

ut

In the rest of this section, we present the definitions and lemmas mentioned above. It should be

noted that proving most of the lemmas mentioned above require generalizing the level from 0 to n.

In the rest of the development, we present the generalized forms, which can be trivially instantiated

to the statements mentioned above.

6.9.1 A Basic Classification of Terms

Definition 6.9.8 (Classes) We define three judgements on raw (that is, type-free) classes: Values

V n, Workables Wn, and Stuck terms Sn. The four sets are defined as follows:

v0 ∈ V 0 := λx.e0 | 〈v1〉
v1 ∈ V 1 := x | λx.v1 | v1v1 | 〈v2〉 | run v1

vn++ ∈ V n++ := x | λx.vn++ | vn++vn++ | 〈vn+++〉 | ˜vn+ | run vn++

w0 ∈W 0 := (λx.e0) e0 | w0 e0 | run 〈e0〉 | run w0 | 〈w1〉
w1 ∈W 1 := λx.w1 | w1 e1 | v1 w1 | 〈w2〉 | ˜w0 | ˜〈e0〉
wn++ ∈Wn++ := λx.wn++ | wn++ en++ | vn++ wn++ | 〈wn+++〉 | ˜wn+

s0 ∈ S0 := x | s0 e0 | 〈v1〉 e0 | 〈s1〉 | run λx.e0 | run s0

s1 ∈ S1 := λx.s1 | s1 e1 | v1 s1 | 〈s2〉 | ˜s0 | ˜λx.e0 | run s1

sn++ ∈ Sn++ := λx.sn++ | sn++ en++ | vn++ sn++ | 〈sn+++〉 | ˜sn+ | run sn++.

Lemma 6.9.9 (Basic Properties of Classes) ∀n ∈ N.

1. V n,Wn, Sn ⊆ En

115

2. V n,Wn, Sn partition En.

Proof. All these properties are easy to prove by straightforward induction.

1. We verify the claim for each case separately, by induction on e ∈ V n, e ∈ Wn, and e ∈ Sn,

respectively.

2. We prove that, e ∈ En is in exactly one of the three sets V n,Wn or Sn. The proof is by

induction on the judgement e ∈Wn. This proof is direct albeit tedious.

ut

6.9.2 Left Reduction

The notion of left reduction is intended to capture precisely the reductions performed by the big-

step semantics, in a small-step manner. Note that the simplicity of the definition depends on the

fact that the partial function being defined is not defined on values. That is, we expect that there

is no e such that vn n7−→ e.

Definition 6.9.10 (Left Reduction) Left reduction is a partial function n7−→ : En → En

defined as follows:

1.
(λx.v1

1) v1
2

07−→ v1
1 [x := v1

2]

2.
run 〈v1〉 07−→ v1

3.
˜〈v1〉 17−→ v1

4.
e

n+7−→ e′

λx.e
n+7−→ λx.e′

5.
e1

n7−→ e′1

e1 e2
n7−→ e′1 e2

6.
e2

n+7−→ e′2

vn+
1 e2

n+7−→ vn+
1 e′2

7.
e

n+7−→ e′

〈e〉 n7−→ 〈e′〉

8.
e

n7−→ e′

˜e
n+7−→ ˜e′

9.
e

n7−→ e′

run e
n7−→ run e′

.

116

The following lemma says that the set of workables characterizes exactly the set of terms that can

be advanced by left reduction.

Lemma 6.9.11 (Left Reduction and Classes) ∀n ∈ N.

1. ∀w ∈Wn. (∃e′ ∈ En. w
n7−→ e′)

2. ∀e ∈ En. (∃e′ ∈ En. e
n7−→ e′) =⇒ e ∈Wn

3. ∀v ∈ V n.¬(∃e′ ∈ En. v
n7−→ e′)

4. ∀s ∈ Sn.¬(∃e′ ∈ En. s
n7−→ e′).

Proof. We only need to prove the first two, and the second two follow. The first one is by straight-

forward induction on the judgement e ∈ Wn. The second is also by straightforward induction on

the derivation en n7−→ e′. ut

Lemma 6.9.12 (Left Reduction and CBN λ-U) ∀n ∈ N.∀e1, e2 ∈ En.

e1
n7−→ e2 =⇒ e1 −→ e2.

Proof. By straightforward induction on the first judgement. ut

Lemma 6.9.13 (Left Reduction and λ-M) ∀n ∈ N.∀e ∈ En, v ∈ V n.

e
n7−→

∗
v ⇐⇒ en n

↪→ vn.

Proof. The forward direction is by induction on the length of the derivation, and then over the

size of e. The second ordering is not needed in the lambda calculus, but is needed for evaluation at

higher levels. The proof proceeds by a case analysis on the first left reduction in the left reduction

chain. The backward direction is by straightforward induction on the height of the derivation of

e
n
↪→ v. ut

6.9.3 Parallel Reduction with Complexity

In order to prove the two key lemmas presented in this section, we will need to reason by induction

on the “complexity” of parallel reduction. Thus, we will use the following definition of parallel

reduction with an associated complexity measure:

Definition 6.9.14 (Parallel Reduction with Complexity) Parallel reduction
M
� : E → E

defined as follows:

1.
x

0
� x

117

2.
e01

M
� e′1 e02

N
� e′2

(λx.e01) e
0
2

M+#(x,e′1)N+1
� e′1[x := e′2]

3.
e01

M
� e′1

run 〈e01〉
M+1
� e′1

4.
e01

M
� e′1

˜〈e01〉
M+1
� e′1

5.
e1

M
� e′1

λx.e1
M
� λx.e′1

6.
e1

M
� e′1

〈e1〉
M
� 〈e′1〉

7.
e1

M
� e′1

˜e1
M
� ˜e′1

8.
e1

M
� e′1

run e1
M
� run e′1

9.
e1

M
� e′1 e2

N
� e′2

e1 e2
M+N
� e′1 e

′
2

,

where #(x, e) is the number of occurrences of the variable x in the term e.

There is a sense in which parallel reduction should respect the classes. The following lemma expli-

cates these properties.

Lemma 6.9.15 (Parallel Reduction and Classes) ∀n ∈ N.

1. ∀e1 ∈ En, e2 ∈ E. e1
M
� e2 =⇒ e2 ∈ En

2. ∀e ∈ En, v ∈ V n. v
M
� e =⇒ e ∈ V n

3. ∀e ∈ En, s ∈ Sn. s
M
� e =⇒ e ∈ Sn

4. ∀e ∈ En, w ∈Wn. e
M
� w =⇒ e ∈Wn.

Proof. The first part of this lemma is proved by straightforward induction on the height of the

reduction derivation. It is then enough to establish the second two parts of this lemma, and then

the fourth part follows immediately. The proof of the first two is also by a straightforward induction

on the derivations of e ∈ V n and e ∈ Sn, respectively. ut

Remark 6.9.16 We have already shown that parallel reduction without complexity is equivalent

(in many steps) to normal reduction (in many steps). The same result applies to this annotated

definition.

118

Lemma 6.9.17 (Substitution for Parallel Reduction with Complexity) ∀e4, e5, e6, e7 ∈ E,

X,Y ∈ N.

e4
X
� e5 ∧ e06

Y
� e7 =⇒ (∃Z ∈ N. e4[x := e06]

Z
� e5[x := e7] ∧ Z ≤ X + #(x, e5)Y).

Proof. By induction on the height of the derivation e4
X
� e5. (A direct extension of the proof for

Lemma 5 on page 137 of Plotkin [68].) ut

Lemma 6.9.18 (Transition) ∀n,X ∈ N.∀w ∈Wn, v ∈ V n.

w
X
� v =⇒ (∃v2 ∈ En, Y ∈ N. w n7−→

+
v2

Y
� v) ∧ Y < X.

Proof. By induction on the complexity X and then on the size of w. (A direct combination and

extension of proofs for Lemmas 6 and 7 of Plotkin [68].) ut

Lemma 6.9.19 (Permutation) ∀n,X ∈ N.∀w1, w2 ∈Wn, e1 ∈ En.

w1

X
� w2

n7−→ e1 =⇒ (∃e2 ∈ En. w1
n7−→

+
e2 � e1).

Proof. By induction on the complexity X, and by a case analysis on the last case of the derivation

of w1

X
� w2. (A direct extension of Lemmas 8 of the previous reference.) ut

Lemma 6.9.20 (Push Back) ∀X ∈ N, w1, w2 ∈W 0, v2 ∈ V 0.

w1

X
� w2

07−→
+
v1 =⇒ (∃v2 ∈ V 0. w1

07−→
+
v2 � v1).

Proof. The assumption corresponds to a chain of reductions:

w1 � w2
07−→ w3

07−→ ...wk−1
07−→ wk

07−→ v1.

Applying Permutation to w1 � w2
07−→ w3 gives us (∃e2′ ∈ En. w1

07−→
+
e2′ � w3). By the

monotonicity of parallel reduction, we know that only a workable can reduce to a workable, that

is, (∃w2′ ∈Wn. w1
07−→

+
w2′ � w3). Now we have the chain:

w1
07−→

+
w2′ � w3

07−→ ...wk−1
07−→ wk

07−→ v1.

Repeating this step k − 2 times we have:

w1
07−→

+
w2′

07−→
+
w3′

07−→
+
...wk−1′ � wk

07−→ v1.

Applying Permutation to wk−1′ � wk
07−→ v1 give us (∃ek′ ∈ En. wk−1′

07−→
+
ek′ � v1). By the

monotonicity of parallel reduction, we know that ek′ can only be a value or a workable. If it is a

value then we have the chain:

w1
07−→

+
w2′

07−→
+
w3′

07−→
+
...wk−1′

07−→
+
vk′ � v1

and we are done. If it is a workable, then applying Transition to wk′ � v1 gives us (∃v2 ∈
V n. wk′

07−→
+
v2 � v1). This means that we now have the chain:

w1
07−→

+
w2′

07−→
+
w3′

07−→
+
...wk−1′

07−→
+
wk′

07−→
+
v2 � v1

and we are done. ut

119

6.9.4 Concluding Remarks

Remark 6.9.21 (Equational Theory) It is often the case that an equational theory for a lan-

guage will look very similar to a reduction semantics. We should therefore point out that we expect

that all the reductions of λ-U to hold as equalities. Such an equational theory is useful for reason-

ing about programs in general, and for proving the equivalence of two programs in particular. The

formal development and the practical utility of such an equational theory are still largely unexplored.

Remark 6.9.22 (The Stratification of Expressions) It is necessary to stratify the set of ex-

pressions into expression families. In particular, our notions of reduction are certainly not sound

if we do not explicitly forbid the application of the big-step semantic function on terms that are

manifestly not at the right level. In particular, consider the term ˜〈i〉 ∈ E1. If this term is sub-

jected to the big-step semantic function at level 0, the result is undefined. However, if we optimize

this term using the Escape reduction, we get back the term i, for which the big-step semantics is

defined. As such, the stratification of the expressions is crucial to the correctness of our notions of

reduction.

Remark 6.9.23 (Non-left or “Internal” Reductions) Many standardization proofs (such as

those described by Barendregt [1] and Takahashi [96]) employ “complementary” notions of reduc-

tion, such as internal reduction (defined simply as non-head). The development presented in Plotkin

(and here), does not require the introduction of such notions. While they do posses interesting prop-

erties in our setting (such as the preservation of all classes), they are not needed for the proofs.

Machkasova and Turbak [46] also point out that complementary reductions preserve all classes.

Using such complementary notions, it may be possible to avoid the use of Plotkin’s notion of com-

plexity, although the rest of the proof remains essentially the same. We plan to further investigate

this point in future work.

Remark 6.9.24 (Classes) Plotkin [68] only names the set of values explicitly. The notions of

workables and stuck terms employed in this present work5 helped us adapt Plotkin’s technique to

MetaML, and in some cases, to shorten the development. For example, we have combined Plotkin’s

Lemmas 6 and 7 into one (Lemma 6.9.18). We expect that our organization of expressions into

values, workables, and stuck terms may also be suitable for applying Plotkin’s technique to other

programming languages.

Remark 6.9.25 (Standardization) We have not found need for a Standardization Theorem, or

for an explicit notion of standard reduction. Also, our development has avoided Lemma 9 of Plotkin

[68], and the non-trivial lexicographic ordering needed for proving that lemma.

5 Such a classification has also been employed in a work by Hatcliff and Danvy [34], where values and
stuck terms are named. At the time of writing these results, we had not found a name for “workables”
in the literature.

120

Remark 6.9.26 (Soundness of CBV λ-U) An additional degree of care is needed in the treat-

ment of CBV λ-U. In particular, the notion of value induced by the big-step semantics for a

call-by-value lambda language is not the same as the notion of value used in the reduction seman-

tics for call-by-value languages. The latter typically contains variables. This subtle difference will

require distinguishing between the two notions throughout the soundness proof.

Part III

Appraisal and Recommendations

Chapter 7

Discussion and Related Works

The Introduction explained the motivation for the study of MetaML and multi-stage languages.

Part I explained the basics of MetaML and how it can be used to develop multi-stage programs.

Part II explained the need for the formal study of the semantics of MetaML, and presented the

main technical results of our work. This chapter expands on some points that would have elsewhere

distracted from the essentials of our argument.

The first three sections parallel the organization of the dissertation. The Introduction section

reviews the motivation for studying manual staging, and explains how this dissertation allows

us to formalize the concept of a stage, which was an informal notion in the Introduction. The

Part I section reviews the current state of MetaML, and presents an explanation of why lambda-

abstraction is not enough for staging. In this section, we also discuss the practical problem of

cross-stage portability that having cross-stage persistence creates. The Part II section discusses

the related works multi-level specialization and multi-level languages, and positions our work in

this context. A final section reviews snapshots from the history of quasi-quotation in formal logic,

LISP, and Prolog.

7.1 Introduction

7.1.1 Why Manual Staging?

Given that partial evaluation performs staging automatically, it is reasonable to ask why manual

staging is of interest. There is a number of reasons why manual staging is both interesting and

desirable:

Foundational: As we have seen in this dissertation, the subtlety of the semantics of annotated

programs warrants studying them in relative isolation, and without the added complexity of other

partial evaluation issues such as BTA.

122

123

Pedagogical: Explaining the concept of staging to programmers is a challenge. For example, it is

sometimes hard for new users to understand the workings of partial evaluation systems [38]. New

users often lack a good mental model of how partial evaluation systems work. Furthermore, new

users are often uncertain:

– What is the output of a binding-time analysis?

– What are the annotations? How are they expressed?

– What do they really mean?

The answers to these questions are crucial to the effective use of partial evaluation. Although BTA

is an involved process that requires special expertise, the annotations it produces are relatively

simple and easy to understand. Our observation is that programmers can understand the annotated

output of BTA, without actually knowing how BTA works. Having a programming language with

explicit staging annotations would help users of partial evaluation understand more of the issues

involved in staged computation, and, hopefully, reduce the steep learning curve currently associated

with using a partial evaluator effectively [40].

Pragmatic (Performance): Whenever performance is an issue, control of evaluation order is im-

portant. BTA optimizes the evaluation order given the time of arrival of inputs, but sometimes

it is just easier to say what is wanted, rather than to force a BTA to discover it [39]. Automatic

analyses such as BTA are necessarily incomplete, and can only approximate the knowledge of the

programmer. By using explicit annotations, the programmer can exploit his full knowledge of the

program domain. In a language with manual staging, having explicit annotations can offer the

programmer a well designed back-door for dealing with instances when the automatic analysis

reaches its limits.

Pragmatic (Termination and Effects): Annotations can alter termination behavior in two ways:

1) specialization of an annotated program can fail to terminate, and 2) the generated program

itself might have termination behavior differing from that of the original program [40]. While such

termination questions are the subject of active investigation in partial evaluation, programming

with explicit annotation gives the user complete control over (and responsibility for) termination

behavior in a staged system. For example, any recursive program can be annotated with staging

annotations in two fundamentally different ways. Consider the power function. The first way of

annotating it is the one which we have discussed in this dissertation:

fun exp’ (n,x) = (* : int × 〈real〉 → 〈real〉 *)

124

if n = 0 then 〈1.0〉
else if even n then sqr’ (exp’ (n div 2,x))

else 〈x * ˜(exp’ (n - 1,x))〉.

The second way of annotating it is as follows:

fun exp’ (n,x) = (* : int × 〈real〉 → 〈real〉 *)

〈if n = 0 then 1.0

else if even n then ˜(sqr’ (exp’ (n div 2,x)))

else x * ˜(exp’ (n - 1,x))〉.

Intuitively, all we have done is “factored-out” the Brackets from the Branches of the if-statement

to one Bracket around the whole if-statement. This function is perfectly well-typed, but the anno-

tations have just created a non-terminating function out of a function that was always terminating

(at least for powers of 0 or more). When applied, this function simply makes repeated calls to itself,

constructing bigger and bigger code fragments. In partial evaluation, this problem is known as in-

finite unfolding, and partial evaluation systems must take precautions to avoid it. In MetaML, the

fact that there are such anomalous annotations is not a problem, because the programmer specifies

explicitly where the annotations go. In particular, whereas with partial evaluation an automatic

analysis (BTA) can alter the termination behavior of the program, with multi-stage programming

the programmer is the one who has both control over, and responsibility for, the correctness of the

termination behavior of the annotated program.

7.1.2 The Notion of a Stage

In the introduction, we gave the intuitive explanation for a stage. After presenting the semantics

for MetaML, we can now provide a more formal definition. We define (the trace of) a stage as

the derivation tree generated by the invocation of the derivation run e
0
↪→ v. (See the Run rule in

Chapter 5.) Note that while the notion of a level is defined with respect to syntax, the notion of a

stage is defined with respect to a trace of an operational semantics. Although quite intuitive, this

distinction was not always clear to us, especially that there does not seem to be any comparable

definition in the literature with respect to an operational semantics.

The levels of the subterms of a program and the stages involved in the execution of the program can

be unrelated. A program 〈1+run 〈4+2〉〉 has expressions at levels 0, 1, and 2. If we define the “level

of a program” as the maximum level of any of its subexpressions, then this is a 2-level program. The

evaluation of this expression (which just involves rebuilding it), involves no derivations run e
0
↪→ v.

On the other hand, the evaluation of slightly modified 2-level program run 〈1+run 〈4+2〉〉 involves

two stages.

125

To further illustrate the distinction between levels and stages, let us define the number of stages

of a program as the number of times the derivation run e
0
↪→ v is used in its evaluation1. Consider:

(fn x ⇒ if P then x else lift(run x)) 〈1+2〉.

where P is an arbitrary problem (in other words, a possibly non-terminating program). The number

of stages in this program is not statically decidable. Furthermore, we cannot say, in general, which

occurrence of Run will be ultimately responsible for triggering the computation of the addition in

expression 〈1+2〉.

Recognizing this mismatch was a useful step towards finding a type-system for MetaML, which

employs the static notion of level to approximate the dynamic notion of stage.

7.1.3 Code Cannot be Added to SML as a Datatype

The simple interpreter for MetaML discussed in Chapter 4 uses a datatype to implement the code

type constructor. An interesting question is whether we can define some similar datatype in SML

and then use the constructors of this datatype in place MetaML’s Brackets and Escapes. If this

were possible, then we could either make the datatype used in the interpreter available to the

object language, or, we can avoid the need for having to implement a full interpreter for MetaML

altogether. Unfortunately, there is a number of reasons why MetaML’s code type constructor

cannot be added to SML as a datatype.

To explain these reasons, assume that such a datatype exists and has some declaration of the form:

datatype ’a code = Int of ...

| Var of ...

| Lam of ...

| App of ...

| ...

Essentially every single variant of such a datatype would contradict some basic assumptions about

datatype constructors. To see this, recall that any SML datatype construct has the following type:

Constructor : t[′ai]→ ′ai T

where t[′ai] stands for a type term that is closed except for the variables ′a1,.., ′ai. For any SML

datatype, we also get a deconstructor with the following type:

1 This is an upper bound on what one may wish to define as the number of sequential stages in a multi-
stage computation. For example, elsewhere we have defined the number of stages based on a data-flow
view of computation [93]. The definition given here is simplistic, but is sufficient for illustrating our
point.

126

Deconstructor : ′ai T→ t[′ai]

Integers Now consider the case of integers. The integer variant EI should have the type

EI : int→ int code

The return type is not polymorphic enough: We wish to define a datatype ′a code and the return

type does not cover the whole datatype. This problem is more clear when we consider the type of

the deconstructor:

DeEI : int code→ int

This deconstructor is only well-typed for int code values. This simple fact means that we cannot

express a polymorphic identity function for ′a code that works by taking apart a code fragment

and putting it back together.

Variables The variable variant EV can be expected to have the type

EV : t var→ t code

Again, we run into a problem similar to the one above, because the target type is not completely

polymorphic. Furthermore, we will need to introduce an explicit notion of variables in the form of

another type constructor ′a var. It is not obvious whether such a type constructor can be introduced

in the form of a datatype. It is not even clear that such a type constructor can be introduced in a

consistent manner.

Lambda-abstraction The lambda-abstraction variant EL can be expected to have the type

EL : ′a var × (′b code)→ (′a→ ′b) code

Again, we run into the problem of the target type being not fully covered. In addition, the first

occurrence of ′b is more complex than it appears. In particular, it should be possible that the

127

second argument to EL be an open expression, where the variable bound by the first argument can

occur free. Thus, it is very likely that the type ′b code would be insufficient for describing such a

fragment, as the fact that it is a ′b code is conditioned by (at least) the fact that the free variable

bound by this lambda-abstraction has the type ′a. It is not clear how this can be accomplished

without introducing additional substantial machinery into our meta-language (SML).

Application Finally, the application variant EA can be expected to have the type

EA : (′a→ ′b) code× ′a code→ ′b code

Here, we do not run into the same problem as above: the target type covers the whole domain.

But there is still a problem: ′a is a free type variable in the type of the co-domain, and does not

appear in the type of the domain. It may be possible to view ′a as an existentially quantified type,

but it is not obvious how this would complicate the treatment of this datatype.

7.2 Part I: The Practice of Multi-Stage Programming

Sheard developed the original design and implementation of MetaML, a language combining a host

of desirable language features, including:

– Staging annotations

– Static typing

– Hindley-Milner polymorphism

– Type inference.

The primary goal of the design is to provide a language well-suited for writing program genera-

tors. Two implementations of MetaML have been developed. The first was developed by Sheard

between 1994 and 1996. This interpreter implemented a pure CBV functional language with poly-

morphic type inference, and support for recursive functions, SML-style datatypes, and the four

staging constructs studied in this dissertation. The first implementation was based largely on an

implementation of CRML. (See Section 7.2.3.) The development of the second implementation by

Sheard, Taha, Benaissa and Pasalic started in 1996 and continues until today. This interpreter

aims at incorporating full SML and extending it with the four staging constructs. The highlights

of MetaML are:

128

– Cross-stage persistence. The ability to use variables from any past stage is crucial to writing

staged programs in the manner to which programmers are accustomed. Cross-stage persistence

provides a solution to hygienic macros in a typed language, that is, macros that bind identifiers

in the environment of definition, which are not “captured” in the environment of use.

– Multi-stage aware type system. The type checker reports staging errors as well as type

errors. We have found the interactive type system to be very useful during staging.

– Display of code. When debugging, it is important for users to be able to read the code

produced by their multi-stage programs. Supporting this MetaML feature requires a display

mechanism (pretty-printer) for values of type code.

– Display of constants. The origin of a cross-stage persistent constant can be hard to identify.

The named % tags provide an approximation of where these constants came from. While these

tags can sometimes be misleading, they are often quite useful.

– The connection between 〈A〉 → 〈B〉 and 〈A → B〉. Having the two mediating functions

back and forth reduces the number of annotations needed to stage programs.

– Lift. The Lift annotation makes it possible to force computation in an early stage and Lift this

value into a program to be incorporated at a later stage. While it may seem that cross-stage

persistence makes Lift unnecessary, Lift helps producing code that is easier to understand,

because constants become explicit.

– Safe β and rebuilding optimizations. These optimizations improve the generated code,

and often make it more readable.

7.2.1 Why Lambda-Abstraction is not Enough for Multi-Stage Programming

It may appear that staging requires only “delay” and “force” operations (see for example Okasaki

or Wadler et al. [65, 98],) which can be implemented by lambda-abstraction and application, re-

spectively. While this may be true for certain domains, there are two capabilities that are needed

for multi-stage programming and are not provided by “delay” and “force”:

1. A delayed computation must maintain an intensional representation so that users can inspect

the code produced by their generators, and so that it can be either printed or compiled. In a

compiled implementation, lambda-abstractions lose their high-level intensional representation,

and it becomes harder to inspect or print lambda-abstractions at run-time.

2. More fundamentally, code generators often need to perform “evaluation under lambda”. Eval-

uation under lambda is necessary for almost any staged application that performs some kind

of unfolding, and is used in functions such as back. It is not clear how the effect of Escape

129

(under lambda) can be imitated in the CBV λ-calculus without extending it with additional

constructs.

To further explain the second point, we will show an example of the result of encoding of the

operational semantics of MetaML in SML/NJ.

A Schema for Encoding MetaML in a CBV Language with Effects The essential ingre-

dients of a program that requires more than abstraction and application for staging are Brackets,

dynamic (non-level 0) abstractions, and Escapes. Lambda-abstraction over unit can be used to

encode Brackets, and application to unit to encode Run. However, Escape is considerably more

difficult to encode. In particular, the expression inside an Escape has to be executed before the

surrounding delayed computation is constructed. Implementing such an encoding is difficult when

variables introduced inside the delayed expression occur in the Escaped expression, as in terms

such as 〈fn x ⇒ ˜(f 〈x〉)〉.

One way to imitate this behavior uses two non-pure SML features. References can be used to

simulate evaluation under lambda, and exceptions to simulate the creation of uninitialized reference

cells. Consider the following sequence of MetaML declarations:

fun G f = 〈fn x ⇒ ˜(f 〈x〉)〉
val pc = G (fn xc ⇒ 〈(˜xc,˜xc)〉)
val p5 = (run pc) 5.

The corresponding imitation in SML would be:

exception not yet defined

val undefined = (fn () ⇒ (raise not yet defined))

fun G f =

let val xh = ref undefined

val xc = fn () ⇒ !xh ()

val nc = f xc

in

fn () ⇒ fn x ⇒ (xh:=(fn () ⇒ x);nc ())

end;

val pc = G (fn xc ⇒ fn () ⇒ (xc(),xc()))

val p5 = (pc ()) 5.

In this translation, values of type 〈’a〉 are encoded by delayed computations of type () → ’a. We

begin by assigning a lifted undefined value to undefined. Now we are ready to write the analog

130

of the function G. Given a function f, the function G first creates an uninitialized reference cell

xh. This reference cell corresponds to the occurrences of x in the application f 〈x〉 in the MetaML

definition of G. Intuitively, the fact that xh is uninitialized corresponds to the fact that x will not

yet be bound to a fixed value when the application f 〈x〉 is to be performed. This facility is very

important in MetaML, as it allows us to unfold functions like f on “dummy” variables like x. The

expression fn () ⇒ !xh () is a delayed lookup of xh. This delayed computation corresponds to the

Brackets surrounding x in the expression f 〈x〉. Now, we simply perform the application of the

function f to this delayed construction. It is important to note here that we are applying f as it

is passed to the function G, before we know what value x is bound to. Finally, the body of the

function G returns a delayed lambda-abstraction, which first assigns a delayed version of x to xh,

and then simply includes an applied (“Escaped”) version of nc in the body of this abstraction.

The transliteration illustrates the advantage of using MetaML rather than trying to encode multi-

stage programs using lambda-abstractions, references, and exceptions. The MetaML version is

shorter, more concise, looks like the unstaged version, and is easier to understand.

One might consider an implementation of MetaML based on this approach, hidden under some

syntactic sugar to alleviate the disadvantages listed above. The lambda-delay method has the

advantage of being a machine-independent manipulation of lambda terms. Unfortunately it fails

to meet the intensional representation criterion, and also incurs some overhead not (necessarily)

incurred in the MetaML version. In particular, the last assignment to the reference xh is delayed,

and must be repeated every time the function returned by G is used. The same happens with

the application (“Escaping”) of nc. Neither of these expenses would be incurred by the MetaML

version of G. Intuitively, these operations are being used to connect the meta-level variable x to its

corresponding object-level xh. In MetaML, these overheads would be incurred exactly once during

the evaluation of run pc as opposed to every time the function resulting from pc () is applied.

7.2.2 Cross-Stage Portability

Cross-stage persistence is a novel feature of MetaML that did not – to our knowledge – exist in

any previous proposals for run-time code generation. This language feature seems highly desirable

in run-time code generation systems, where there is generally little interest in inspecting a source

level representation of programs. But for high-level program generation, cross-stage persistence

comes at a price: Some parts of generated code fragment may not be printable. For example, let

us consider the following simple SML/NJ session:

- 40+2;

131

val it = 42 : int

- fn x ⇒ x;

val it = fn : ’a → ’a.

The result of evaluating the first variable is printed back as 42, but not the result of the second.

Because SML/NJ is a compiled implementation, the result of evaluating fn x ⇒ x is a structure

containing some machine code. This structure is not printed back because it is machine-dependent,

and is considered implementation detail. But independently of whether this structure should be

printed or not, the source-level representation of our function is generally not maintained after

compilation. The lack of high-level representations of values at run-time is the reason why “inlining”

cross-stage persistent variables is generally not possible. For example, in the following MetaML

session:

|- (fn y ⇒ 〈y〉) (fn x ⇒ x);

val it = 〈%y〉 : 〈 ’a → ’a〉.

we cannot return 〈fn x ⇒ x〉, because the source-level representation of fn x ⇒ x is simply lost at

the point when the application is performed.

Loss of printability poses a practical problem if the first stage of a multi-stage computation is

performed on one computer, and the second on another. In this case, we need to “port” the local

environment from the first machine to the second. Since arbitrary objects, such as functions and

closures, can be bound in this local environment, this embedding can cause portability problems.

Currently, MetaML assumes that the computing environment does not change between stages, or

more generally, that we are computing in an integrated system. Thus, current MetaML implemen-

tations lack cross-platform portability, but we believe that this limitation can be recovered through

pickling and unpickling techniques.

7.2.3 Linguistic Reflection and Related MetaML Research

“Linguistic reflection is defined as the ability of a program to generate new program fragments and

to integrate these into its own execution [89].” MetaML is a descendent of CRML [79, 80, 37], which

in turn was greatly influenced by TRPL [77, 78]. All three of these languages support linguistic

reflection. Both CRML and TRPL were two-stage languages that allowed users to provide compile-

time functions (much like macros) which directed the compiler to perform compile-time reductions.

Both emphasized the use of computations over representations of a program’s datatype definitions.

By generating functions from datatype definitions, it was possible to create specific instances of

generic functions such as equality functions, pretty printers, and parsers [78]. This facility provided

132

an abstraction mechanism not available in traditional languages. MetaML improves upon these

languages by adding hygienic variables, generalizing the number of stages, and emphasizing the

soundness of its type system.

Sheard and Nelson investigate a two-stage language for the purpose of program generation [82].

The base language was statically typed, and dependent types were used to generate a wider class of

programs than is possible by MetaML restricted to two stages. Sheard, Shields and Peyton-Jones

[83] investigate a dynamic type system for multi-staged programs where some type obligations of

staged computations can be put off till run-time.

7.3 Part II: The Theory of Multi-Stage Programming

7.3.1 Multi-Level Specialization

Glück and Jørgensen [29] introduced the idea of multi-level BTA (MBTA) as an efficient and

effective alternative to multiple self-application. A multi-level language based on Scheme is used

for the presentation. MetaML has fewer primitives than this language, and our focus is more on

program generation issues rather than those of BTA. All intermediate results in their work are

printable, that is, have an intensional representation. In MetaML, cross-stage persistence allows

us to have intermediate results between stages that contain constants for which no intensional

representation is available.

A second work by Glück and Jørgensen [30] demonstrates that MBTA can be done with effi-

ciency comparable to that of two-level BTA. Their MBTA is implemented using constraint-solving

techniques. The MBTA is type-based, but the underlying language is dynamically typed.

Glück and Jørgensen also study partial evaluation in the generalized context where inputs can

arrive at an arbitrary number of times rather than just specialization-time and run-time in the

context of a flow-chart language called S-Graph-n [31]. This language can be viewed as a dynam-

ically typed multi-level programming language. S-Graph-n was not designed for human use (as

a programming language), but rather, for being producing automatically by program generators.

One of the contributions of this dissertation is emphasising that programmers can write useful

multi-stage programs directly in an appropriate programming language (such as MetaML), and

that while an automatic analyses such as BTA and MBTA can be very useful, they are not, strictly

speaking, necessary for multi-stage programming.

Hatcliff and Glück study the issues involved in the implementation of a language like S-Graph-n

[35]. The syntax of S-Graph-n explicitly captures all the information necessary for specifying the

133

staging of a computation: each construct is annotated with a number indicating the stage during

which it is to be executed, and all variables are annotated with a number indicating the stage

of their availability. The annotations of this language were one of our motivations for studying

level-annotations in MetaML. (See λ-T of Appendix A.) One notable difference is that the explicit

level annotations of λ-T reflect “intended” usage-time as opposed to availability time. Availability

in our formalisms has generally been reflected at the level of the type system, and in the typing

environment. S-Graph-n is dynamically typed, and the syntax and formal semantics of the language

are sizable. Programming directly in S-Graph-n would require the user to annotate every construct

and variable with stage annotations, and ensuring the consistency of the annotations is the user’s

responsibility. These explicit annotations are not necessarily a serious drawback, as the language

was intended primarily as an internal language for program transformation systems. However,

we believe that further simplifying this language could make verifying the correctness of such

program transformation systems easier. Finally, Hatcliff and Glück have also identified language-

independence of the internal representation of “code” as an important characteristic of any multi-

stage language.

Glück, Hatcliff and Jørgensen continue the study of S-Graph-n, focusing on issue of generaliza-

tion of data in multi-level transformation systems (such as self-applicable partial evaluation) [28].

This work advocates S-Graph-n as an appropriate representation for meta-system hierarchies. In

essence, a meta-system hierarchy is a sequence of meta-programs where each meta-program is ma-

nipulating the next program in the sequence. Roughly speaking, generalization (more precisely,

finding the most specific generalization) is the process of finding the most precise characterization

of an expression in terms its position in the hierarchy. The work identifies and addresses two fun-

damental problems that arise in when considering such hierarchies, namely the space consumption

problem and the invariance problem. The space consumption problem arises due to the possibility

of encoding object-programs multiple times in such a hierarchy. The space consumption problem

cannot be seen in our work, because we have either used level-annotated terms (λ-T of Appendix

A), which are similar in spirit to the S-Graph-n solution, or abolished the quest for distinguishing

unencoded and encoded terms (λ-U of Chapter 6). The invariance problem arises when a pro-

gram transformation is not invariant under the encoding operation. In MetaML, the invariance

problem is roughly comparable to a transformation that works on a level 0 λ-T term, but cannot

continue to work on the same term when it is promoted. Note that such problem cannot arise

with λ-U terms, as unencoded and encoded terms are syntactically indistinguishable. The work

on S-Graph-n shows how the two problems described above can be avoided using the multi-level

data structures of S-Graph-n [35]. This feature of S-Graph-n is highly desirable for the success

134

of multi-level transformations because generalization of data should be precise regardless of the

number of levels involved in the multi-level transformation.

Because avoiding the use of level-annotated terms (as in λ-U) can simplify the language, it remains

an interesting and open question weather abolishing the distinction between unencoded and en-

coded terms can also be applied to S-Graph-n. Furthermore, because the technical development of

the notion of generalizations has some similarities with the problems with substitution that arose

in the context of MetaML, it is reasonable to expect to reap more benefits if level annotations can

be avoided in S-Graph-n.

7.3.2 Type Systems for Open and Closed Code

Typed languages for manipulating code fragments have typically had either a type constructor for

open code [32, 22, 94], or a type constructor for closed code [62, 23, 102]. Languages with open code

types are useful in the study of partial evaluation. Typically, they provide constructs for building

and combining code fragments with free variables, but do not allow for executing such fragments.

Being able to construct open fragments enables the user to force computations “under a lambda”.

Executing code fragments in such languages is hard because code can contain “not-yet-bound

identifiers”. In contrast, languages with closed code types have been advocated as models for run-

time (machine) code generation. Typically, they provide constructs for building and executing code

fragments, but do not allow for forcing computations “under a lambda”.

In what follows, we review these languages in more detail.

7.3.3 Nielson & Nielson and Gomard & Jones

Nielson and Nielson pioneered the investigation of multi-level languages with their work on two-level

functional languages [58, 62, 59, 60]. They have developed an extensive theory for the denotational

semantics of two-level languages, including their use as a framework for abstract interpretation

[61]. Their framework allows for a “B-level” language, where B is an arbitrary, possibly partially-

ordered set. Recently, Nielson and Nielson have also proposed an algebraic framework for the

specification of multi-level type systems [63, 64].

Gomard and Jones [32] proposed a statically-typed two-level language to explain the workings of

a partial evaluator for the untyped λ-calculus. This language is the basis for many BTAs. It allows

the treatment of expressions containing free variables. Our treatment of object-level variables in

the implementation semantics is inspired by their work.

135

7.3.4 Multi-Level Languages and Logical Modalities

In our research, we have emphasized the pragmatic importance of being able to combine cross-stage

persistence, “evaluation under lambda” (or “symbolic computation”), and being able to execute

code. In this section, we review some of the basic features of two important statically-typed multi-

level languages that are closely related to our work.

Davies and Pfenning present a statically-typed multi-stage language λ�, motivated by constructive

modal logic [23]. They show that there is a Curry-Howard isomorphism between λ� and the modal

logic S4. They also show that λ� type system is equivalent to the binding-time analysis of Nielson

and Nielson. The language provides a closed code type constructor � that is closely related to the

Closed type of λBN. The language has two constructs, box and let-box, which correspond roughly

to Close and Open, respectively.

Davies extends the Curry-Howard isomorphism to a relation between linear temporal logic and

the type system for a multi-level language [22]. He presents a language λ© that allows staged

expressions to contain free variables. The language provides an open code type constructor ©

that corresponds closely to MetaML’s code type. The λ© has two constructs next and prev that

correspond closely to MetaML’s Brackets and Escape, respectively.

In collaboration with Moggi, Benaissa, and Sheard, the present author presents AIM (An Idealized

MetaML) [55], which extends MetaML with an analog of the Box type of λ� yielding a more

expressive language, yet has a simpler typing judgment than MetaML. We can embed all three

languages into AIM [55]2. We view λBN as a cut-down version of AIM that we expect to be

sufficiently expressive for the purposes of multi-stage programming.

The Closed type constructor of λBN is essentially a strict version of the Box type constructor of

AIM. The present author proposed that the laziness of the Box type constructor of AIM, and of the

� type constructor of λ�, can be dropped. The motivation for this proposal is as follows: In AIM,

the Box construct delays its argument. To the programmer, this means that there are two “code”

types in AIM, one for closed code, and one for open code. Having two different code types can cause

some confusion from the point of view of multi-stage programming, because manipulating values of

type [〈A〉] would be read as “closed code of open code of A”. Not only is this reading cumbersome,

it makes it (unnecessarily) harder for the programmer to reason about when computations are

performed. For these reasons, in λBN we make the pragmatic decision that Closed should not

2 This claim is presented as a theorem together with a proof [55], but we have identified some shortcomings
in statement of the theorem and its proof. Correcting the embedding of MetaML and λ© is simple, but
the embedding of λ� is more subtle. Nevertheless, we still expect this embedding to hold.

136

delay its argument, and so, types such as [〈A〉] can be read as simply “closed code of A”. In other

words, we propose to use the Necessity modality only for asserting closedness, and not for delaying

evaluation.

Another difference is that AIM was a “superset” of the three languages that we had studied (that

is, λ©, λ�, and MetaML), while λBN is not. On the one hand, we expect that λ© can be embedded

into the open fragment of AIM, and λ� into the closed fragment [55]. Formal support for this claim

would establish a strong relation between the closed code and open code types of AIM and the

Necessity and Next modalities of modal and temporal logic. The embedding of λ© and λ� in

AIM can be turned into an embedding in λBN. (The embedding of λ� needs to be modified to

take into account the fact that Closed in λBN is strict, that is, it does not delay the evaluation of

its argument.) On the other hand, the embedding of MetaML in AIM cannot be adapted for the

following two reasons:

1. λBN does not have full cross-stage persistence. Not having cross-stage persistence simplifies the

categorical model. At the same time, from the pragmatic point of view, cross-stage persistence

for closed types is expected to suffice,

2. λBN does not have Run. We were not able to find a general categorical interpretation for this

construct, though it is possible to interpret Run in a particular, concrete model [5]. At the

same time, the pragmatic need for Run disappears in the presence of safe run, which does have

a natural categorical interpretation.

To our knowledge, our work is the first successful attempt to define a sound type system combining

Brackets, Escape and a safe way for executing code in the same language. We have achieved this

combination first in the context of MetaML, then in the more expressive context of of AIM, and

eventually in λBN.

7.3.5 An Overview of Multi-level Languages

Figure 7.1 is a summary of the distinguishing characteristics of some of the languages discussed

here. For Stages, “2” mean it is a two-level language, and “+” means multi-level. For static typing,

“1” means only first level is checked. Reflection refers to the presence of a Run-like construct.

Persistence refers to the presence of cross-state persistence. Portability refers to the printability of

all code generated at run-time.

137

Facility Example Nielson &
Nielson
[62]

Gomard
& Jones
[32]

Glück &
Jørgensen
[29]

Hatcliff
& Glück
[35]

λ� [23] λ© [22] MetaML,
AIM,

λBN

Stages 〈λx.x〉 2 2 + + + + +

Static Typing Y 1 N N Y Y Y

Reflection run or eval N N N N Y N Y

Persistence λf.〈λx.f x〉 N N N N N N Y

Portability Y Y Y Y Y Y N

Fig. 7.1. Comparative Feature Set

7.3.6 A Closer Look at λ�, λ© and AIM

To clarify the relation between MetaML and the other multi-level languages, we take a closer look

at the syntax, type system and semantics of λ�, λ©, and AIM. We adopt the following unified

notation for types:

τ ∈ T := b | τ1 → τ2 | 〈τ〉 | [τ]

In order, the productions correspond to base types, functions, (open) code fragments, and closed

code fragments.

The first language, λ�, features function and closed code types. Typing judgments have the form

∆;Γ ` e : τ , where ∆,Γ ∈ D := [] | x : τ,∆. The syntax for λ� is as follows:

e ∈ E := c | x | λx.e | e e | box e | let box x = e in e

The type system of λ� is:

∆;Γ ` c : τc ∆;Γ ` x : τ if τ = ∆(x) or Γ (x)

∆;Γ, x : τ1 ` e : τ2

∆;Γ ` λx.e : τ1 → τ2

∆; ∅ ` e : τ

∆;Γ ` box e : [τ]

∆;Γ ` e1 : τ1 → τ2 ∆;Γ ` e2 : τ1

∆;Γ ` e1e2 : τ2

∆;Γ ` e1 : [τ1] ∆,x : τ1;Γ ` e2 : τ2

∆;Γ ` let box x = e1 in e2 : τ2
.

While there are some superficial differences, this type system is essentially the same as that of

λBN without the (open) code type.

λ©, MetaML and AIM feature function and open code types. Typing judgments have the form

Γ `n e : τ , where Γ ∈ D := [] | x : τn,∆ and n is a natural number called the level of the term.

138

The syntax for λ© is as follows:

e ∈ E := c | x | λx.e | e e | 〈e〉 | ˜e.

The type system for λ© is:

Γ `n c : τc Γ `n x : τ if τn = Γ (x)

Γ, x : τn
1 `n e : τ2

Γ `n λx.e : τ1 → τ2

Γ `n e1 : τ1 → τ2 Γ `n e2 : τ1

Γ `n e1 e2 : τ2

Γ `n+ e : τ

Γ `n 〈e〉 : 〈τ〉

Γ `n e : 〈τ〉

Γ `n+ ˜e : τ

This type system is very similar to that of MetaML, but without cross-stage persistence and

without the Run construct. In other words, the type system of MetaML can be achieved by the

addition of the following two rules:

Γ `n x : τ if τm = Γ (x) and m ≤ n

Γ+ `n e : 〈τ〉

Γ `n run e : τ

MetaML uses a more relaxed type rule for variables than λ©, in that variables can be bound

at a level lower than the level where they are used. This relaxation is cross-stage persistence.

Furthermore, MetaML extends the syntax of λ© with run e.

AIM [55] extends MetaML with an analog of the Box type of λ�, yielding a more expressive

language, and yet has a simpler typing judgment than MetaML. The syntax of AIM extends that

of MetaML as follows:

e ∈ E := c | x | λx.e | e e | 〈e〉 | ˜e |

run e with {xi = ei|i ∈ m} |

box e with {xi = ei|i ∈ m} | unbox e.

Run-with generalizes Run of MetaML, in that it allows the use of additional variables xi in the

body of e if they satisfy certain typing requirements.

AIM is essentially the union of all the languages described above, with the addition of Run-with

construct, generalizing the Run construct of MetaML, and with a reformulation of the rules for

Closed type:

139

Γ `n ei : [τi] Γ+, {xi : [τi]
n|i ∈ m} `n e : 〈τ〉

Γ `n run e with xi = ei : τ

Γ `n ei : [τi] {xi : [τi]
0|i ∈ m} `0 e : τ

Γ `n box e with xi = ei : [τ]

Γ `n e : [τ]

Γ `n unbox e : τ

The operational semantics of AIM and its sub-languages is:

e1
0

↪→ λx.e e2
0

↪→ v1 e[x := v1]
0

↪→ v2

e1 e2
0

↪→ v2 λx.e
0

↪→ λx.e

e
0

↪→ 〈v〉

˜e
1

↪→ v

ei
0

↪→ vi

box e with xi = ei
0

↪→ box e[xi := vi]

e
0

↪→ box e′ e′
0

↪→ v

unbox e
0

↪→ v

ei
0

↪→ vi e[xi := vi]
0

↪→ 〈v′〉 v′0
0

↪→ v

run e with xi = ei
0

↪→ v

e
n+
↪→ v

〈e〉 n
↪→ 〈v〉 x

n+
↪→ x c

n+
↪→ c

e1
n+
↪→ v1 e2

n+
↪→ v2

e1 e2
n+
↪→ v1 v2

ei
n+
↪→ vi

box e with xi = ei
n+
↪→ box e with xi = vi

e
n+
↪→ v

λx.e
n+
↪→ λx.v

e
n+
↪→ v

˜e
n++
↪→ ˜v

e
n+
↪→ v

unbox e
n+
↪→ unbox v

ei
n+
↪→ vi e

n+
↪→ v

run e with xi = ei
n+
↪→ run v with xi = vi

7.3.7 Categorical Semantics of Two- and Multi-Level Languages

Moggi advocates a category-theoretic approach to two-level languages and uses indexed categories

to develop models for two languages similar to λ� and λ© [53], stressing the formal analogies with

a categorical account of phase distinction and module languages. He also points out that the use of

stateful functions such as gensym or newname in the semantics makes their use for formal reasoning

hard. The big-step semantics presented in this dissertation avoids the use of a gensym. He also

points out that two-level languages generally have not been presented along with an equational

calculus. Our reduction semantics has eliminated this problem for MetaML, and to our knowledge,

is the first correct presentation of a multi-stage language using a reduction semantics3.

Moggi et al. [6] presents a careful categorical analysis of the interactions between the two logical

modalities studied by Davies and Pfenning [23, 22] and computational monads [52]. This work

builds on a previous study [5] in the the categorical semantics of multi-level languages, which has

greatly influenced the design of AIM and λBN. In particular, this study of the categorical semantics

3 An earlier attempt to devise such a reduction semantics [91] is flawed. It was based on level-annotated
terms, and therefore suffers from the complications that are addressed by λ-T.

140

was highly instrumental in achieving a semantically sound integration of the two logical modalities

in λBN.

7.3.8 Level-Annotations

Level annotations have been used, for example, by Russell to address the paradox he pointed out

to Frege4 [101], by Quine in his system New Foundations for logic [70], by Cardelli in his type

system with phase distinction [11], by Danvy and Malmkjær in a study of the reflective tower [19],

and by Glück and collaborators [29, 30] in their multi-level programming languages.

In this dissertation, our experience was that level-annotations are useful as part of a predicate

classifying terms at various levels, whereas annotating the subterms themselves with levels is

instructive but not necessarily practical for direct reasoning about programs at the source level.

Danvy and Malmkjær seem to have had a similar experience in their study of the reflective tower.

Reduction Semantics and Equational Theories for Multi-Level Languages Muller has

studied the reduction semantics of quote and eval in the context of LISP [56]. Muller observed

that his formulation of these constructs breaks confluence. The reason for this seems to be that his

calculus distinguishes between s-expressions and representations of s-expressions. Muller proposes

a closedness restriction in the notion of reduction for eval and shows that this restores confluence.

Muller has also studied the reduction semantics of the λ-calculus extended with representations of

λ terms, and with a notion of β reduction on these representations [57]. Muller observed that this

calculus lacks confluence, and uses a type system to restore confluence.

In both of Muller’s studies, the language can express taking object-code apart (intensional analysis).

Wand has studied the equational theory for LISP meta-programming construct fexpr and found

that “the theory of fexprs is trivial” in the sense that the β-rule (or “semantic equality”) is not

valid on fexprs [99]. Wand, however, predicted that there are other meta-programming systems

with a more interesting equational theory. As evidenced by CBN λ-U, MetaML is an example of

such a system.

7.4 On the History of Quotation

Formal logic is a well-developed discipline from which programming languages research inherits

many techniques. It is therefore illuminating to review one of the foundational works in formal

4 As Russell is often viewed as the father of type theory, we can also view his notion of level as primordial
to todays notion of types.

141

logic that is closely related to the development presented in this dissertation, and to review the

work done in the context of LISP on migrating this work into the programming languages arena.

7.4.1 Quasi-Quotes. Or, Quine’s “Corners”

Quasi-quotes are a formal notation developed by the logician Willard van Orman Quine to empha-

size some semantics subtleties involved in the construction of logical formulae. Quine introduced

quasi-quotes to formal logic around 1940 as a way of distinguishing between the meaning denoted

by some syntax, and the syntax itself [71]. His motivations seems to lie primarily in the fact that

variables where used in three semantically distinct ways.

In this section we present two excerpts from Quine’s original writings that are largely self-explanatory.

The Greek Letter Convention We begin with Quine’s description of the state-of-the-art for

dealing with object-programs at that time, namely the Greek letter convention. In Essay V: New

Foundations for Mathematical Logic [71, Page 83] Quine writes:

“In stating the definitions, Greek letters ‘α’, ‘β’, ‘γ’, ‘φ’, ‘ψ’, ‘χ’, and ‘ω’ will be used to

refer to expressions. The letters ‘φ’, ψ’, ‘χ’, and ‘ω’ will refer to any formulas, and ‘α’,

‘β’, and ‘γ’ will refer to variables. When they are embedded among signs belonging to the

logical language itself, the whole is to refer to the expression formed by so embedding the

expressions referred to by those Greek letters. Thus, ‘(φ | ψ)’ will refer to the formula which

is formed by putting the formulas φ and ψ, whatever they may be, in the respective blanks of

‘(|)’. The expression ‘(φ | ψ)’ itself is not a formula, but a noun describing a formula; it

is short for the description ‘the formula formed by writing a left parenthesis, followed by the

formula φ, followed by a stroke, followed by the formula ψ, followed by a right parenthesis’,

etc. Such use of Greek letter has no place in the language under discussion, but provides a

means of discussing that language.”

To rephrase, α, β, and γ range over object-language variable names, and φ, ψ, χ, and ω range over

expressions. Note the use of single-quotes ‘ ’ that was the standard at the time for talking about

object-terms.

The Problem and The Solution In the next chapter, Essay VI: Logic and The Reification of

Universals [71, Page 111], Quine contrasts the semantic differences between the usage of variables

in the expression

(∃ α)(φ ∨ ψ) (7.1)

142

and the expression

p ⇒ p ∧ p (7.2)

where p is a particular name in an object-language, say propositional logic, that is under discussion.

Quine explains5:

“ ... ‘φ’ contrasts with ‘p’ in two basic ways. First, ‘φ’ is a variable, taking sentences as

values; ‘p’, construed schematically, is not a variable (in the value-taking sense) at all.

Second, ‘φ’ is grammatically substantival, occupying the place of names of sentences; ‘p’ is

grammatically sentential, occupying the place of sentences.

This latter contrast is dangerously obscured by the usage 7.16, which shows the Greek let-

ters ‘φ’ and ‘ψ’ in sentential rather than substantival positions. But this usage would be

nonsense except for the special and artificial convention of Essay V (p. 83)7 concerning

the embedding of Greek letters among signs of the logical language. According to that con-

vention, the usage 7.1 is shorthand for the unmisleading substantive:
the result of putting the variable α and the sentences φ and ψ in the respective

blanks of ‘(∃)(∨)’.
Here the Greek letters clearly occur in noun positions (referring to a variable and to two

statements), and the whole is a noun in turn. In some of my writings, for example [69]8,

I have insisted on fitting the misleading usage 7.1 with a safety device in the form of a

modified type of quotation marks, thus:

p(∃ α)(φ ∨ ψ)q

These marks rightly suggest that the whole is, like an ordinary quotation, a substantive

which refers to an expression; also they conspicuously isolate those portions of text in

which the combined use of Greek letters and logical signs is to be oddly construed. In most

of the literature, however, these quasi-quotation marks are omitted. The usage of most

logicians who take care to preserve the semantic distinctions at all is that exemplified by

Essay V (though commonly with German or boldface Latin letters instead of Greek).”

Today, Quine’s quasi-quotes are a standard tool for distinguishing between object-language terms

and meta-language terms. (See for example [1, 16, 51].)

5 Footnotes in the following quotation will point out when a reference is numbered with respect to this
dissertation (meta-level) or to Quine’s book (object-level). Dwelling on this concrete example of problems
that arise when we want to be formal about the semantics of multi-level expressions seemed appropriate
for this dissertation.

6 Meta-level equation number.
7 Object-level page number.
8 Meta-level citation number.

143

7.4.2 LISP’s Back-Quote and Comma

Like many good ideas from mathematics and logic – such as types and the λ-calculus – that were

reincarnated in one form or the other in programming languages, so were Quine’s quasi-quotes.

Back-quote and comma appeared in LISP when Timothy Hart introduced macros to the language

[88]. To illustrate the behavior of back-quote, comma, and eval, consider the following simple

Scheme [73] session:

> (define f (lambda (x) ‘(+ ,x ,x)))

> (f 1)

(+ 1 1)

> (eval (f 1))

2

Steele and Gabriel write [88]:

“The back-quote syntax was particularly powerful when nested. This occurred primarily

within macro-defining macros; because such were coded primarily by wizards, the ability

to write and interpret nested back-quote expressions was soon surrounded by a certain

mystique. Alan Bawden of MIT acquired a particular reputation as back-quote-meister in

the early days of Lisp Machine.”

And even though the advent of the back-quote and the macro mechanisms was a “leap in expressive

power”, there where some problems:

“Macros are fraught with the same kinds of scoping problems and accidental name capture

that had accompanied special variables. The problem in Lisp macros, from the time of Hart

in 1963 to the mid-1980’s, is that a macro call expands into an expressions that is composed

of symbols that have no attached semantics.”

Thus, while back-quote had some of the “spirit” of quasi-quote, it did not quite capture the seman-

tics spirit of Quine’s construct: While quasi-quote was invented to clarify binding issues, back-quote

suffered from a variety of semantic problems. These problems may have been partly due to the fact

that back-quote seems to have been primarily a construct for conveniently constructing lists, and

the fact that these lists can also happen to represent programs was probably somewhat secondary.

It is also worth noting that the ease with which programs can be manipulate in LISP encourages

meta-programming. However, it should be noted that this encoding does not provide any auto-

matic renaming support needed for a correct treatment of bound variables in meta-programming

systems.

144

The Scheme community continued the development of these features. “Nearly everyone agreed that

macro facilities were invaluable in principle and in practice but looked down upon each particular

instance as a sort of shameful family secret. If only The Right Thing could be found!” [88]. Clinger

and Rees clarified the problem of renaming in macros using an analogy with reductions in the λ-

calculus [13]. In particular, they explained why there is a need for renaming at run-time, and why

static renaming is not enough. In the λ-calculus, run-time corresponds to β-reductions, and renam-

ing corresponds to α-renamings. In the λ-calculus, both kinds of reductions must be interleaved

because β reductions can involve duplication and then re-combination (thus potential conflict) of

code. Hygienic macros were later developed by Kohlbecker, Friedman, Felleisen, and Duba [44] and

provided a means for defining and using macros without needing to worry about accidental name

capture. Bawden [3] gives a detailed historical review of the history of quasi-quotations in LISP.

A Comparison of MetaML and LISP MetaML’s Brackets, Escape, and Run are analogous

to LISP’s back-quote, comma, and eval constructs: Brackets are similar to back-quote, Escape is

similar to comma, and Run is similar to eval under the empty environment. But the analogy is not

perfect. LISP does not ensure that variables (atoms) occurring in a back-quoted expressions are

bound according to the rules of static scoping. For example ‘(plus 3 5) does not bind plus in

the scope where the term is produced. We view addressing this problem as an important feature of

MetaML. We also view MetaML’s semantics as a concise formalization of the semantics for LISP’s

three constructs9, but with static scoping. This view is similar in spirit to Smith’s semantically

motivated LISP [85, 86]. Finally, whereas LISP is dynamically typed, MetaML is statically typed.

MetaML’s annotations can also be viewed as providing a simple but statically typed macro-

expansion system. But it is also important to note that the annotations do not allow the definition

of new language constructs or binding mechanisms, as is often expected from macro-expansion

systems.

It is worth noting that Hart also used gensym to explicitly avoid capture issues in his original

report on macros [88]. Today, this trick is still closely associated with the use of back-quote in

Scheme or LISP. As we have pointed out in Chapter 4, managing renaming in this manner can be

especially difficult in the presence of functional values. Thus, alleviating the need for such stateful

construct in a meta-programming language is an invaluable benefit of MetaML.

Finally, we should point out that back-quote and comma are themselves macros in LISP. This

state of affairs leads to two more concerns. First, they have non-trivial formal semantics (about

9 When used in the restricted context of program generation.

145

two pages of LISP code). Second, because of the way they expand at parse-time, they can lead to a

representation overhead exponential in the number of levels in a multi-level program [30]. MetaML

avoids both problems by a direct treatment of Bracket and Escape as language constructs.

Remark on Meta-Programming in Prolog Just as the similarity between the representation

of programs and the representation of data makes meta-programming in LISP attractive, it also

makes meta-programming in Prolog attractive [90, 47]. Prolog too supports intensional analysis

over code, in that it “allows the programmer to examine and alter the program (the clauses that

are used to satisfy his goals). This is particularly straightforward, because a clause can be seen

as just an ordinary Prolog structure. Therefore Prolog provides built-in predicates to allow the

programmer to:

– Construct a structure representing a clause in the database,

– Add a clause, represented by a given structure, to the database,

– Remove a clause, represented by a given structure, from the database.” [14]

The application of the results of our experience with MetaML to Prolog are currently unexplored.

But at least on the surface, there seem to be some common themes. For example, Prolog, data can

be “run” using the call predicate. But there again, problems with variables being “available at the

right time” show up:

“[...] most Prolog implementations relax the restriction we have imposed on logic programs,

that the goals in the body of a clause must be non-variable terms. The meta-variable facility

allows a variable to appear as a goal in a conjunctive goal or in the body of the clause.

During the computation, by the time it is called, the variable must be instantiated to a

term. It will then be treated as usual. If the variable is not instantiated when it comes to

be called, an error is reported.” [90]

It will be interesting to see if these problems arising in meta-programming in a Prolog can be

addressed in a way similar to the way we have addressed some of these basic meta-programming

questions for a functional language.

Chapter 8

Conclusion

The single biggest problem in communication

is the illusion that it has taken place.

George Bernard Shaw

In this chapter, we review and appraise our findings and the extent to which they support our

thesis. We outline future work, and pose some open questions that we believe are of significance

to the research community.

8.1 Review

This dissertation reports on the results of scrutinizing the design and implementation of the multi-

stage programming language MetaML. Our approach to studying MetaML has been to formalize

its semantics and type system, and the properties we expect them to enjoy. In doing so, we have

identified a variety of subtleties related to multi-stage programming, and provided solutions to a

number of them. Our results include various forms of formal semantics for MetaML, in addition

to a sound type system. Our study has also resulted in a proposal for a refined type system, and

a refined view of the process of developing program generators using MetaML.

In Chapters 2 and 3, we saw how MetaML is a promising framework for meta-programming in

general, and for staging in particular. We saw how staging allows us to distribute the cost of a

computation over more than one stage of computation. This goal was achieved in the case of the

term-rewriting example, and in the case of other, more concise examples such as the power and

member functions. Our experience with programming in MetaML helped us recognize multi-stage

computation as a simple, natural, and clear computational phenomenon:

– It is simple because it requires only three annotations to explain.

146

147

– It is natural because it appears to be distinct from translation, another important computa-

tional phenomenon that we have described in introduction to this dissertation. It is also natural

because it applies, at least in principle, to both CBV and CBN evaluation strategies.

– It is clear because it can be easily described and demonstrated with mathematical rigor.

But while we emphasize the promise that multi-stage programming exhibits, we also caution that,

at least in its current incarnation, multi-stage programming has some limitations. Most notably,

the term-rewriting example needed to be rewritten in CPS in order to allow for better staging. At

this point, the question of whether the CPS transformation can be avoided or not is still open.

(See Section 8.4.)

In Chapter 4, we saw that a direct approach to extending a simple interpreter for a CBV lambda

calculus to a multi-level language such as MetaML can be difficult. On one hand, this difficulty is

surprising, because these simple interpreters can be extended to incorporate powerful and semanti-

cally complex features such as side effects and exceptions. On the other hand, such difficulty is not

surprising, because the essential “trick” behind these interpreters is that they are reifiers: Reifiers

take object-level concepts and map them directly to meta-level concepts. For example, integers

are mapped to integers, lambda-abstractions are mapped to lambda-abstractions, applications are

mapped to applications, conditionals to conditionals, and recursion to recursion. Multi-level fea-

tures of object-programs, such as Brackets, Escapes, and Run, cannot be interpreted naturally in

this “reifier” style because this style can only work when the feature we wish to interpret already

has a counterpart in the meta-language. This prerequisite is not satisfied for multi-level features.

In Chapter 5, we presented a deterministic semantics that is more suitable for formally specifying

the semantics of MetaML. We showed how a formal type-safety property can be established for

a subset of MetaML that we called λ-M. We then pointed out an expressivity limitation in the

basic type system for MetaML, and presented a proposal that avoids this problem. We argued that

this proposal for an extended MetaML is a better match for a multi-stage programming method.

However, our current practical experience with this proposed language is still limited.

In Chapter 6, we studied the reduction semantics for a subset of MetaML that we called λ-U, and

saw that it is hard to limit β reduction to level 0 in MetaML, that is, it is hard to stop semantic

equality at the meta-level from “leaking” into the object-level. The alternative interpretation of

our observations is that it is more natural to allow semantic equality at all levels in MetaML. The

essential reason is that the level of a raw MetaML terms is not “local” information that can be

determined just by looking at the term. Rather, the level of a term is determined from the context.

Because of substitution (in general) and cross-stage persistence (in particular), we are forced to

148

allow β to “leak” into higher levels. This “leakage” of the β-rule could be interpreted as a desirable

phenomenon because it would allow implementations of MetaML to perform a wider range of

semantics-preserving optimizations on programs. If we accept this interpretation and therefore

accept allowing β at all levels, we need to be careful about introducing intensional analysis. In

particular, the direct (deterministic) way of introducing intensional analysis on code would lead to

an incoherent reduction semantics and equational theories.

8.2 Summary of Results

We summarize the key results as follows:

1. Programming: By staging a number of programs in MetaML, we illustrated the potential

of multi-stage programming, and pointed out some weaknesses of the approach. Staging in

MetaML is a promising and intuitive process. The main weakness we identified is that the

term-rewriting example had to be rewritten in CPS so that better staging was achieved.

2. Implementation: We identified a variety of anomalies in the implementation, and suggested

corrections to many of them. The main example presented in this dissertation was the flawed

treatment of hidden free-variables, to which we proposed a solution using the idea of a cover.

3. Semantics: In order to understand how we can ensure the safety of generated programs, we

have studied the formal semantics of MetaML in many styles. The two formulations presented

in this dissertation were the reduction and big-step semantics. The reduction semantics and

the proofs of its confluence and soundness (in the CBN case) are novel, independent technical

results.

4. Type System: We identified various ways in which “multi-stage programs go Wrong,” and

developed examples that demonstrated that some type systems were too weak or too strong

for MetaML.

5. Meta-Programming: We identified coherence (and in turn, confluence) as a property that is

violated by trying to have semantic equality (β) and intensional (structural) analysis on code

in MetaML.

8.3 Appraisal of Results

Our thesis is that MetaML is a well-designed language that is useful in developing meta-programs

and program generators. We broke down the thesis into three main hypotheses:

149

H1. MetaML is a useful medium for meta-programming. In Chapter 2, we have explained the idea

of staging, and how it is easy to see that it can reduce cost in the abstract setting of the CBV

and CBN lambda calculus. We have given small example applications in Chapter 3 and a more

substantial example in Chapter 4.

H2. MetaML can be placed on a standard, formal foundation whereby staging annotations are viewed

as language constructs amenable to the formal techniques of programming languages. In Chap-

ters 5 we presented a big-step semantics for a core subset of MetaML, together with a type

system. In Chapter 6 we presented a reduction semantics for this core subset and proved it

confluent and sound in the CBN case.

H3. MetaML in particular, and multi-level languages in general, can be improved both in their design

and implementation by what we have learned while building MetaML’s formal foundations.

In Chapter 4 we have identified subtle and previously unknown problems that can riddle

implementations of multi-stage languages. Identifying many of these problems was a direct

consequence of studying the formal semantics of MetaML. In Chapter 5, we have proposed

adding an explicit type constructor for expressing closedness in MetaML, and argued for its

utility in supporting multi-stage programming in MetaML. In Chapter 6, we explained the

potentially negative effects of adding deterministic intensional analysis in a direct manner to

MetaML.

8.3.1 Limitations Future Works

The work presented in this dissertation can be improved in a number of ways:

1. Formal relations should be established between the various formulations of the semantics. The

reduction semantics should be also shown to respect the big-step semantics in the CBV case,

as we have done for the CBN case.

2. The implementation should be validated with respect to one of the abstract formulations of

the semantics. A good candidate seems to be the big-step semantics, because it is the closest

to the implementation.

3. The proposed extension to MetaML should be incorporated into the implementation, and this

implementation should be used to develop more substantial examples than the one we have

presented in this dissertation. It will be important to understand the practical implications of

the extensions that we have proposed, especially from the programmer’s point of view.

4. The subject reduction and type-safety results should be extended to a Hindley-Milner polymor-

phic type system, and the decidability of the type system in the light of the current extensions

should be verified.

150

5. The relationship between multi-stage programming partial evaluation concepts such as self-

application and the Futamura projections [40] has not been addressed in this dissertation, and

remains as future work.

8.4 Open Problems and Promising Research Directions

The work presented in this dissertation has directed our attention to many important questions

relating to multi-stage computation in general, and MetaML in particular. Here is the list of

questions that we see as significant:

1. Can we make the closedness annotations implicit in the terms of the programming language?

In particular, the term language of λBN is verbose, and has lost some of the simplicity of core

MetaML, which had only three constructs for staging. In λBN, asserting that a code fragment

is closed (using []) has become part of the responsibilities of the programmer. It remains an

open question whether there exists a statically typed language with the expressivity of λBN

yet needs only three additional constructs to realize staging.

2. Can we avoid the need for rewriting programs in CPS before staging? The term-rewriting

example in Chapter 3 shows that further optimizations on the generated code can be useful. It

may be possible, through the use of an ηv-like reduction, to produce optimal results without

having the user rewrite the program in CPS. Bondorf has studied improving binding times

without resorting to explicit CPS conversion [9]. The work of Sabry and Wadler suggests that

the use of Moggi’s λc may also be relevant to dealing with this problem [76].

3. Can MetaML be compiled using the traditional functional programming language compilation

techniques? Compiling MetaML requires staging its semantics, and will reveal new design

options that need to be pursued and understood. Model-theoretic interpretation functions

seem to have provided a good starting point for such research in the past, and we believe that

this will also be the case for MetaML.

Furthermore, by exposing the Safe-run constant to programmers, they will eventually have

new demands for controlling the behavior of this new operation, and will therefore pose more

interesting questions for the developers of compilers supporting this construct. Safe-run is a

way for the user to “appeal to the higher power of the compiler developer and to avoid meddling

with the complex and fragile implementation details,” and the user will necessary be picky in

specifying what he is asking for: A light-weight compilation phase that produces machine code

quickly, or a heavy-weight phase that takes longer but produces more efficient code? Compiling

for memory or for speed?

151

4. Is there a modular way for supporting a heterogeneous meta-programming language based on

MetaML? By focusing on the staging aspect of meta-programming, this dissertation presented

a number of concrete solutions to fundamental problems in staging. However, as we mentioned

in the introduction, another important application for meta-programming is translation. We

believe that our work can be extended in a fairly natural way to allow the manipulation of

multiple different object-languages at the same time. In particular, we can index the code

type by the name of a language, for which there is an associated syntax, and special typing

rules. Such a scheme is implicit in the meta-language used by Jones (see for example [40]) for

describing partial evaluation.

We believe that such a framework may even be appropriate for dealing run-time code genera-

tion. Run-time code generation is concerned with the efficient generation of specialized machine

code at run-time. While a compiled implementation of MetaML can provide a version of Safe-

run that generates machine code, it is implicitly assumed to be making calls to a compiler,

which is generally not considered fast enough for run-time code generation. If machine code

is considered as a typed language, we believe that it can be incorporated into a Heteroge-

neous MetaML setting. With the ongoing research efforts on typed assembly languages, this

possibility is not far-fetched.

5. Are there practical, sound type systems for expressing tag-less reifiers? In Chapter 4, we ex-

plained the subtleties in implementing a language like MetaML in the context of an interpreter

that we have described as “essentially a reifier”. Such interpreters can be of great utility if they

are staged, because they then are total maps from object-programs to meta-programs. If the

meta-language has a compiled implementation, reifiers provide us with a very simple means

for implementing compilers for many languages that are “similar” to (in the sense that they

are syntactically sugared subsets of) the meta-language. However, one problem remains: The

interpreters presented in Chapter 4 do not map object-programs to meta-programs, but rather

to a datatype carrying meta-programs. The tags in this datatype introduce a level of run-time

overhead that is not necessary if the object-program is well-typed. While it is currently possible

to express a tag-less reifier in untyped MetaML, it is not typable in MetaML’s type system.

The problem of finding an appropriate type system that would allow us to express tag-less

reifiers remains open.

6. Are there practical, theoretically sound approaches for allowing the programer to specify opti-

mizations on MetaML code? We have pointed out there there is a conflict between allowing

optimizations on object-code and intensional analysis. But there is no obvious problem with

152

associating domain-specific optimization to specific instances of the code datatype. The seman-

tics of such a datatype would then be defined modulo the optimizations, and the optimizations

themselves can be applied by the compiler non-deterministically. Furthermore, with practical,

statically verifiable methods for establishing confluence of a set of rewrite rules, it may be

possible to further simplify the semantics of such a domain-specific code type.

Appendix A

A Calculus with Level Annotations

Celery, raw

Develops the jaw,

But celery, stewed,

Is more quietly chewed.

Celery, Ogden Nash

This appendix presents an alternative approach to the reduction semantics of MetaML. We had

explored this approach, but did not develop it fully, as it involves a substantially larger calculus

than the one presented in Chapter 6. This appendix also explains in more detail how working

towards a Subject Reduction lemma as our guide helped us arrive at the type system for MetaML.

A.1 The λ-T Language

To avoid the problems discussed at the beginning of Chapter 6, we introduce Bubbles into our

language at levels higher than 0 as a means of explicitly controlling the elimination of Escapes.

Furthermore, we build on the simple observation that the set of expressions and the set of values

for the λ language can be defined as follows:

e ∈ E := v | x | e e

v ∈ V := i | λx.e

The mutual recursion in the definition is not strictly necessary — as we have seen in Chapter 6,

we can define expressions first, then values — but we have also found that the compactness of

this definition can pay-off when we extend a core language λ with more syntactic constructs. The

153

154

resulting multi-level calculus, called λ-T, has the following syntax:

e0 ∈ E0 := v | x0 | e0 e0 | 〈e1〉 | run e0

en+ ∈ En+ := en | in+ | xn+ | en+ en+ | λx.en+ | 〈en++〉 | ˜en | run en+

v ∈ V := i0 | λx.e0 | 〈 e0 〉

Values are either level 0 integers, lambda terms, or code fragments. Note that we have further

specified that the code fragments must be Bubbles. The primary role of Bubbles is to ensure that

there are no level 1 Escapes in a code value. It is also important to note that we have now refined

our notion of level to take Bubbles into account. The level of a term is the number of surrounding

Brackets, less surrounding Escapes and Bubbles. Intuitively, keeping track of this refined notion of

levels in the terms will allow us to deduce the exact state of rebuilding that the term has reached.

(We illustrate this point with a concrete example in Section A.1.5.)

Remark A.1.1 (Notation) We will simply write e, v, E, V whenever the index is clear from

the context.

A.1.1 Notions of Reduction. Or, Calculating with Bubbles

Now we have enough structure in the terms to direct reduction in a sensible manner, and without

need for contextual information. The three basic notions of reduction for the λ-T language are:

(λx.e01) e
0
2 −→βT

e01[x ::= e02]

˜〈 e0 〉 −→ET
e0

run 〈 e0 〉 −→RT
e0

The βT rule is essentially β restricted to level 0, but with an extra precaution taken in the definition

of substitution to preserve level-annotatedness when the variable x appears at a level higher than 0

in the body of the lambda term. In particular e1[x ::= e2] denotes a special notion of substitution1:

1 In the treatment of this chapter, we use Barendregt’s convention for free and bound variables [1]. In
essence, this convention states that, for any set of terms used in a proof or a definition, all bound
variables are chosen to be different from the free variables.

155

in[x ::= e] = in

x0[x ::= e] = e

xn+[x ::= e] = (xn[x ::= e])+

yn[x ::= e] = yn x 6= y

(e1 e2)n[x ::= e] = e1[x ::= e] e2[x ::= e]

(λy.e1)[x ::= e] = (λz.(e1[z/y][x ::= e]))

z 6∈ FV (e, e1) x 6= y

〈e1〉[x ::= e] = 〈e1[x ::= e]〉

˜e1[x ::= e] = ˜(e1[x ::= e])

(run e1)[x ::= e] = run (e1[x ::= e])

a [x ::= e] = a[x ::= e]

and where Promotion + : E → E is a total function inductively as follows:

(in)+ = in+

(xn)+ = xn+

(e1 e2)
+ = e1

+ e2
+

(λx.e)+ = λx.e+

〈e〉+ = 〈e+〉

(˜e)+ = ˜(e+)

(run e)+ = (run e+)

e
+ = e+

Thus the only non-standard feature of this definition of substitution is the case of variables at levels

higher than 0. This case arises exactly when a cross-stage persistent variable is being eliminated.

For example, the notion of level-annotatedness still allows terms such as λx.〈x〉. We chose to

use the non-standard notion of substitution rather than using more sophisticated well-formedness

conditions. In particular, the latter approach would require us to make cross-stage persistence

explicit in the language rather than implicit, and is likely to complicate the formal treatment

rather than to simplify it.

A.1.2 Bubble Reductions

Now we come to the main feature of the λ-T calculus, namely, the use of a set of reduction rules

that mimic the behavior of the “rebuilding” functions. These reduction rules start at the leaves of

156

a delayed term, and begin propagating a Bubble upwards.

in+ −→B1T
in

xn+ −→B2T
xn

en
1 en

2 −→B3T
en
1 e

n
2

λx. en −→B4T
λx.en

〈 en+ 〉 −→B5T
〈en+〉

˜ en −→B6T
˜en

run en −→B7T
run en

Intuitively, a Bubble around a term will assert that it is “free of top-level escapes”. The key concept

is that a delayed term free of top-level escapes can be treated as a normal program from the previous

level. Note further that Bubble reductions “generate” a Bubble surrounding the whole term either

from a level annotation (in the case of integers and variables) or from Bubbles surrounding all

subterms. If we can make a term generate enough surrounding Bubbles so that what is left of the

term reaches level 0, β at level 0 becomes applicable to what is left of the term.

A.1.3 Deriving a Type Rule for Bubble and Run

The question now is whether we can synthesis the type system for the language described above,

and whether there is any systematic way of approaching this question.

Starting from the type system for Brackets and Escapes, we will explain how one can arrive at the

extra rules for Bubble and Run by analysing the reduction rules. The type system is a judgment

Γ `n e : τ where e ∈ En, τ ∈ T is a type, and Γ ∈ D is an environment, and where types and

environments are defined as follows:

τ ∈ T := b | τ1 → τ2 | 〈τ〉

Γ ∈ D := [] | x : τ i, Γ

The unusual thing about this definition is the use of an integer i in the bindings of environments.

We will explain how the Bubble reductions motivate this particular generalization. We will also

need two simple operations on environments, namely Γ+ and Γ−, which increment and decrement

(respectively) indices on all bindings in Γ .

The two extra rules that are needed are as follows:

Γ− `n e : τ

Γ `n+ e : τ
Bubble

Γ+ `n e : 〈τ〉
Γ `n run e : τ

Run

Trying to prove Subject Reduction for the λ-T language provides us with concrete motivation for

these two typing rules. A Subject Reduction lemma says that every reduction preserves typability.

157

In other words, knowing only that the left-hand side of a reduction is typable, we must be able to

show that the right-hand side of the reduction is also typable. In what follows, we will explain how

this “provability” property helped us in synthesising the two new type rules.

Let us begin with Bubble. The Bubble reduction for variables is, operationally, aimed at capturing

the fact that this variable is free of Escapes, and this rule was our basis for developing the rules

for the untyped language. There are many reduction rules for Bubble, each a potential source of

(different) insights into what the type rule for Bubble should look like. It is crucial when looking

for insights to pick the simplest rule that will suggest the most concrete constraint. In this case, it

is the Bubble rule for variables. The most important feature of this rule is that it does not involve

Bubbles on its left-hand side. The same is true for the rule for integers, but the rule for integers

does not involve any “use” of the environment. Now, let us consider exactly what information is

available when we know that the left hand side of the Bubble rule for variables (B-2) is typable.

In other words, what do we know when Γ `n+ xn+ : τ holds? All we know is that Γ (x) = τn+.

What we want to prove, in general, is that the left-hand side is typable. More precisely, we want

to make sure that it is typable under the same environment, at the same level, and with the same

type. In other words, we want to be able to prove that Γ `n+ xn : τ . We want to find a uniform

way of inferring this result. The notion of uniformity here is hard to define, but let us take it to

mean “a simple way”. More concretely, given the following schema:

? `n x : ?

Γ `n+ x : τ
A New Rule Schema.

Now we consider the following question: What are the simplest transformations (on environments

and types) that would let us fill-in the missing parts, that would let us succeed in proving the

concrete problem of type preservation for the Bubble reduction for variables? Again, we already

have a rule for variables, so, we follow the derivation tree (schema) one level up using the variable

rule, to get a simpler equation:

?(x) =?n

? `n x : ?
Var on Schema

Recalling that what we know from the left-hand side of the rule is Γ (x) = τn+, we see that we can

fill in the schema ?(x) =?n as Γ−(x) = τn. We then propagate this information back to our new

rule schema, to get the following concrete Bubble rule:

Γ− `n x : τ

Γ `n+ x : τ
Concrete Bubble Rule

What we have argued so far is that if this rule holds, subject reduction would hold. But we still do

not have a useful rule, because this rule is only for variables. To arrive at a useful rule candidate,

158

we generalize the occurrence of the variable x to an arbitrary expression to get:

Γ− `n e : τ

Γ `n+ e : τ
Bubble (Tentative)

Again, we can use subject-reduction to test the validity of this more general rule. Indeed, using this

rule, we can show that all Bubble reductions preserve typing (note that we cannot do that for Run

yet, because we are ignoring the presence of its type rule for now). This progress is promising, but

the road to completely justifying this rule still requires ensuring that it preserves substitutivity,

and eventually, that we do have type-safety for our language.

With this promising Bubble rule, we can use either of the two rules that involve Run and Bubble,

we infer a “uniform schema” for Run in the same way that we have done for Bubble.

A.1.4 Subject Reduction

We will now consolidate the observations made in this section into a formal Subject Reduction

lemma. Figure A.1 summarizes the language λ-T that we present and study in this section, with

the exception of the lengthy definition of the non-standard notion of substitution [::=].

The following lemma tells us that any term typable at one level remains typable at the next

level. Furthermore, we can also increase (by one) the level of any subset of the variables in the

environment under which the term is typable.

Lemma A.1.2 (Promotion) If Γ1, Γ2 `n e1 : τ1 then Γ1, Γ
+
2 `n+ e+1 : τ1.

Lemma A.1.3 (Co-Promotion) If Γ1, Γ2 `n e1 : τ1 then Γ1, Γ
−
2 `n e1 : τ1.

Lemma A.1.4 (Generalized Substitution) If Γ i
1, Γ

i
2;x : τ i

2 `n e1 : τ1 and Γ2 `0 e2 : τ2 then

Γ i
1, Γ

i
2 `n e1[x ::= e2] : τ1.

Corollary A.1.5 (Substitution) If Γ2;x : τ0
2 `0 e1 : τ1 and Γ2 `0 e2 : τ2 then Γ2 `0 e1[x ::= e2] :

τ1.

Theorem A.1.6 (Subject Reduction for CBN λ-T) ∀n ∈ N, Γ ∈ D, τ ∈ T.∀e1, e2 ∈ En.

Γ `n e1 : τ ∧ e1 −→ e2 =⇒ Γ `n e2 : τ.

A.1.5 Towards Confluence

The key observation to be made about the new calculus is that the promotion performed in the

substitution does not injure confluence: Bubbles allow us to recover confluence. For example, let

us reconsider the example from Section 6.6:

159

Syntax:

e0 ∈ E0 := v | x0 | e0 e0 | 〈e1〉 | run e0

en+ ∈ En+ := en | in+ | xn+ | en+ en+ | λx.en+ | 〈en++〉 | ˜en | run en+

v ∈ V := i0 | λx.e0 | 〈 e0 〉

Reductions:

(λx.e01) e
0
2 −→βT

e01[x ::= e02]
˜〈 e0 〉 −→ET

e0

run 〈 e0 〉 −→RT
e0

in+ −→B1T
in

xn+ −→B2T
xn

en
1 en

2 −→B3T
en
1 e

n
2

λx. en −→B4T
λx.en

〈 en+ 〉 −→B5T
〈en+〉

˜ en −→B6T
˜en

run en −→B7T
run en

Types and Type Environments:

τ ∈ T := b | τ1 → τ2 | 〈τ〉
Γ ∈ D := [] | x : τ i;Γ

Type Rules:

Γ `n i : int
Int

Γ (x) = τ (n−m)

Γ `n x : τ
Var

x : τ ′n;Γ `n e : τ
Γ `n λx.e : τ ′ → τ

Lam
Γ `n e2 : τ ′ Γ `n e1 : τ ′ → τ

Γ `n e1 e2 : τ
App

Γ `n+ e : τ
Γ `n 〈e〉 : 〈τ〉

Brk
Γ `n e : 〈τ〉
Γ `n+ ˜e : τ

Esc
Γ− `n e : τ
Γ `n+ e : τ

Bubble
Γ+ `n e : 〈τ〉
Γ `n run e : τ

Run

Fig. A.1. The Reduction Semantics and Type System for λ-T

160

(fn x ⇒ 〈x1〉) (fn y ⇒ (fn x ⇒ x0) 50).

As we saw before, if we perform the outermost redex we get:

〈fn y ⇒ (fn x ⇒ x1) 51〉.

And there are still no βT redices left. But there are Bubble reductions that allow us to first derive:

〈fn y ⇒ (fn x ⇒ x0) 50 〉.

then

〈fn y ⇒ fn x ⇒ x0 50 〉.

then

〈fn y ⇒ (fn x ⇒ x0) 50 〉.

recovering the desired βT redex which we can perform to get:

〈fn y ⇒ 50 〉.

Furthermore, both reduction sequences can be reduced to the common term:

〈 fn y ⇒ 50 〉.

The following lemma formalizes the claim that we can always recover the level 0 redices in a term

even if the term has been promoted during a substitution.

Lemma A.1.7 (Effervescence) e+ →∗ e

Thus, even though this property was not our goal, we do get a carefully restricted form of β at

levels higher than 0 in λ-T.

We expect that this calculus is confluent, but we do not report a formal proof of such a property.

We do report a formal proof of confluence for a more concise calculus that we present in the

Section 6.7.

A.1.6 Remark on λ-U

Studying the λ-T language has allowed us to illustrate how carefully restricting reductions can yield

a promising calculus for MetaML. But λ-T has a large number of rules, and uses a non-standard

notion of substitution. Both these features can make it, at least, inconvenient for pencil and paper

reasoning. The λ-U language has a smaller set of reduction rules, and uses a standard notion of

161

substitution. Intuitively, λ-U moved the burden of recognizing that a piece of code is free of top

level Escapes from the object-language back to the meta-language: λ-T tracks freedom of top level

Escapes using Bubbles, and λ-U tracks freedom of top level Escape by testing for membership in

the set E0. As Bubbles were themselves introduced to “fix” level annotations, which themselves

were an object-level codification of a meta-level concept, we have gone full circle: Attempting to

exploit one meta-level concept: levels, we have identified a more fundamental meta-level concept:

freedom of top-level Escapes.

A.1.7 Remark on Level Annotations

It should be noted that while level annotations can be highly illuminating, they suggest that it is

appropriate to have the inside of level n Brackets always be a member of a set of values of level

n+. But this is not generally true. In fact, level annotations get in the way of unifying the set of

values V 1 with the set of expression E0, which is an important feature of λ-U.

A.1.8 Remark on Big-Step Semantics, Level Annotations and Bubbles

The determinism of the big-step semantics seems to alleviate the need for explicit level-annotations

and the Bubble construct. We presented the big-step semantics for the toy language λ-M that does

not have explicit level-annotations on terms. Defining the big-step semantics for a language with

level-annotations (such as λ-T) can be done in essentially the same way, but would be more verbose.

In particular, we would have to explicitly pass around the level-annotation “baggage”.

Defining the big-step semantics for λ-T would require adding a rule that says that rebuilding a

Bubble expression is idempotent. We expect that a big-step semantics with explicit Bubbles will

have superior performance to one without Bubbles, because the idempotence rule for rebuilding

Bubbles would allow us to avoid redundant rebuilding. This semantics is still largely unexplored.

Bibliography

[1] Barendregt, H. P. The Lambda Calculus: Its Syntax and Semantics, revised ed. North-

Holland, Amsterdam, 1984.

[2] Barendregt, H. P. Lambda calculi with types. In Handbook of Logic in Computer Science,

S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, Eds. Oxford University Press, Oxford,

1991.

[3] Bawden, A. Quasiquotation in LISP. In ACM SIGPLAN Workshop on Partial Evaluation

and Semantics-Based Program Manipulation (San Antonio, Jan. 1999), pp. 88–99. Invited

talk.

[4] Benaissa, Z.-E.-A., Briaud, D., Lescanne, P., and Rouyer-Degli, J. λν, a calcu-

lus of explicit substitutions which preserves strong normalisation. Journal of Functional

Programming 6, 5 (Sept. 1996), 699–722.

[5] Benaissa, Z. E.-A., Moggi, E., Taha, W., and Sheard, T. A categorical analysis of

multi-level languages (extended abstract). Tech. Rep. CSE-98-018, Department of Computer

Science, Oregon Graduate Institute, Dec. 1998. Available from [66].

[6] Benaissa, Z. E.-A., Moggi, E., Taha, W., and Sheard, T. Logical modalities and

multi-stage programming. In Federated Logic Conference (FLoC) Satellite Workshop on

Intuitionistic Modal Logics and Applications (IMLA) (July 1999). In press.

[7] Bondorf, A. A self-applicable partial evaluator for term rewriting systems. In TAPSOFT

’89. Proceedings of the Theory and Practice of Software Development, Barcelona, Spain (Mar.

1989), Lecture Notes in Computer Science, Springer-Verlag, pp. 81–95.

[8] Bondorf, A. Self-Applicable Partial Evaluation. PhD thesis, University of Copenhagen,

1990.

[9] Bondorf, A. Improving binding times without explicit CPS-conversion. In 1992 ACM

Conference on Lisp and Functional Programming. San Francisco, California (June 1992),

pp. 1–10.

[10] Cardelli. Type systems. In The Computer Science and Engineering Handbook. CRC Press,

1997.

162

163

[11] Cardelli, L. Phase distinctions in type theory. (Unpublished manuscript.) Available online

from http://www.luca.demon.co.uk/Bibliography.html, 1988. Last viewed August 1999.

[12] Cardelli, L. Typeful programming. In Formal Description of Programming Concepts, E. J.

Neuhold and M. Paul, Eds., IFIP State-of-the-Art Reports. Springer-Verlag, New York, 1991,

pp. 431–507.

[13] Clinger, W., and Rees, J. Macros that work. In Conference Record of the 18th An-

nual ACM Symposium on Principles of Programming Languages (POPL ’91) (Orlando, Jan.

1991), ACM Press, pp. 155–162.

[14] Clocksin, W. F., and Mellish, C. S. Programming in Prolog. Springer-Verlag, 1981.

[15] Consel, C., and Danvy, O. For a better support of static data flow. In Functional

Programming Languages and Computer Architecture (Cambridge, Aug. 1991), vol. 523 of

Lecture Notes in Computer Science, Springer-Verlag, pp. 496–519.

[16] Curry, H. B., and Feys, R. Combinatory Logic, Volume I. North-Holland, Amsterdam,

1958. Second printing 1968.

[17] Danvy, O. Across the bridge between reflection and partial evaluation. In Partial Evaluation

and Mixed Computation (1988), D. Bjorner, A. P. Ershov, and N. D. Jones, Eds., North-

Holland, pp. 83–116.

[18] Danvy, O. Type-directed partial evaluation. In ACM Symposium on Principles of Pro-

gramming Languages (Florida, Jan. 1996), ACM Press, pp. 242–257.

[19] Danvy, O., and Malmkjær, K. Intensions and extensions in a reflective tower. In Pro-

ceedings of the 1988 ACM Conference on LISP and Functional Programming (1988), ACM

Press, pp. 327–341.

[20] Danvy, O., Malmkjaer, K., and Palsberg, J. The essence of eta-expansion in partial

evaluation. LISP and Symbolic Computation 1, 19 (1995).

[21] Danvy, O., Malmkjaer, K., and Palsberg, J. Eta-expansion does the trick. Tech. Rep.

RS-95-41, University of Aarhus, Aarhus, Aug. 1995.

[22] Davies, R. A temporal-logic approach to binding-time analysis. In Proceedings, 11th An-

nual IEEE Symposium on Logic in Computer Science (New Brunswick, July 1996), IEEE

Computer Society Press, pp. 184–195.

[23] Davies, R., and Pfenning, F. A modal analysis of staged computation. In 23rd An-

nual ACM Symposium on Principles of Programming Languages (POPL’96) (St. Petersburg

Beach, Jan. 1996), pp. 258–270.

[24] Dershowitz, N. Computing with rewrite systems. Information and Control 65 (1985),

122–157.

164

[25] Di Cosmo, R. Isomorphisms of Types: from λ-calculus to information retrieval and language

design. Birkhäuser, 1995.

[26] Engler, D. R., Hsieh, W. C., and Kaashoek, M. F. ‘C: A language for high-level, effi-

cient, and machine-independent dynaic code generation. In Conference Record of POPL ’96:

The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(St. Petersburg Beach, Jan. 1996), pp. 131–144.

[27] Friedman, D. P., and Wand, M. Reification: Reflection without metaphysics. In Confer-

ence Record of the 1984 ACM Symposium on LISP and Functional Programming (Austin,

Aug. 1984), pp. 348–355.

[28] Glück, R., Hatcliff, J., and Jørgensen, J. Generalization in hierarchies of online pro-

gram specialization systems. In Logic-Based Program Synthesis and Transformation (1999),

vol. 1559 of Lecture Notes in Computer Science, Springer-Verlag, pp. 179–198.

[29] Glück, R., and Jørgensen, J. Efficient multi-level generating extensions for program spe-

cialization. In Programming Languages: Implementations, Logics and Programs (PLILP’95)

(1995), S. D. Swierstra and M. Hermenegildo, Eds., vol. 982 of Lecture Notes in Computer

Science, Springer-Verlag, pp. 259–278.

[30] Glück, R., and Jørgensen, J. Fast binding-time analysis for multi-level specialization.

In Perspectives of System Informatics (1996), D. Bjørner, M. Broy, and I. V. Pottosin, Eds.,

vol. 1181 of Lecture Notes in Computer Science, Springer-Verlag, pp. 261–272.

[31] Glück, R., and Jørgensen, J. An automatic program generator for multi-level special-

ization. LISP and Symbolic Computation 10, 2 (1997), 113–158.

[32] Gomard, C. K., and Jones, N. D. A partial evaluator for untyped lambda calculus.

Journal of Functional Programming 1, 1 (Jan. 1991), 21–69.

[33] Gunter, C. A. Semantics of Programming Languages. MIT Press, 1992.

[34] Hatcliff, J., and Danvy, O. Thunks and the λ-calculus. Journal of Functional Program-

ming 7, 3 (May 1997), 303–319.

[35] Hatcliff, J., and Glück, R. Reasoning about hierarchies of online specialization systems.

In Partial Evaluation (1996), vol. 1110 of Lecture Notes in Computer Science, Springer-

Verlag, pp. 161–182.

[36] Hindley, J. R. Basic Simple Type Theory, vol. 42 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, Cambridge, 1997.

[37] Hook, J., and Sheard, T. A semantics of compile-time reflection. Tech. Rep. CSE 93-019,

Oregon Graduate Institute, 1993. Available from [66].

165

[38] Jones, N. D. Mix ten years later. In Proceedings of the ACM SIGPLAN Symposium on

Partial Evaluation and Semantics-based Program Manipulation (June 1995), ACM Press,

ACM Press, pp. 24–38.

[39] Jones, N. D. What not to do when writing an interpreter for specialisation. In Partial

Evaluation (1996), vol. 1110 of Lecture Notes in Computer Science, Springer-Verlag, pp. 216–

237.

[40] Jones, N. D., Gomard, C. K., and Sestoft, P. Partial Evaluation and Automatic

Program Generation. Prentice-Hall, 1993.

[41] Jones, N. D., Sestoft, P., and Sondergraard, H. An experiment in partial evaluation:

The generation of a compiler generator. In Rewriting Techniques and Applications (1985),

vol. 202 of Lecture Notes in Computer Science, Springer-Verlag, pp. 124–140.

[42] Jørring, U., and Scherlis, W. L. Compilers and staging transformations. In Thirteenth

ACM Symposium on Principles of Programming Languages, St. Petersburg, Florida (1986),

ACM Press, pp. 86–96.

[43] Kieburtz, R. B., McKinney, L., Bell, J., Hook, J., Kotov, A., Lewis, J., Oliva, D.,

Sheard, T., Smith, I., and Walton, L. A software engineering experiment in software

component generation. In 18th International Conference in Software Engineering (Mar.

1996), pp. 542–553.

[44] Kohlbecker, E. E., Friedman, D. P., Felleisen, M., and Duba, B. Hygienic macro

expansion. ACM Conference on LISP and Functional Programming (Aug. 1986), 151–161.

[45] Leone, M., and Lee, P. Deferred compilation: The automation of run-time code genera-

tion. Tech. Rep. CMU-CS-93-225, Carnegie Mellon University, Dec. 1993.

[46] Machkasova, E., and Turbak, F. A. A calculus for link-time compilation (extended

abstract). (Unpublished manuscript.) By way of Franklyn A. Turbak (fturbak@wellesley.edu),

June 1999.

[47] Maier, D., and Warren, D. S. Computing with logic: Logic programming with Prolog.

The Benjamin/Cummings Publishing Company, Inc., 1988.

[48] Milner, R. A theory of type polymorphism in programming. Journal of Computer and

System Sciences 17 (1978), 348–375.

[49] Milner, R., Tofte, M., Harper, R., and MacQueen, D. The Definition of Standard

ML (Revised). MIT Press, 1997.

[50] Mitchell, J. C. Foundations for Programming Languages. MIT Press, Cambridge, 1996.

[51] Mogensen, T. Æ. Efficient self-interpretation in lambda calculus. Functional Programming

2, 3 (July 1992), 345–364.

166

[52] Moggi, E. Notions of computation and monads. Information and Computation 93, 1 (1991).

[53] Moggi, E. A categorical account of two-level languages. In Mathematics Foundations of

Programming Semantics (1997), Elsevier Science.

[54] Moggi, E., Taha, W., Benaissa, Z., and Sheard, T. An idealized MetaML: Simpler,

and more expressive (includes proofs). Tech. Rep. CSE-98-017, OGI, Oct. 1998. Available

from [66].

[55] Moggi, E., Taha, W., Benaissa, Z., and Sheard, T. An idealized MetaML: Simpler,

and more expressive. In European Symposium on Programming (ESOP) (1999), vol. 1576

of Lecture Notes in Computer Science, Springer-Verlag, pp. 193–207. An extended version

appears in [54].

[56] Muller, R. M-LISP: A representation-independent dialect of LISP with reduction seman-

tics. ACM Transactions on Programming Languages and Systems 14, 4 (Oct. 1992), 589–616.

[57] Muller, R. A staging calculus and its application to the verification of translators. In

Conference Record of POPL ’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (Portland, Jan. 1994), pp. 389–396.

[58] Nielson, F. Program transformations in a denotational setting. ACM Transactions on

Programming Languages and Systems 7, 3 (July 1985), 359–379.

[59] Nielson, F. Correctness of code generation from a two-level meta-language. In Proceedings

of the European Symposium on Programming (ESOP 86) (Saarbrücken, Mar. 1986), vol. 213

of Lecture Notes in Computer Science, Springer, pp. 30–40.

[60] Nielson, F. Two-level semantics and abstract interpretation. Theoretical Computer Science

69, 2 (Dec. 1989), 117–242.

[61] Nielson, F., and Nielson, H. R. Two-level semantics and code generation. Theoretical

Computer Science 56, 1 (Jan. 1988), 59–133.

[62] Nielson, F., and Nielson, H. R. Two-Level Functional Languages. No. 34 in Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, 1992.

[63] Nielson, F., and Nielson, H. R. Multi-level lambda-calculi: An algebraic description.

In Partial Evaluation International Seminar, Dagstuhl Castle, Germany, Selected Papers

(1996), vol. 1110 of Lecture Notes in Computer Science, Springer-Verlag, pp. 338–354.

[64] Nielson, F., and Nielson, H. R. A prescriptive framework for designing multi-level

lambda-calculi. In Proceedings of the Symposium on Partial Evaluation and Semantics-Based

Program Manipulation (Amsterdam, June 1997), ACM Press, pp. 193–202.

[65] Okasaki, C. Purely Functional Data Structures. PhD thesis, School of Computer Science,

Carnegie Mellon University, 1996.

167

[66] Oregon Graduate Institute Technical Reports. P.O. Box 91000, Portland, OR 97291-

1000,USA. Available online from ftp://cse.ogi.edu/pub/tech-reports/README.html. Last

viewed August 1999.

[67] Paulson, L. ML for the Working Programmer, second ed. Cambridge University Press,

1992.

[68] Plotkin, G. D. Call-by-name, call-by-value and the lambda-calculus. Theoretical Computer

Science 1 (1975), 125–159.

[69] Quine, W. V. O. Mathematical Logic, revised ed. Harvard University Press, 1951. First

published in 1940 by Norton.

[70] Quine, W. V. O. Set Theory and Its Logic. Harvard University Press, Cambridge, 1963.

[71] Quine, W. V. O. From a Logical Point of View, second, revised ed. Harper & Row, 1971.

[72] Reade, C. Elements of Functional Programming. International Computer Science Series.

Addison-Wesley, Wokingham, 1989.

[73] Rees, J., Clinger, W., Abelson, H., Adams IV, N. I., Bartley, D., Brooks,

G., Dybvig, R. K., Friedman, D. P., Halstead, R., Hanson, C., Haynes, C. T.,

Kohlbecker, E., Oxley, D., Pitman, K. M., Rozas, G. J., Sussman, G. J., and

Wand, M. Revised4 report on the algorithmic language Scheme. Tech. Rep. AI Memo 848b,

MIT Press, Nov. 1992.

[74] Reynolds, J. C. Definitional interpreters for higher-order programming languages. In ACM

National Conference (1972), ACM, pp. 717–740.

[75] Reynolds, J. C. Definitional interpreters for higher-order programming languages. Higher-

Order and Symbolic Computation 11, 4 (1998). (Reprinted from the proceedings of the 25th

ACM National Conference (1972) [74]).

[76] Sabry, A., and Wadler, P. A reflection on call-by-value. In Proceedings of the 1996 ACM

SIGPLAN International Conference on Functional Programming (Philadelphia, May 1996),

pp. 13–24.

[77] Sheard, T. A user’s guide to TRPL, a compile-time reflective programming language.

Tech. Rep. COINS 90-109, Dept. of Computer and Information Science, University of Mas-

sachusetts, 1990.

[78] Sheard, T. Automatic generation and use of abstract structure operators. ACM Transac-

tions on Programming Languages and Systems 13, 4 (Oct. 1991), 531–557.

[79] Sheard, T. Guide to using CRML, compile-time reflective ML. Available

http://www.cse.ogi.edu/˜sheard/CRML.html. Last viewed August 1999, Oct. 1993.

168

[80] Sheard, T. Type parametric programming. Tech. Rep. CSE-93-018, Oregon Graduate

Institute, 1993. Available from [66].

[81] Sheard, T. A type-directed, on-line partial evaluator for a polymorphic language. In

Proceedings of the Symposium on Partial Evaluation and Semantics-Based Program Manip-

ulation (Amsterdam, June 1997), pp. 22–3.

[82] Sheard, T., and Nelson, N. Type safe abstractions using program generators. Tech. Rep.

CSE-95-013, Oregon Graduate Institute, 1995. Available from [66].

[83] Shields, M., Sheard, T., and Jones, S. P. Dynamic typing through staged type in-

ference. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (Jan. 1998), pp. 289–302.

[84] Smaragdakis, Y., and Batory, D. Distil: A transformation library for data structures.

In USENIX Conference on Domain-Specific Languages (Oct. 1997), pp. 257–270.

[85] Smith, B. C. Reflection and Semantics in a Procedural Language. PhD thesis, Massachusetts

Institute of Technology, Jan. 1982.

[86] Smith, B. C. Reflection and semantics in LISP. In ACM Symposium on Principles of

Programming Languages (Jan. 1984), pp. 23–35.

[87] Smith, D. KIDS: A semi-automatic program development system. IEEE Transactions on

Software Engineering — Special Issue on Formal Methods 16, 9 (Sept. 1990), 1024–1043.

[88] Steele, Jr., G. L., and Gabriel, R. P. The evolution of LISP. In Proceedings of the

Conference on History of Programming Languages (New York, Apr. 1993), R. L. Wexelblat,

Ed., vol. 28(3) of ACM Sigplan Notices, ACM Press, pp. 231–270.

[89] Stemple, D., Stanton, R. B., Sheard, T., Philbrow, P., Morrison, R., Kirby,

G. N. C., Fegaras, L., Cooper, R. L., Connor, R. C. H., Atkinson, M. P., and

Alagic, S. Type-safe linguistic reflection: A generator technology. Tech. Rep. FIDE/92/49,

ESPRIT BRA Project 3070 FIDE, 1992.

[90] Sterling, L., and Shapiro, E. The Art of Prolog, second ed. MIT Press, Cambridge,

1994.

[91] Taha, W., Benaissa, Z.-E.-A., and Sheard, T. Multi-stage programming: Axioma-

tization and type-safety. In 25th International Colloquium on Automata, Languages, and

Programming (Aalborg, July 1998), vol. 1443 of Lecture Notes in Computer Science, pp. 918–

929.

[92] Taha, W., and Hook, J. The anatomy of a component generation system. In International

Workshop on the Principles of Software Evolution (Kyoto, Apr. 1998).

169

[93] Taha, W., and Sheard, T. Facets of multi-stage computation in software architectures.

Tech. Rep. CSE-97-010, Oregon Graduate Institute, 1997. Available from [66].

[94] Taha, W., and Sheard, T. Multi-stage programming with explicit annotations. In Proceed-

ings of the ACM-SIGPLAN Symposium on Partial Evaluation and semantic based program

manipulations PEPM’97, Amsterdam (1997), ACM, pp. 203–217. An extended and revised

version appears in [95].

[95] Taha, W., and Sheard, T. MetaML: Multi-stage programming with explicit annotations.

Theoretical Computer Science 248, 1-2 (In Press).

[96] Takahashi, M. Parallel reductions in λ-calculus. Information and Computation 118, 1

(Apr. 1995), 120–127.

[97] Veldhuizen, T. L. C++ templates as partial evaluation. In ACM SIGPLAN Workshop on

Partial Evaluation and Semantics-Based Program Manipulation (San Antonio, Jan. 1999),

O. Danvy, Ed., University of Aarhus, Dept. of Computer Science, pp. 13–18.

[98] Wadler, P., Taha, W., and MacQueen, D. B. How to add laziness to a strict language

withouth even being odd. In Proceedings of the 1998 ACM Workshop on ML (Baltimore,

Sept. 1998), pp. 24–30.

[99] Wand, M. The theory of fexprs is trivial. Lisp and Symbolic Computation 10 (1998),

189–199.

[100] Wand, M., and Friedman, D. P. The mystery of the tower revealed: A non-reflective

description of the reflective tower. In Meta-Level Architectures and Reflection, P. Maes and

D. Nardi, Eds. Elsevier Science, 1988, pp. 111–134.

[101] Whitehead, A. N., and Russell, B. Principia Mathematica. Cambridge University

Press, Cambridge, 1925.

[102] Wickline, P., Lee, P., and Pfenning, F. Run-time code generation and Modal-ML.

In Proceedings of the ACM SIGPLAN’98 Conference on Programming Language Design and

Implementation (PLDI) (Montreal, June 1998), pp. 224–235.

[103] Winskel, G. The Formal Semantics of Programming Languages: An Introduction. Foun-

dations of Computing series. MIT Press, Feb. 1993.

[104] Wright, A. K., and Felleisen, M. A syntactic approach to type soundness. Information

and Computation 115, 1 (Nov. 1994), 38–94.

Biographical Note

Walid Taha was born on April 17th, 1972, in Tanta, Egypt. He spent the school year 1985/86

attending Corvallis High-School, Corvallis, Oregon. He completed the Oxford University General

Certificate of Education Ordinary level examinations at Kuwait English School, Salwa, Kuwait,

in 1987. Walid went off to study what was at first Mechanical Engineering, then Electrical Engi-

neering, then eventually Computer Engineering, at Kuwait University. During his college studies,

he interned a number of times at Asea Brown Boveri, Baden, Switzerland, under the supervi-

sion of Dr. Karl Imhof. At Kuwait University, Prof. Mansoor Sarwar’s Programming Languages

course introduced Walid to functional programming. Because of the Arabian Gulf conflict, a one

week vacation turned into a school year at the University of Alexandria, and two internships (one

with Schlumberger in Alexandria, Egypt, and Linz, Austria, and one with Asea Brown Boveri,

Baden, Switzerland). Eventually, Walid meandered back to Kuwait University and finished his

senior project on compiling LISP to Pascal, and completed the Bachelors of Science in Computer

Science and Engineering in 1993.

After graduation, Walid spent two months at the Göthe Institut, Bremen, Germany, studying

German on a scholarship from the German government. He then returned to Kuwait to contemplate

the future. When he got tired, he joined the Masters program in Electrical Engineering for one

semester, and then worked as a Software Engineer at the Office of the Vice President for Planning

Affairs at Kuwait University.

During this year, Prof. Khalid Al-Saqabi of Kuwait University was on sabbatical at some “Oregon

Graduate Institute”. Prof. Khalid was obviously having too much fun at OGI, and insisted that

Walid apply there for the PhD program. And so he did.

At OGI, Prof. David Maier made math look interesting again. Prof. James Hook lured Walid into

spending the next four years of his life working on semantics in PacSoft. Walid’s advisor, Prof.

Tim Sheard, was starting to work on a most intriguing creature called MetaML.

During his Doctoral studies at the Oregon Graduate Institute, Beaverton, Oregon, Walid interned

for four months at Lucent Bell Laboratories, Murry Hill, New Jersey, working with Dr. Phil Wadler

on implementing Wadler’s proposal for lazy ML datatypes.

170

171

Currently, Walid is a Post-doctoral Fellow at the Department of Computing Sciences, Chalmers

University of Technology, Gothenborg, Sweden.

