Java Bytecode to Native Code Trandation:
The Caffeine Prototype and Preliminary Results

Cheng-Hsueh A. Hsieh JohnGyllenhaal Wermei W.Hwu
Center for Reliable andigh-Performance Computing
University of lllinois
Urbana-Champaign, IL 61801
ada,gyllen,hwu@crhc.uiuc.edu

Abstract

The Java hytecode langua@ is emerging & a software
distribution standad. Wth major vendas comnitted to
porting the Java rurttime ewironment to their platforms,
programs in Java bytecode are epected to run withou
modifi cation onmulti ple platforms. Thesefirst generation run-
time ewironments rely on an interpreter to kridge the gap
between the bytecode instructions and the native hardware.
This interpreter approach is gaufficient for specialized
appications sich as Internet browsers where apgication
performance is often limited by network delays rather than
processor speed. It is, however, not sufficient for executing
general apgications distributed in Java bytecode. This paper
presents our initial prototyping experience with Caffeine, an
optimizing translator from Java bytecode to naive machine
code. We discussthe major technical issues involved in stack
to register mappng, run-time memory structure mappng, and
exception handlers. Encouraging initial results based on ou
X86 port are presented.

1. Introduction

The software community has long desired a universa
software distribution language. If such a language is widely
supported across ystems, software vendors can compile and
validate their software products once in this distribution
language, rather than repeaing the process for multiple
platforms. Software complexity is rapidly increasing and
validation has become the deciding factor in software cost and
time to market. Therefore, substantial economic motivation

Copyright 1996 IEEE. Published in the Proceedings of the 29th Annual
Internationdl Symposium on Microarchitecture, December 2-4, 1996 Paris, France.
Persond use of this materid is permitted. However, permisson to reprint/repuldish
this materia for resale or redistribution pupases or for creating new coll ective works
for resae or redistribution d serversor lists, or to reuse any copyrighted comporent of
this work in ather works, must be obtained from the IEEE Contad: Manager,
Copyrights and Permissons /| EEE Service Center / 445Hoes Lane/ P. O. Box 1331/
Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966

exists behind efforts to creae such a software distribution
language. The progress however, has been very slow due to
legal and technical difficulties.

On the lega side, many software vendors have been
skeptical about the aility of the proposed software distribution
languages to protect their intellectual property. In practice,
such concern may have to be aldresed empiricaly after a
standard emerges. Although the protection of intell ectual
property in software distribution languages is an intriguing
isaue, it is not the topic addressed by this paper. For the
purpose of our work, we expect Java to be aoepted by a
sufficient number of software vendors in the nea future to
make our work relevant.

On the technica side, the performance of programs
distributed in a universal software distribution language has
been a major concern. The problem lies in the mismatch
between the virtua machine a&amed by the software
distribution language and the native machine achitecture. The
task of bridging the gap is made more difficult by the lack of
source code information in the distributed code in order to
protect intell ectual property. As aresult, software interpreters
have been the main execution vehicles in the proposed
standards. The disadvantage of software interpreters is poor
performance. This disadvantage has been partidly
compensated for by the fast advance of microprocessor speed.
For applications such as Internet browser applets where overall
performance is often more limited by network delays than
processor speed, sacrificing processor performance in favor of
reducing software cost has become aceptable. This is,
however, not true for general applications.

This paper presents our initial prototyping experience with
Caffeine, an optimizing Java bytecode to native machine code
translator. Although our techniques are presented in the
context of handing Java, they are gplicable to aher software
distribution languages such as Visual Basic P-code. We ae by
no means arguing that Java is the ulti mate software distribution
language. Rather, we intend to develop a strong portfolio of
techniques from our Java implementation efforts that will
contribute to the creaion and acceptance of whatever language
becomes the final standard. The objective of thiswork isto run
the translated code & nealy the full performance of native code

directly generated from a source representation such as the C
programming language.

Due to space limitations, we will li mit our discusson to
three critical isaues involved in the translation process The
first issueis the mapping o the stack computation model of the
bytecode Virtual Machine to the register computation model of
modern processors. A performance enhancing algorithm that
takes advantage of the register computation model is presented.
This algorithm requires analysis to identify the precise stack
pointer contents at every point of the program. In addition,
most compilation infrastructures require that eeach virtual
register contains just one type of data, and that virtual registers
do not overlap. We present a live-range-based register-
renaming algarithm that can resolve such inconsistencies in
non-pathological cases. The second issue is mapping the
bytecode memory organization to the native achitecture. A
more dficient memory organization than the one used by the
Java interpreter is introduced. The third isuue is how to
translate the exception handing semantics of Java We
describe the preliminary method used by Caffeine and some of
the issues involved.

A prototype of Caffeine has been developed based on the
IMPACT compilation infrastructure [1]. The prototype is
sufficiently stable to handle Java bytecode programs of
substantial size. This paper presents me initial experiments
comparing the red machine execution time of Java bytecode
programs using the SUN Java interpreter 1.0.2, the Symantec
Java Just-in-time (JIT) compiler 1.0, and the IMPACT Java to
X86 retive code trandator 1.0 runnng under Windows 95.
Also included in the comparison is the execution time of
equivalent C programs directly compiled by the Microsoft
Visual C/C++ compiler 4.0 into X86 retive code. Preliminary
results dhow that the optimizing translator is currently capable
of achieving, on average, 68% of the speal of the directly
compiled native code.

The remaining sections are organized as follows. Section 2
introduces different approaches to execute Java bytecode
programs and an overview of our translation steps. Section 3
presents the stack computation model used by Java foll owed by
aproposed stack to register mapping. An overview of the stack
analyses required to perform and validate this mapping is
introduced in Section 4 Section 5 dscusses the runtime
memory model adopted by the SUN Java interpreter and
presents a more dficient organization. Complications due to
exception handling are discussed in Section 6. Preliminary
performance results are presented in Section 7. Section 8
provides ome concluding remarks and drections of future
work.

2. Background

We will not cover the Java bytecode Virtual Machine model
in this paper due to space limitations. Interested readers are
referred to the Java web site [2] and a large collection of Java
literature [3-11]. We will instead introduce three competing
and sometimes complementary approaches to execute Java
bytecode programs: interpreters, just-in-time compilers, and
optimizing native code translators. A preliminary performance

comparison between these @gproaches and retive code
execution are presented in Section 7.

Interpreters are the most widely uncerstood approach to
execute Java bytecode programs. A software interpreter
emulates the Java bytecode Virtual Machine by fetching,
decoding, and executing bytecode instructions. In the process
it faithfully maintains the contents of the computation stack,
local memory state, and structure memory. The Javainterpreter
from SUN Microsystems is available to the public [2].

Just-in-time compilers do an-the-fly code generation and
cache the native code sequences to speed up the processng o
the original bytecode sequences in the future. The current
generations of just-in-time compilers do not save the native
code sequences in externa files for future invocations of the
same program. Rather, they keep the native code sequence to
spead up the handing o the corresponding bytecode sequence
during the same invocation of the proggam. Thus, they take
advantage of iterative execution patterns such as loops and
recursion. At the time of this work, Borland [12] and Symantec
[13] had both announced just-in-time compiler products, and
the Symantec JIT compiler is used in this paper. Due to the
code generation overheal that occurs during program execution,
just-in-time compilers are ill intrinsically slower than
executing native code programs.

Optimizing ndive code translators use compil er analysis to
translate bytecode programs into native code programs off-line.
This is the least understood approach among the three
dternatives. Without extensive analysis and transformation
capabiliti es, the native code generated may not be much better
than that cached in the just-in-time compilers. Therefore,
optimizing native code translators must perform extensive
analysis and optimization in order to dfer value beyond just-in-
time compilers. Such analysis and transformations tend to
make the tranglation processmore expensive in time and space.
In general, only those @plications that will be repeaedly
invoked or those gplications whose execution time is much
longer than the trandation time should be translated. Thus,
optimizing native code translators will not eliminate the neel
for interpreters and just-in-time compilers.

Figure 1 shows an overview of the steps in our prototype
optimizing native code translator. The Java class files [4]
reguired to execute the program are identified and decoded into
sequences of bytecode operations, which are later used for
construction of an interna representation (IR), called the Java
IR, which is organized into functions and haesic blocks. The
construction of the Java IR is graightforward dwe to the
absence of indirect jumps, indirect cals, self-modified code,
embedded data, and tranch target alignment “filler” code in
bytecode. Due to the nature of the Java Virtua Machine
specification [4] and the class file format, data recognition is
aso straightforward. Thus, the information recovered from
Java bytecode ensures complete control flow graph
construction.

The IMPACT low-level intermediate code (Lcode) serves as
a machine-independent IR for our prototype translator.
Translation from the Java IR to an efficient Lcode IR requires
extensive analyses, as discused in Section 4 The stack
computation model is mapped to a more dficient register
computation model. Bytecode operations which do not have
corresponding Lcode operations are translated into sequences of

Inlining
Data Dependence Anal.

InterclassAnalysis
. Classic Optimization imi
Machlne-lndep. ILPOptinEizaion Op.tlmlzed
icai Machine-Indep.
IR (Lcode) Predication
> IR
§Z$ gngeésii;er Mapping Pegohae Optimizétion

Classinheritance Analysis
Instruction Annotation

Java
IR

Instruction Reaognition
Data Reaognition

ByteCode

Classfile reader
Java bytemde deaoder

Scheduling, Speculation
Register Allocation

Optimized
Machine-Specific
IR

Assmbly code generation
Asemble & Link

Optimized
Native Code

Run-time support

Figure 1. Java bytecode to native code translation steps.

Stack operations Translated code

push A push A

push B push B
add r2 < pop (B)
rl < pop (A)
r3&<rl+r2

push r3

Figure 2. Translated intermediate code
example without stack to register mapping.

Lcode operations or into function call s to the emulation library.
After the Lcode IR is constructed, it is optimized by the X86
compil ation path in the IMPACT compil er to generate assmbly
code and then an executable which runs under Windows 95.
The Lcode IR construction phese is generic and will be
retargeted to aher code generation paths supported in IMPACT
compiler in the future.

3. Stack to Virtual Register Mapping

3.1 Stack Computation Model

Java bytecode Virtual Machine uses a stack computation
model to avoid making assumptions about the achitectural
register file size available to the interpreter [4]. Source
operands are fetched from the top of operand stack and the
result is pushed back on. The instruction size in this model is
small since the operands are implicitly defined and require no
operand fields in the instruction encoding, which facilit ates

efficient object code distribution over the Internet. Beside the
operand stack, the Java Virtual Machine dso provides a
memory array, called the local variable array, for storage of
local variables.

No stack analysis is required if the translated native code
maintains a run-time operand stack in memory and manipulates
it in the same way that the interpreter does. This
straightforward approach is able to hand e any situation that the
interpreter can hande. The runtime cost of this
straightforward approach, however, can be expensive due to the
unrecessry memory traffic caused by inefficient register
utilization. In Figure 2, the stack operations and the
corresponding unoptimized translated intermediate code ae
presented side-by-side for an add operation to ill ustrate this
approach. A load/store achitecture is assumed in this example.
Note that the original add operation pops two goerands off the
stack, adds them, and pushes the result back on.

Optimizations can be performed on the translated code to
eliminate some of the loads (pops) and stores (pushes).
However, many will <ill exist due to the use of stack
operations acrosshbasic blocks. Global removal of unrecessary
loads and stores requires an analysis equivaent to that
discussed in Section 4 and is not the focus of this paper.

3.2 Register Mapping: Global Stack Location
Register Mapping and Renaming

The performance of the translated code can be improved by
mapping the runtime stack to the virtual register file. The
approach used by Caffeine is to assgn each stack location a
unique virtual register number. Register all ocation is later used

Stack Translated After copy prop. &
operation code Dead code removal
push A ril < A -
push B r2 < B -
add rl < rladdr2 rl €< AaddB
Figure 3. Translated intermediate code

example with stack to register mapping.

ri
8-byte double
r2 stack
grows...
r3 <€— 4-byte integer
4-byte float | .. v

Figure 4. Example of type or size mismatch
and register aliasing problems. A 32-bit
architecture is assumed.

to all ocate the virtual registers to physical registers during the
code generation phaese. After this register mapping, a push to
the operand stack is translated to a move to the register
assgned to the stack location pointed to by the current stack
pointer, and a pop is trandated to a move from the register
assgned to the stack location. This algarithm can only be
applied when a constant stack offset can be determined for
every push and pop at trandlation time. Algorithms to
determine when this transformation can be @plied are
discused in Section 41. The local variable aray can be
mapped to virtual registers using the aray indices. Figure 3
shows the translated code using this approach for the same add
operation as Figure 2. The moves of operands to virtua
registers rl and r2 before add will be forward copy propagated
if posgble. They are then removed as deal code if they are not
live out.

There ae two isaues associated with this approach that need
to beresolved. First, variables with dfferent types or different
sizes may be pushed to the same stack location and thus
assgned to the same virtual register, causing some virtua
registers to hold multiple types of operands or to aias with
adjacent registers. In Figure 4, a push of 4-byte float onto
stack location 3 is trandlated to “r3 € float_value’ in this
register mapping scheme. At ancther point in the program, a 4-
byte integer could be pushed to the same stack location and ke
trandlated to “r3 € integer_value’. As a result, register r3
holds two different types, which is not alowed in many
compiler infrastructures. Anocther conflict arises if an 8byte
double is pushed to stack location 2 and 3 The translated
statement “r2 € doulde value’ causes register r2 to aias with

Figure 5. Stack balance analysis example.

neighboring register r3. Because Java has no union and al
type conversions are made explicit, accesses to different types
should never aias. Bytecode generated from a vaid Java
compiler should aways have the type state property [6] that
guarantees neither type conflict nor aiasing problems sould
ocaur. An algarithm presented in Section 4.2 is used to
validate this assumption and to disambiguate virtual registers
which hold different types in this mapping scheme.

Second, pardlelism may be lost for wide-issue machines
because different variables use the same stack location in the
origina Java bytecode ad get asdgned to the same virtua
register in this mapping scheme. This reuse of the virtual
registers introduces artificial output and anti-dependencies.
The same dgorithm used to disambiguate virtual registers
which hold dfferent types can be gplied to perform global

virtual register renaming to remove the artificial dependencies.

4. Stack analysis

4.1 Stack balance analysis

For our register mapping scheme to function correctly, the
position of the stack pointer must be aknown constant for each
operation at translation time. Although bytecode generated
from valid Java compilers sould satisfy this property [6], we

can not assume all loaded bytecode came from valid sources.

A basic block may push more items on the stack than it
consumes, and vice versa. The residue of each basic block,
which is defined as the total number of pushes minus the total
number of pops in the block, is computed first. The control
flow graph is then traversed depth-first and each node is
marked “visited” along the path from the first block. The stack
pointer position upon entering a block is equal to the
acaumulated residue. If a marked besic block is revisited, the
acaumulated residue is checked against the stack pointer
position in the revisited bock. If they disagree the stack to
register mapping cannot be gplied to this control flow graph.
In such cases, Caffeine reverts to the stack model. The
acaumulated residue is also checked against zero whenever a

if A
N
push

a1
if A
P!
pop
Ny

Figure 6. Example of where stack based approach
must be used.

LR#1 LR#2

def: opl op3 op5
Y \ur oy
USE: | op2 op4 | op6

Figure 7. Def-use chains grouping.

led block (a block with no succes=or) is reeched to ensure that
the stack is balanced in eah control flow graph. This
agorithm runsin linea time in the number of basic blocks and
control flow arcs. Figure 5 shows a control flow graph whose
blocks are numbered in the order that they are visited by this
agorithm. In this example, we asume blocks 4 and 13 fave a
residue of one, and Hocks 9, 11, and 12 lave aresidue of
minus one. All paths from block 1 to block 10 are stack
balanced. The position of the stack pointer for each block is
also a known constant. Specifically, the stack pointer at the
entrance to blocks 5, 6, 7, 8, 9, 11, and 12 mints to location
one. For therest of the blocks, the stack pointer initially points
to location zero.

An example of when register mapping cannot be currently
applied is own in Figure 6. Depending on the path traversed,
the stack offset for the pop is either zero ar one. For this case,
the stack based method needs to be used. However, since we
are using a valid Java compil er, the register-based approach can
always be used.

4.2 Liverange disambiguation and register renaming

The mapping o stack locations and local variables to
registers could have type and size conflicts as discussed in
Section 32. Variables of different types which reside in the
same virtual register are separated into separate registers, when

External Heap Memory Shared Memory
: Hande Space Objed Space ' ClassA descriptor
! : 2 : class Run-Time
clasobi_ AT L1 obj_ptr »| class : Type Info.
R OO instance :
method_table_ptr data [S IR USRI
method block
methad table : -
class ptr
method_ptr .
: ClassB descriptor
i 2 classRun-Time
arrayobjik 0obj_ptr > aL fac)}; : Type Info.
i B] 0
length | type R I N A T
method block
class ptr

Figure 8. Run-time memory organization used by
Java interpreter.

possble, using the technique presented below. The live ranges
of each register can be characterized by their def-use chains.
Since the acess of a double aso takes the next contiguous
memory word, the normal reaching-definition analysis [16] is
slightly modified to take this effect into acoount. To be
specific, the definition of r2 by an 8byte double in Figure 4
also reaches the contiguous regis8er

For each register rx, the identified def-use chains are
grouped into non-overlapping live ranges. In Figure 7,
operations opl, op3, and op5 define the register rx and
operations op2, op4, and op6 wse the same register rx. The def-
use chains for register rxare 1> 2, 1> 4, 3> 4, and 5> 6as
shown. Each connected graph forms a non-overlapping live
range of register rx. Asaresult, opl, op2, op3, and op4 form a
live range (LR#1) while op5 and op6 form another (LR#2).
Register rx in each live range is renamed to a different register
id. If thetype of register rx is not consistent inside alive range
after this renaming, the stack to register mapping cannot be
applied and the translation fall s back to the stack computation
model.

5. Run-time memory organization

Java programs are name-binding rather than addressbinding
and thus allow flexibility in the run-time memory organization
implemented by the interpreter. Dynamically all ocated objects
in the heg can be roughly categarized into class objects and
array objects. Figure 8 illustrates the heg memory
organization wed by the SUN Java interpreter. In this
organization, neither a class object nor an array object points
directly toits asociated data. Rather, there is an 8byte hande
in between. Accesses to both class instance data and array
body require two levels of indirection. Accesses to the method
block for method invocation need three levels of indirection.
Since these accessevents take place frequently during program
execution, such high levels of indirection can cause significant
performance degradation.

The enhanced memory model proposed in this paper (in
Figure 9) reduces the anount of indirection by combining the

External Heap Memory Shared Memory
REfErEN0e oo
ect block Class A descriptor
dass pr » dassRun-Tine
dassol_ptr e Type Irfo.
das -
1 instance o |
data method Hock
a'rayoh_gr --------------------------- G&Bdm“[mf
51 &My dassRn-Tine
body TypeInfo
.............. uock
dass pr h

Figure 9. Run-time memory organization
used by Java bytecode translator.

classinstance data block and the method table into ane object
block. The reference to object block now requires only one
level of indirection. Since the classruntime type information
in our implementation is of constant size, the method block can
be acesed by a constant offset from a pointer to the class
descriptor. The method_gr in Figure 8 is thus eliminated,
which reduces a method block reference to two indirection
levels. The enhanced model also consumes less memory.
Changes made to the run-time library, which is urce licensed
from SUN, to support this enhanced memory model are
minimal due to the library’s heary use of preprocesor macros
for handle-to-objeatlereferencing.

6. Exception Handler Considerations

Exception handers are sections of code that are reached
when a runtime exception ocaurs. The try-block in Java is
designed to enclose statements which may cause runtime
exceptions. Exceptions which ocaur within a try-block are
captured by an associated catch-block of the same exception
type. A Java method can have many exception handers
cascaded together to guard ordinary code, or to guard other
handers. In Figure 10, block 14 is an exception hander that
guards its try-block consisting of blocks 4 to 8. There ae four
issues that must be addressed during translation.

First, after exception handling, control may be transferred
back to the original program (e.g. in Figure 10, block 14 >
10). As aresult, exception handers neel to be connected to
the control flow graph as shown in Figure 10.

Second, an exception handler might use local variables
defined before its asociated try-block. In Figure 10, the
definition of local variable entry LV[1] reeches the use in
exception hander block 14. A pseudo arc, shown as a dotted
ling, and a null block preceding the try-block are creaed to
alow live variable information to be passed to the hander.

def LV[1]

use LV[1]
~ Catch-bock
Exception :
. handler .
Y :
use LV[] :
LV[2]=1 -

use LV[1]

LV[2] alive later

Figure 10. Example of exception handing.

Otherwise incomplete flow analysis may lead to incorrect
optimizations.

Third, during optimization and scheduling, an instruction
inside the try-block cannot be moved outside its try-block
without enlarging the try-block in general. However, if the try-
block has to be eilarged, to avoid changing the program
behavior, the alded instructions gould not cause exceptions
that can be captured by the try-block’s handler.

Fourth, for maximum portability, exception handling
support in the Java interpreter does not rely on the underlying
architecture or operating system. Thus, the interpreter
explicitly checks for null references, array index bounds, divide
by zero, etc. It is expensive and often unrecessary for the
translated code to do al of these explicit checks. Caffeine
currently explicitly checks array index bounds in the translated
code. This checking costs about 10% of the performance across
our benchmark programs. Optimization opportunities exist to
conduct analysis to eliminate unrecessry explicit checks.
Previous work has $hown that program analysis can be done to
determine if it is posgble for a load or store to ever have an
address of zero ar to ever acoess outside of its intended array,
etc., for the purpose of speculative code motion [20].

The benchmarks presented in Section 7 d not cause
exceptions and thus do not exercise the exception hander
capabilities of Java. Although Caffeine does not currently
support many of these capabilities, we believe that the
underlying hardware achitectures can be used to support the
remaining exception-handling capabiliti es without affecting
performance of these benchmarks.

7. Benchmarksand Preliminary Results

A suite of six integer programs was <lected to evaluate our
prototype translator. There were currently no standard Java
benchmarks generally available & the time of this work. For
eaxh program, we hand translated the C source code into
equivalent Java source code. By equivaence we mean that the

100.0%

90.0%

E SUN (interpreter)

B Symantec (JIT)

O Caffeine (Stk-Orig.Mem)

[Caffeine (Reg-Orig.Mem)
Bl Caffeine (Reg-Enh.Mem)

80.0%

Percentage of C performance
w N ul (o)) ~
©c o o o o
S 8 8 8 S
- N S N

20.0%

10.0%

0.0% ,_I:._

cmp compress grep

A

Pi Siewe wc Overall

Benchmarks

Figure 11. Experiment results on different approaches. All numbers are relative speed to the equivalent
C code compiled by Microsoft Visual C/C++ compiler with optimization level two.

algorithm, data structures, and operand types used in the Java
code and the C code ae the same. Due to the fundamental
differences between C and Java with regard to the object-
oriented concept, array acoessng, array index bounds checking
and library routines, an exact correspondence is not aways
feasible. When this ocaurred, we modified the C program so
that it could be translated with close correspondence. The Java
sources thus generated are then compil ed into Java bytecode by
the SUN Java compiler.

Figure 11 shows preliminary results that compare the red
machine execution time of Java bytecode programs using the
SUN Java interpreter, the Symantec Java Just-in-time compil er
(JIT), and dfferent configurations of the IMPACT Java to X86
native code translator Caffeine. All of the progams are
executed on an Intel Pentium processor running Windows 95.
Performance is siown in Figure 11 as a percentage of the
benchmark performance for the equivalent C code compiled by
the Microsoft Visual C/C++ compiler with optimization level
two. The first Caffeine model (Stk.-Orig.Mem) uses the stack
computation model and the interpreter’s memory model. The
performance is, on average, 2.8 times higher than the JT
compiler. This is because of the optimizations that remove
unrecessry pushes and pops, and hecause no initial code-
generation is required. The second Caffeine model (Reg.-
Orig.Mem) uses the register computation model insteal of the
stack model. This results in 53% performance improvement

over the stack model. The final Caffeine model (Reg.-
Enh.Mem) aso uses the proposed memory organization
instead of the interpreter’s memory organization. This results
is a 7% performance improvement. This final model of our
prototype Java native code translator Caffeine is capable of
generating code that runs on average & 68% of the speed of the
equivalent C code, 4.7 times faster than the Symantec Java JIT
compiler, and more than 20 times faster than the Java
interpreter. For these preliminary results, the Caffeine
translated code is optimized using classc C code optimization
techniques without profiling andlining.

8. Conclusion and FutureWork

In this paper, we presented our initial prototyping
experience with Caffeine, a Java-bytecode-to-native-machine-
code trandator, to demonstrate the feasibility of efficient
universal software distribution languages. The preliminary
results sow that it is capable of achieving 68% of the speed of
the native code directly compiled from the equivalent C code.
Besides the fact that it removes the interpretation overhea,
much of the performance gain over the SUN Java interpreter
comes from the stack to register mapping, which fully utili zes
the register computation model of modern processors. The
reguirements and algorithms for the stack to register mapping

were presented and dscussed. Although these requirements
will hold for al Java bytecode generated by a vaid Java
compiler, the stack computation model is kept as a fall-back
when these requirements are not met. The penalty for using the
stack model is about a 35% performance degradation.

We dso presented and compared two different runtime
memory organizations. Preliminary results dowed that a 7%
performance gain can be ahieved by moving the data
asciated with dynamically allocated objects closer to their
external references.

Several aspects of translating Java bytecode to native code
that were not exercised by these benchmarks are now being
investigated. These aspects include garbage coll ection, Java's
extensive exception handing capabiliti es, threading support,
and the use of the Java graphic library.

In addition, substantial ongang efforts are focusing m
removing indirection overhead for method invocation. By
doing interclassreaching-definition analysis, we should be &le
to trace the classtype of a current object from its definition and
convert, if posgble, the indirect method invocation to an
absolute method invocation. Inlining is also made posshble by
this conversion. Ancther direction for reseach is to perform
better memory disambiguation by taking advantage of well-
protected classboundaries to eli minate dereferencing overhead.
We dso dbserve that the aray index bounds checking as
required by Java semantics is a major source of performance
degradation. We fed that with aggressve analysis, most of
these checks can be removed. We would also like to target
other platforms and make use of more alvanced instruction-
level parall elism enhancing techniques such as predication and
speculation.

Acknowledgments

The aithor would like to thank Daniel M. Lavery for
prodfreading the various versions of this paper, al the members
of the IMPACT reseach group, and the anonymous reviewers
whose comments and suggestions helped to improve the quality
of this paper.

This reseach has been supported by the National Science
Foundation (NSF under grant MIP-9308013 Intel Corporation,
Advanced Micro Devices, Hewlett-Packard, = SUN
Microsystems, NCR, and the National Aeronautics and Space
Administration (NASA) under Contract NASA NAG 1-613 in
cooperation with the Illinois Computer Laboratory for
Aerospace Systems and Software (ICLASS).

Reference

[1] P.P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and
W. W. Hwu, IMPACT: An architectural framework for
multi ple-instruction-isue processrs, Proc. 18" Ann. Int’|
Symp. Computer Architecture, (Toronto, Canada), pp.
266-275, Jun 1991.

[2] Java™ — Programrming for the Internet, Sun Microsystems,
Inc., 1996 http://java.sun.com/

[3] James Gosling and Henry McGilton, The Java Languag
Environment, A White Paper, Sun Microsystems Computer
Corporation, October, 1995.

[4] The Java Virtual Machine Syecification, Release 1.0 Beta
DRAFT, Sun Microsystems Computer Corporation, August
21, 1995.

[5] The Java Languag Syecification, Version 10 Beta DRAFT,
Sun Microsystems Computer Corporation, October 30,
1995.

[6] James Godling, Java intermediate Bytecodes, ACM
SIGPLAN Workshop on Intermediate Representations,
1995.

[7] Arthur van Hoff, Sami Shaio, and Orca Starbuck, Hooked
on Java Addison-Wesley, December 1995.

[8] David Flanagan, Java in aNutshdl, O'Reilly & Associates,
Inc, February 1996.

[9] Gary Cornell and Cay S. Horstmann, Core Java, The
Sunsoft Press Java Series, March 1996.

[10] Michad C. Daconta, Java for C/C++ Programirers,
Wiley Computer Publishing, March 1996.

[11] Ken Arnold and James Gosling, The Java Programrming
Language Addison Wesley, May 1996.

[12] Borland C++ Deveopment Site, Borland International,
Inc., 1996 http:/Avww.borland.com/

[13] Café — Visua Java Development and Debuggng Todls,
Symantec Corporation, 1998tp:/Mww.symantec.com/

[14] Tim Wilkinson, KAFFE — A JIT virtual machine to run
Java code 1996,
http:/iweb.soi.city.ac.uk/homesh/kaffekaffe.html

[15] Guava — High-performance Environment for Running Java

Programs SoftwayPty. Ltd., 1996,
http:/mvww.softway.com.aséftway/products/guava/
[16] Alfred V. Aho, Ravi Sethi, and Jeffery D. Ullman,
Compiler — Principles, Techniques, and Toodls, Addison

Wesley, March, 1988.

[17] Jeffery Richter, Advanced Windows - Chap9 Thread
Synchronization and Chapl4 Sructured Exception
Handling, Microsoft Press, 1995.

[18] Matt Pietrek, Windowns 95 System Programning Screts,
IDG Books Worldwide, 1995.

[19] Walter Oney, Extend Your Application with Dynamically
LoadedVxDs Under Windows 9B81SJ, May 1995.

[20] Roger Alexander Bringmann, Enharcing Instruction Level
Parallelism Through Compiler-Controlled Speculation,
Ph.D. thesis, Department of Computer Science,
University of lllinois, Urbana-Champaign, 1995.

