
The nofib Benchmark Suite

of Haskell Programs

Will Partain

University of Glasgow

Abstract

This position paper describes the need for, make-up of, and \rules of the

game" for a benchmark suite of Haskell programs. (It does not include

results from running the suite.) Those of us working on the Glasgow

Haskell compiler hope this suite will encourage sound, quantitative as-

sessment of lazy functional programming systems. This version of this

paper re
ects the state of play at the initial pre-release of the suite.

1 Towards lazy functional benchmarking

1.1 History of benchmarking|functional

The quantitative measurement of systems for lazy functional programming is a

near-scandalous subject. Dancing behind a thin veil of disclaimers, researchers

in the �eld can still be found quoting \n�bs/sec" (or something equally egre-

gious), as if this refers to anything remotely interesting.

The April, 1989,Computer Journal special issue on lazy functional program-

ming is a not-too-dated self-portrait of the community that promotes comput-

ing in this way. It is one that non-specialists are likely to see. There are three

papers under the heading \E�ciency of functional languages."

The Yale group, reporting on their ALFL compiler, cites results for the

benchmarks queens 8, nfib 20, tak, mm, deriv, tfib 100 40, qsort, and

init, noting that several are from the Gabriel suite of LISP benchmarks. They

say that results from these tests \indicate that functional languages are indeed

becoming competitive with conventional languages" [2, page 160].

Augustsson and Johnsson have a section about performance in their paper

on the LML compiler [1]. They consider some of the usual suspects: 8queens,

fib 20, prime, and kwic, comparing against implementations of these algo-

rithms in C, Edinburgh and New Jersey SML, and Miranda.

1

To their credit,

the wondrous Chalmers hackers are somewhat apologetic, conceding that \mea-

suring performance of the compiled code is very di�cult..."

Finally, Wray and Fairbairn argue for programming techniques that make

\essential use of non-strictness" and for an implementation (TIM) that makes

these techniques inexpensive [10]. Though they delve into a substantial spread-

sheet-like example program, they do not report any actual measurements. How-

ever, they astutely take issue with the usual toy benchmarks: \There was in

the past a tendency for implementations to be judged on their performance for

unusually strict benchmarks."

1

Miranda is a trademark of Research Software Ltd.

1.2 History of benchmarking|imperative

Our imperative-programming colleagues are not far removed from our brutish

benchmarking condition. Only a few years ago, \MIPS ratings," Dhrystones

and friends were all the rage: marketeers bandied them about shamelessly,

compiler writers tweaked their compilers to spot speci�c constructs in certain

benchmarks, users were ba�ed, and no-one learned much that was worth know-

ing. The section on performance in Hennessy and Patterson's standard text on

computer architecture is an admirable expos�e of these shenanigans and is well

worth reading [7].

Then, in 1988, enter the Standard Performance Evaluation Corporation

(SPEC) benchmarking suite. The initial version included source code and

sample inputs (\workloads") for four mostly-integer programs and six mostly-

oating-point programs. These are all either real programs (e.g., the GNU C

compiler) or the \kernel" of a real program (e.g., matrix300,
oating-point

matrix multiplication). Computer vendors have since put immense e�ort into

improving their \SPECmarks," and this has delivered real bene�t to the work-

station user.

1.3 Towards lazy benchmarking

The SPEC suite is the most visible artifact of an important shift towards sys-

tem benchmarking. A big reason for the shift lies in the benchmarked sys-

tems themselves. Fifteen years ago, a typical computer system|hardware and

software|probably came from one manufacturer, sat in one room, and was a

computing environment all on its own.

An excellent discussion about benchmarking from the self-contained-sys-

tems era is Gabriel and Masinter's paper about LISP systems [4]. \The proper

role of benchmarking is to measure various dimensions of Lisp system perfor-

mance and to order those systems along each of these dimensions" (page 136).

A toy benchmark, of the type I have derided so far, can focus on one of these

\dimensions," thus contributing to an overall picture.

Much early measurement work in functional programming was of this plot-

along-dimensions style; however, the concern was usually to assess a particular

implementation technique, not the system as a whole. For example, Hailpern,

Huynh and R�ev�esz tried to compare systems that use strict versus lazy evalua-

tion [5]. They went to considerable e�ort to factor out irrelevant details, hoping

to end up with pristine data points along interesting dimensions. Hartel's e�ort

to characterise the relative costs of �xed-combinator versus program-derived-

combinator implementations was even more elaborate, using non-toy SASL

programs [6].

So, can SPEC be seen as a culmination of good practice in benchmarking-

by-characteristics? No! SPEC makes no e�ort to pinpoint systems along \in-

teresting" dimensions, except for the very simplest|elapsed wall-clock time.

An underlying premise of SPEC is that systems are su�ciently complicated

that we probably won't even be able to pick out the interesting dimensions to

measure, much less characterise benchmarks in terms of them. SPEC represents

a shift to lazy benchmarking of systems.

Conte and Hwu's survey con�rms that, at least in computer architecture,

this shift towards \lazy, system-oriented benchmarking" is supported as a Good

Thing [3]. The trend can also be seen in some specialised areas of computing:

the Perfect Benchmarks for supercomputers (Crays, etc., running FORTRAN

programs) [8] and the Stanford benchmarks for parallel, shared-memory sys-

tems [9] are two examples.

2 Some serious benchmarks, nofib

We, the Glasgow Haskell compiler group, wish to (help) develop and promote

a freely-available benchmark suite for lazy functional programming systems|

called the nofib suite|consisting of:

1. Source code for \real" Haskell programs to compile and run;

2. Sample inputs (workloads) to feed into the compiled programs, along with

the expected outputs;

3. \Rules" for compiling and running the benchmark programs, and (more

notably) for reporting your benchmarking results; and

4. Sample reports, showing by example how results should be reported.

2.1 Our (non-)motivations in creating this suite

Benchmarking is a delicate art and science, and it's hard work, to boot. We

have quite limited goals for the nofib suite, are hoping for lots of help, and are

prepared to overlook considerable shortcomings, especially at the beginning.

2.1.1 Motivations.

� Our main initial motivation is to give functional-language implementors

(including ourselves) a common set of \real Haskell programs" to attack

and study. We encourage implementors to tackle the problems that ac-

tually make Haskell programs large and slow, thus hastening solutions to

those problems.

And of course, because the benchmark programs are shared, it will be pos-

sible to compare performance results between systems running on identical

hardware (e.g., Chalmers HBC vs. Glasgow Haskell, both running on the

same Sun4). Racing is the fun part!

� Our ultimatemotivation for this benchmark suite is to provide \end users"

of Haskell implementations with a useful predictor of how those systems

will perform on their own programs.

The initial nofib suite will have no value as a predictive tool. Perhaps

those with greater expertise will help us correct this. If necessary, we will

gladly hand over \the token" for the suite to a more disinterested party.

� We are very keen on (some might say \paranoid about") readily-acces-

sible reproducible results. That is the whole point of the \reporting rules"

elsewhere in this paper.

Good-but-irreproducible benchmarking results are very damaging, be-

cause they lull implementors into a false sense of security.

� After the initial pre-release of the suite, which will be for (possibly major)

debugging, we intend to keep the suite stable, so that sensible comparisons

can be made over time.

� Having said that, benchmarks must change over time, or they become

stale. It is di�cult to brim with con�dence about the Gabriel benchmarks

for LISP systems; they are more than a decade old.

Being forced to change a benchmark suite can be a mark of success. The

SPEC people made substantial changes to their suite in 1992: so much

work had gone into compiler tricks that improved SPEC performance

results that some tests were no longer useful (notably the matrix300 test

mentioned earlier).

2.1.2 Non-motivations.

We are profoundly uninterested in distilling a \single �gure of merit" (e.g.,

MIPS) to characterise a Haskell implementation's performance.

Initially at least, we are also uninterested in any statistics derived from the

raw nofib numbers, e.g., various means, standard deviations, etc. You may

calculate and report any such numbers|all honest e�orts to understand these

benchmarks are welcome|but the raw, underlying numbers must be readily

available.

An important issue we are not addressing with this suite is inter-language

comparisons: \How does program X written in Haskell fare against the same

program written in language Y ?" Such comparisons raise a nest of issues all

their own; for example, is it really the \same" program when written in the two

compared languages? This disclaimer aside, we do provide the nofib program

sources in other languages if we happen to have them.

2.2 The Real subset

The nofib programs are divided into three subsets: Real, Imaginary, and Spec-

tral (somewhere between Real and Imaginary).

The Real subset of the nofib suite is by far the most important. In fact,

we insist that anyone who wishes to report any results from running this suite

(in whatever form) must �rst distribute their complete, raw results for the Real

subset in a public forum (e.g., available by anonymous FTP).

The programs in the Real subset are listed in Table 1. Each one meets most

of the following criteria:

� Written in standard Haskell (version 1.2 or greater).

� Written by someone trying to get a job done, not by someone trying to

make a pedagogical or stylistic point.

� Performs some useful task such that someone other than the author might

want to execute the program for other than watch-a-demo reasons.

� Neither implausibly small or impossibly large (the Glasgow Haskell com-

piler, written in Haskell, falls in the latter category).

Program Description Origin

anna Strictness analyser Julian Seward (Manchester)

calc arbitrary-precision calculator Liang & Mirani (Yale)

compress Text compression Paul Sanders (BT)

fluid Fluid-dynamics program Xiaoming Zhang (Swansea)

gamteb Monte Carlo photon transport Pat Fasel (Los Alamos)

gg Graphs from GRIP statistics Iain Checkland (York)

hpg Haskell program generator Nick North (NPL)

infer Hindley-Milner type inference Phil Wadler (Glasgow)

lift Fully-lazy lambda lifter David Lester (Manchester) &

Simon Peyton Jones (Glasgow)

maillist Mailing-list generator Paul Hudak (Yale)

mkhprog Haskell program skeletons Nick North (NPL)

parser Partial Haskell parser Julian Seward (Manchester)

pic Particle in cell Pat Fasel (Los Alamos)

prolog \mini-Prolog" interpreter Mark Jones (Oxford)

reptile Escher tiling program Sandra Foubister (York)

veritas Theorem-prover Gareth Howells (Kent)

Table 1: nofib benchmarks: Real Subset

� The run time and space for the compiled program must neither be too

small (e.g., time less than �ve secs.) or too large (e.g., such that a research

student in a typical academic setting could not run it).

Other desiderata for the Real subset as a whole:

� Written by diverse people, with varying functional-programming skills

and styles, at di�erent sites.

� Include programs of varying \ages," from �rst attempts, to heavily-tuned

rewritten-four-times behemoths, to transliterations-from-LML, etc...

� Span across as many di�erent application areas as possible.

� The suite, as a whole, should be able to compile and run to completion

overnight, in a typical academic Unix computing environment.

2.3 The Spectral subset

The programs in the Spectral subset of nofib|listed in Table 2|are those

that don't quite meet the criteria for Real programs, usually the stipulation

that someone other than the author might want to run them. Many of these

programs fall into Hennessy and Patterson's category of \kernel" benchmarks,

being \small, key pieces from real programs" [7, page 45].

2.4 The Imaginary subset

The Imaginary subset of the suite is the usual small toy benchmarks, e.g.,

primes, kwic, queens, and tak. These are distinctly unimportant, and you

Program Description Origin

boyer Gabriel suite `boyer' benchmark Denis Howe (Imperial)

cichelli Perfect hashing function Iain Checkland (York)

clausify Propositions to clausal form Colin Runciman (York)

fish Draws Escher's �sh Satnam Singh (Glasgow)

knights Knight's tour Jon Hill (QMW)

life Game of Life John Launchbury (Glasgow)

mandel Mandelbrot sets Jon Hill (QMW)

minimax tic-tac-toe (0s and Xs) Iain Checkland (York)

multiplier Binary-multiplier simulator John O'Donnell (Glasgow)

pretty Pretty-printer John Hughes (Chalmers)

primetest Primality testing David Lester (Manchester)

rewrite Rewriting system Mike Spivey (Oxford)

scc Strongly-connected components John Launchbury (Glasgow)

sorting Sorting algorithms Will Partain (Glasgow)

Table 2: nofib benchmarks: Spectral Subset

may get a special commendation if you ignore them completely. They can be

quite useful as test programs, e.g., to answer the question, \Does the system

work at all after Simon's changes?"

3 Rules for running and reporting

Glasgow will provide the nofib program sources, as well as input workloads

and expected outputs. (We will also provide some \sca�olding" to make it

easier to run the benchmarks.)

Anyone can then run the benchmark programs through their Haskell system.

The \price" for using the benchmark suite is that you must follow our rules if

you report your results in any public forum, including any publication.

In the big-money-on-the-line world of the SPEC suite, the running and

reporting rules are complicated and arcane. That's because there are many

people who would rather be sneaky than do honest work to improve their

system's performance. For now, we assume that functional programmers are

more noble creatures; the nofib rules are therefore quite simple.

The basic reporting principle is: You must provide enough information and

results that someone with a similar hardware/software con�guration can easily

duplicate your results.

The most important speci�c nofib reporting rule is: if you wish to report

or publish some results from running some part of the nofib suite, then you

must �rst \�le" a complete set of how-I-did-it/what-I-got information for the

entire Real subset of programs, in some public forum (a newsgroup, mailing

list, an anonymous-FTP directory, ...). Thereafter, you may claim whatever

you like, the idea being that people can look up your \�led" information and

laugh at you if you're making unsubstantiated claims.

We are not insisting on these rules because we like playing lawyer. We

intend as little hindrance as possible to creative, honest uses of this suite.

There are more details about the reporting rules in the version of this paper

that is distributed with the suite.

4 Concluding remarks

Inattention to benchmarking is not just sloppy, it ends up as self-delusion.

Assertions that various functional-languages compilers \... generate code that

is competitive with that generated by conventional language compilers ..."

2

are simply false by any common-sense measure; what's more, when they are

repeated by Respected People, they are downright harmful: they detract from

the urgency of building better implementations.

By introducing the nofib suite of Haskell programs, we hope for an imme-

diate payo�, simply by giving all Haskell implementors a common set of sources

with which to race each other. We also hope that we are setting the foundation

for a sound predictor of Haskell-system performance.

This suite follows the general trend away from \plot-the-characteristics

benchmarking" and towards \lazy, systems benchmarking," of which the SPEC

suite is the most prominent example. This approach to benchmarking gives the

greatest credence is given to gross system behaviour on sizable, real programs.

Comments on this paper and on the nofib suite itself are most welcome.

Contributions of substantial functional programs that could be added to the

suite would be even more welcome! I can be reached by electronic mail at

glasgow-haskell-request@dcs.glasgow.ac.uk.

Haskell-related things, including the nofib suite, can be retrieved by anony-

mous FTP from ftp.dcs.glasgow.ac.uk, in pub/haskell/glasgow. The sites

nebula.cs.yale.edu and animal.cs.chalmers.se usually have copies as well

(in the same directory).

An up-to-date version of this paper will be included in the nofib distribu-

tion. There is also a top-level README, which is the �rst �le you should consult.

Acknowledgements. My thanks to John Mashey for his many �ne articles in

comp.arch that promote sensible benchmarking, and to Je� Reilly for providing

information about SPEC. Vincent Delacour, Denis Howe, John O'Donnell, Paul

Sanders, and Julian Seward were among those who provided helpful comment

on earlier versions of this paper. Of course, we are most indebted to those

people who have let their code be included in the suite.

References

[1] L. Augustsson and T. Johnsson. The Chalmers Lazy-ML compiler. Com-

puter Journal, 32(2):127{141, April 1989.

[2] Adrienne Bloss, P. Hudak, and J. Young. An optimising compiler for

a modern functional language. Computer Journal, 32(2):152{161, April

1989.

2

Citation withheld to protect the guilty!

[3] Thomas M. Conte and Wen-meiW. Hwu. A brief survey of benchmark us-

age in the architecture community.Computer Architecture News, 19(4):37{

44, June 1991.

[4] Richard P. Gabriel and Larry M. Masinter. Performance of Lisp systems. In

Conference Record of the 1982 ACM Symposium on LISP and Functional

Programming, pages 123{142, Pittsburgh, PA, August 15{18 1982.

[5] Brent Hailpern, Tien Huynh, and Gyorgy R�ev�esz. Comparing two func-

tional programming systems. IEEE Transactions on Software Engineering,

15(5):532{542, May 1989.

[6] Pieter H. Hartel. Performance of lazy combinator graph reduction.

Software|Practice and Experience, 21(3):299{329, March 1991.

[7] John L. Hennessy and David A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufmann Publishers, Inc., San Mateo,

CA, 1990.

[8] Lynn Pointer, editor. Perfect report 2. CSRD Report 964, Center for Su-

percomputing Research and Development, University of Illinois, Urbana,

IL, March 1990.

[9] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH:

Stanford parallel applications for shared-memory. Computer Architecture

News, 20(1):5{44, March 1992.

[10] S. C. Wray and J. Fairbairn. Non-strict languages|programming and

implementation. Computer Journal, 32(2):142{151, April 1989.

