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Abstract

Hybrid partial evaluation (HPE) is a pragmatic approach to

partial evaluation that borrows ideas from both online and

offline partial evaluation. HPE performs offline-style spe-

cialization using an online approach without static binding

time analysis. The goal of HPE is to provide a practical and

predictable level of optimization for programmers, with an

implementation strategy that fits well within existing com-

pilers or interpreters. HPE requires the programmer to spec-

ify where partial evaluation should be applied. It provides no

termination guarantee and reports errors in situations that vi-

olate simple binding time rules, or have incorrect use of side

effects in compile-time code. We formalize HPE for a small

imperative object-oriented language and describe Civet, a

straightforward implementation of HPE as a relatively sim-

ple extension of a Java compiler. Code optimized by Civet

performs as well as the output of a state-of-the-art offline

partial evaluator.

Categories and Subject Descriptors F.3.2 [Semantics of

Programming Languages]: Partial evaluation

General Terms Languages, Performance

Keywords Partial Evaluation, Object-Oriented Languages,

Hybrid

1. Introduction

Object-oriented systems are increasingly based on config-

urable frameworks and reflection. These features are expen-

sive at runtime, and the costs can limit the ambitions of

framework developers in creating more powerful and gen-

eral frameworks. These costs, however, are often unneces-

sary because a particular program typically configures and

uses the frameworks in a specific way. Configuration files,

data-driven programming and more sophisticated forms of
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model-driven development often involve dynamic interpre-

tation of large amounts of relatively static data [22]. Avoid-

ing the penalty of generality requires optimizations that cut

across module boundaries to simplify the general framework

operations with respect to the program-specific configura-

tion data.

Partial evaluation is well suited to optimizing such pro-

grams. A partial evaluator can specialize a generic frame-

work in the context of the usage pattern in a particular pro-

gram. It can also optimize across interfaces, allowing pro-

grammers to write modular, general-purpose programs, with

the assurance that they will be optimized automatically.

In this paper we present hybrid partial evaluation (HPE),

a pragmatic approach to partial evaluation that is designed

to be effective in existing object-oriented languages. Hybrid

partial evaluation provides predictable and reliable optimiza-

tions, because the programmer explicitly identifies parts of

the program that should be evaluated at compile time versus

normal runtime evaluation [16]. The following example il-

lustrates how HPE can be used to optimize a naive regular

expression library.

1 Regex regex =

2 CT(RegexParser.parse("(a|b)*(abb|a+b)"));
3 regex.execute(buffer);

The CT expression tells the compiler to instantiate the

Regex object at compile time. The execute method is a sim-

ple, naive regular expression interpreter. When the execute

method is invoked on a runtime buffer, HPE inlines and spe-

cializes the interpreter on the specific pattern, resulting in a

set of static methods to efficiently interpret the finite state

machine representing the regular expression. This example

is discussed in more detail in Section 5.3.

We describe hybrid partial evaluation in the context of a

small imperative object-oriented language. Like online par-

tial evaluation, HPE does not perform binding time analysis.

The system supports polyvariant specialization of methods

and classes, and specialization of reflective operations. On

the other hand, the kinds of specializations performed are

similar to those performed by an offline partial evaluator.

The goals of HPE are predictability, ease of implementation,

and sufficient specialization to optimize common programs.
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To achieve predictability, HPE requires programmer an-

notations to indicate which objects should be instantiated at

compile time, and HPE prohibits migration of compile-time

objects to runtime. HPE has a simple check to ensure that

executing imperative code at compile time is consistent with

the original semantics of the program. Hybrid partial eval-

uation rejects programs with incorrect binding times, rather

than silently generating inefficient residual code. These re-

strictions allow developers to understand and rely on the op-

timizations performed by the partial evaluator.

To simplify implementation, a Hybrid partial evaluator

is derived from an interpreter (or operational semantics)

and avoids static binding time analysis. In addition, HPE

provides no termination guarantee. If the partial evaluating

compiler takes too long, the programmer must terminate it

just as any other program with an infinite loop and rewrite

the program to avoid the problem.

We have implemented hybrid partial evaluation within the

JastAdd Java compiler [9] and used it to optimize a range of

Java programs. Compared to JSpec [25], an existing offline

partial evaluator for Java, hybrid partial evaluation generates

code that is as efficient as JSpec’s residual code. Initial re-

sults show an average 6 times speedup of specialized pro-

grams.

2. A Miniature Object-Oriented Language

A Miniature Object-Oriented Language (MOOL) is used to

explain hybrid partial evaluation. MOOL is a dynamically

typed imperative language based on Java [17]. It includes

classes, static and non-static methods, mutable fields, local

variables, and reflective method invocation. It does not in-

clude inheritance, interfaces, instanceof, static fields, or

non-local control flow constructs such as return, goto or ex-

ceptions. All fields are private and all methods are public.

We believe that MOOL is sufficient to demonstrate the use

of partial evaluation in real-world object-oriented languages.

A more complete implementation in a real Java compiler is

described in Section 4.

2.1 Syntax

Figure 1 gives the syntax for MOOL. A MOOL program

is a list of class definitions. As in Scala, a class definition

has a single constructor, whose arguments are listed after

the class name. These constructor arguments also become

fields of the object. The class contains a list of additional

fields, methods, and an initialization expression. The fields

of a class are initialized to an undefined value.

A method definition specifies the formal parameters and

an expression which is the body of the method. The static

modifier identifies the method as a class-level method, inde-

pendent of any instance. This usage should not be confused

with the traditional concept of “static” values in partial eval-

uation, which are called “compile-time values” in this pa-

per. The CT(e, e) and RT(e) expressions mark expressions as

data v = null | vs | vn | vb | [v ] | C :ρ

type Prog = CD

data CD = class C(x) {var x; init{e} MD}

data MD = mod m(x) {e}

data mod = static | method

data op = + | - | * | / | == | != | < | > | %

data e = v constant value

| x variable

| this self-reference

| C class name

| var x = e; e variable declaration

| x := e assignment

| e; e sequence

| e op e binary operator

| if e then e else e conditional

| while e do e iteration

| e.m(e) method invocation

| invoke(e, e, e) reflective method invocation

| new C(e) constructor call

| CT(e, e) execute at compile time

| RT(e) execute at runtime

| IsCT(e) tests for a compile-time value

Figure 1. Syntax of MOOL

compile time or runtime respectively. IsCT(e) is a boolean

expression which is used to test whether or not an expression

is compile time.

Literal values are of types integer vn, boolean vb, string

vs or list [v ]. Null is also a literal value. The domain of val-

ues also include object values, C :ρ, as described in the next

section. Expressions include imperative operations on values

and statements that affect control flow and the state: variable

definitions, assignments, control constructs such as if and

while loop, method calls, object creation and reflection. Fig-

ure 2 gives an example program written in MOOL syntax. It

defines a Circle and a Main class which creates two Circle

objects.

2.2 Notation

All the semantic definitions in this paper are written in

Haskell [14], so they are executable. Literate Haskell [18]

is used to render the definitions in more conventional style.

One non-standard aspect of the semantic definitions is the

pervasive use of monads and Haskell’s do notation to im-

plicitly pass state through each definition in the interpreter.

This implicit state is used for several purposes, but the most
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data p = v | ⊤ | ⊥ | ṽ -- concrete and abstract values

ρ :: x → l -- environment maps variables to locations

σ :: l→ p -- store maps locations to values

E[[·]]· · ::e → ρ→ v → State (Prog , σ,NameMap) v

E[[v ]]ρo = return v

E[[e1 op e2]]ρo = do

v1 ← E[[e1]]ρo

v2 ← E[[e2]]ρo

return op(v1, v2)

E[[x ]]ρo = do

( , σ, )← get

return σ(ρ(x ))

E[[this]]ρo = return o

E[[var x = e1; e2]]ρo = do

v ← E[[e1]]ρo

[x 7→ l]← allocate [x 7→ v ]

E[[e2]]([x 7→ l] + ρ)o

E[[x := e]]ρo = do

v ← E[[e]]ρo

update ρ(x ) v

return v

E[[e1; e2]]ρo = do

E[[e1]]ρo

E[[e2]]ρo

E[[if e1 then e2 else e3]]ρo = do

b ← E[[e1]]ρo

case b of

True → E[[e2]]ρo

False → E[[e3]]ρo

E[[while e1 do e2]]ρo = do

E[[if e1 then (e2; while e1 do e2) else null]]ρo

E[[e.m(a)]]ρo = do

C :ρ′ ← E[[e]]ρo

v ← mapM(E[[·]]ρo) a

(x) {eb}← findMethod C m (length a)

[x 7→ l]← allocate [x 7→ v]

E[[eb]]([x 7→ l] + ρ′)(C :ρ′)

E[[invoke(e, em, a)]]ρo = do

m ← E[[em]]ρo

E[[e.m(a)]]ρo

E[[new C(a)]]ρo = do

class C(x) {f init{ec} }← findClass C

v ← mapM(E[[·]]ρo) a

[x 7→ l]← allocate [x 7→ v]

ρ′ ← allocate [f 7→ ⊥]

E[[ec]]([x 7→ l] + ρ′)(C :ρ′)

return C :ρ′

update l v = do

(P, σ, ν)← get

put (P, (l , v) : σ, ν)

allocate = mapM(allocate1 )

allocate1 (x , v) = do

(P, σ, ν)← get

let l = length σ

put (P, (l , v) : σ, ν)

return (x , l)

Figure 3. Full evaluation of MOOL expressions
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1 class Circle(x0,y0,r0) {

2 var x;

3 var y;

4 var r;

5 init {

6 x := x0;

7 y := y0;

8 r := r0;

9 }

10 method resize(n) { r := n*r; }}

11 class Main() {

12 static main() {

13 var s1 = CT(new Circle(3, 5, 10), True);

14 var s2 = new Circle(0, 1, CT(4, True));

15 s1.resize(2);

16 s2.resize(3);

17 }}

Figure 2. An example program in MOOL syntax

familiar one is to pass a store representing the mapping of

mutable locations to values which are created as an object-

oriented program is interpreted. While a complete discussion

of monads is beyond the scope of this paper, we provide a

quick explanation of the notation used in this paper which

should be sufficient to understand the semantic definitions.

At a high level, the semantic functions have the following

form:

command x y = do

z ← command x (y / 2)

put z

if x > y then do

a ← command (x − 1) y
return a

else

command y z

Each line is either a binding x ← expression or an

expression by itself. In either case, the expressions represent

commands which may read or modify the implicit program

state and produce a value, which is optionally bound to x . A

command is just a function that is defined in the context of

a hidden state. The final line in a do block must either be a

command, whose value is used for the value of the block, or

a return statement which returns a specific value.

The type of a state-based computation is specified as a

monadic type State S T where S is the type of the hidden

state and T is the type of value produced. The hidden state

can be, for example, a single value, a finite map of values, or

a tuple of such types.

Since most semantic functions do not directly involve the

state, it is useful to hide this state using a monad. When

the hidden state is needed, it can be read or written using

two commands, get and put . For example, the following

function ensures that the hidden state is at least n and returns

the previous value of the hidden state.

ensure n = do

x ← get

if x < n then do

put n

return x

else

return x

The function ensure has type State Integer Integer ,

meaning that it has a hidden integer state variable, and also

returns an integer.

There are many papers and tutorials on monads which

explain the details on the semantics and implementation

of monads [28]. For the purposes of this paper, it is only

necessary to understand that the store is passed through each

line of a do block.

2.3 Semantics

The semantics of MOOL is defined in Figure 3. In the code,

l refers to a location, x refers to a name, v refers to a value,

and e and a are expressions. The Haskell source code for

HPE can be found at the following URL:

http://www.cs.utexas.edu/~wcook/Civet/

An environment ρ maps variable or field names to loca-

tions. A store σ maps locations to potentially abstract val-

ues p. Abstract values ṽ are described in the next section.

They are included here so that the full evaluator can have the

same type signature as the partial evaluator. The ⊥ value for

a variable means that the variable has not been assigned yet.

An object value C :ρ is a pair where C is the name of the

class that the object is instantiated from. The object has an

environment ρ which contains the locations of its fields.

The function E[[·]]·· is referred to as the “full evalua-

tor” to distinguish it from the “partial evaluator” defined

in Section 3. This function E[[e]]ρo executes the program

represented by an expression e in the context of an envi-

ronment ρ and current object o. The full evaluator returns

a value and potentially modifies the implicit state [28]. The

implicit state has three components: the program, a store and

a NameMap. The full evaluator only manipulates the store.

The other components are included for consistency with the

partial evaluator, which extends the program during evalua-

tion.

The first two cases specify the behavior of value literals

v and binary operators. The full evaluator applies the binary

operation op to its operands and returns the result, taking

into account the type of values that it receives with respect

to the operation. The definition of op is omitted.

The next three cases concern variables, declarations, and

assignment. All variables are bound to locations in the envi-

ronment, and the locations are then looked up in the store. As

mentioned in the previous section, get is a command which

378



retrieves the program, the store and the NameMap in a tuple.

All variables are assumed to be present in the environment,

and their location defined in the store, otherwise an error is

thrown.

A variable declaration var x = e1; e2 evaluates e1 to

get a value, stores the value into a new location, and then

evaluates e2 in an extended environment. The allocate func-

tion takes a list of name-value pairs [x 7→ v] and returns a list

of name-location pairs [x 7→ l]. It updates the store so that

each location contains the corresponding value. Assignment

x := e evaluates e and then updates the variable’s location

to the new value. The update function gets the store and then

adds a new (l , v) pair to the store to associate location l with

value v .

Evaluation of if and while expressions is standard.

The evaluation of a method call e.m(a) starts with eval-

uating the target expression e and all the arguments a. The

evaluator then finds the method m based on the class of the

target object. It then evaluates the body of the method in an

environment ρ′ which has the bindings for the actual param-

eters and the target object’s fields. The object context o is set

to the target object C :ρ′.
The invoke expression supports reflective method invo-

cation, where the method name is computed as a value rather

than being explicit in the syntax of the call. The expression e

is the target of the reflective call. em is an expression which

evaluates to the name of the method and a is the list of actual

parameters. To evaluate a reflective method invocation, the

semantics first evaluates the method name expression, then

performs a normal method call using the computed name.

The full evaluator evaluates the object creation expression

new C(a) by first finding the class C . It then evaluates all

the actual arguments of the class constructor and binds them

to their names in the environment. Then, it binds all the fields

of the class to the undefined value ⊥ and evaluates the body

of the constructor and returns an object C :ρ′. An object’s

fields are initialized when the full evaluator evaluates the

body of the constructor(init).

3. Hybrid Partial Evaluator for MOOL

In this section we define a hybrid partial evaluator for

MOOL. With partial evaluation, program execution is split

into two stages. The first stage, where partial evaluation is

performed, is compile time. The output of the compile-time

stage is a modified program, called residual code, which is

executed in the runtime stage. Values that exist during the

first phase are called compile-time values, while all other

values are called runtime values.

The key question for partial evaluation is how to identify

what parts of a program should be evaluated at compile time.

Hybrid partial evaluation is based on a few fundamental

principles:

• A programmer identifies parts of the program to ex-

ecute at compile time, creating compile-time values.

Any subsequent operations that involve compile-time

objects are executed at compile time, possibly creating

more compile-time objects. Every object exists either

at compile time or runtime and cannot move between

phases. On the other hand, primitive values (integers,

strings, dates) are automatically moved between phases

as needed.

• All variables are assigned values at compile time, but

the value may be a concrete (compile-time) value or an

abstract value representing partial information about the

future actual value of the variable at runtime. A variable’s

status, as either compile-time or runtime, never changes.

Compile-time variables are eliminated from the program.

• Methods and constructors are specialized on every com-

bination of specific compile-time arguments that arise

during partial evaluation. When a constructor is spe-

cialized, its class is split into compile-time and runtime

facets, in effect creating two partial objects that exist in

different phases.

In the partial evaluator, concrete compile-time values are

simply the normal values v , which can be primitive values or

objects that exist only at compile time. There are two kinds

of abstract values: unknown values ⊤ and abstract values,

ṽ . A completely unknown value is represented by ⊤. An

abstract value ṽ can be either a primitive constant that has

been marked to exist at runtime, or a partial object C̃ :ρ. A

partial object can specify just the class of a runtime object,

or it can specify the class and some of its fields.

The key point is that compile-time values force spe-

cialization when used as arguments to methods or con-

structors, while abstract objects allow local propagation of

compile-time information but do not trigger specialization.

For instance, in Figure 2, s1 is a compile-time circle object

whereas s2 is an abstract runtime circle object, because only

the value of its radius is marked to be known at compile

time.

The type of hybrid partial evaluator, P[[·]]··, is given in

Figure 4. A hybrid partial evaluator, like an online one,

works very much like a full evaluator. However, during par-

tial evaluation, the store may contain abstract (or approxi-

mate) values ones represented by ṽ . Operations on these

abstract values are residualized to create code that executes

at runtime, when the actual values are known.

The result of hybrid partial evaluation is an expression

accompanied with a value, p, which may be a compile-

time value or an abstraction of a runtime value (or ⊤). The

expression represents the residual code. The value is the

information about the partially evaluated expression. This

information can be as concrete as a constant or as abstract

as a ⊤ value. Online partial evaluators have traditionally

been defined to return an residual expression or a compile-

time value. Allowing both an expression and a value allows

residual code to be generated while also returning partial
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information about the value computed by the residual code.

Partial evaluation of basic expressions is given in Figure 4.

Partial evaluation of primitive value constants always

produces abstract values. This may seem strange, because

constants are fully known at compile time. However, if all

constants were considered compile-time values, they would

cause specialization whenever they were used, which would

violate the principle that the programmer should indicate

where specialization is to occur.

Binary operators, e1 op e2, return a compile-time value

if either e1 or e2 partially evaluate to a compile-time value,

otherwise return an abstract value. This rule follows the prin-

ciple that operations involving compile-time values produce

compile-time values.

3.1 Variable Declaration and Assignment

Figure 4 also defines the hybrid partial evaluation of vari-

ables, variable declarations and variable assignments. A

variable is compile-time if it is assigned a compile-time

value and it is runtime if it is a ⊤ or an approximate value,

ṽ . HPE binds all the variables in the environment whether or

not they are compile-time.

For variables, partial evaluator returns their value as the

residual expression if they are compile-time. This is be-

cause compile-time variables are eliminated from the resid-

ual code. Otherwise, it returns a residual code which con-

tains the name of the variable along with the abstract value

stored for that variable.

A variable declaration var x = e; · may introduce a

compile-time or runtime variable. If the partial evaluated

value of e is a compile-time value, then the variable is de-

fined only at compile time, and has no existence at runtime.

Otherwise, the variable is a normal runtime variable defined

in the generated residual code.

Partial evaluation of a variable assignment, x := e, de-

pends on whether the x is a compile-time or runtime vari-

able. For a compile-time variable x , the expression e must

evaluate to a value and the value of x is updated in the store.

For runtime variables, residual code is returned for the as-

signment. A value ⊥ in the store for a variable means that

the variable is a field and has not been assigned yet. Thus, it

can accept any value and partial evaluator updates its value

in the store accordingly. When a variable has the value ⊤, it

means that we have no compile-time information about the

variable. Such variables cannot be updated with any other

values except ⊤.

3.2 Special Expressions

The special expression CT(e, e ′) indicates which values

should be created at compile time. If e ′ is True, then e

is evaluated at partial evaluation time using the full evalu-

ator, to create a compile-time value. The result may be a

primitive data type, or an object. The special expression,

IsCT(e), evaluates to True when e is a compile-time value.

RT(e) expression marks an expression as runtime. The par-

P[[e1; e2]]ρo = do

〈e′
1
, p1〉 ← P[[e1]]ρo

〈e′
2
, p2〉 ← P[[e2]]ρo

return 〈[[e′
1
; e′

2
]], p2〉

P[[if e1 then e2 else e3]]ρo = do

〈e′
1
, p1〉 ← P[[e1]]ρo

case p1 of

True → P[[e2]]ρo

False → P[[e3]]ρo

else→ checkStore ρ o (if e′
1
then · else ·) e2 e3

P[[while e1 do e2]]ρo = do

〈e′
1
, p1〉 ← P[[e1]]ρo

case p1 of

True → P[[e2; while e1 do e2]]ρo

False → P[[null]]ρo

else→ do

sanitize ρ

checkStore ρ o (while · do ·) e1 e2

checkStore ρ o f e2 e3 = do

(P, store, ν)← get -- capture the initial store

〈e′
2
, p2〉 ← P[[e2]]ρo -- evaluate the then branch

( , σ1, )← get -- snapshot the resulting store

put (P, store, ν) -- reset store to initial conditions

〈e′
3
, p3〉 ← P[[e3]]ρo -- run the else branch

( , σ2, )← get -- snapshot the else store

cmp ← σ1 =ρ σ2 -- check that changes are consistent

if cmp then -- success

sanitize ρ -- erase abstract values

return 〈[[f e′
2
e′
3
]],⊥〉

else -- report inconsistency

inconsistentChangeError ρ σ1 σ2

Figure 5. Partial evaluation of control flow constructs

tial evaluator does not do any evaluation on the expression,

e, and simply returns the same expression as the residual

code along with a ⊤ value.

3.3 Control Flow

Figure 5 defines hybrid partial evaluation of control flow

statements. Sequences are straightforward.

For an if-expression, if the condition is a compile-

time value, then the partial evaluator selects the appropri-

ate branch for further evaluation, just like the full evaluator.

When the condition is a runtime value, it is desirable to par-

tially evaluate both branches of the conditional. The problem

is that branches may make incompatible changes to the store,
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data PV = 〈e, p〉

P[[·]]· · ::e → ρ→ v → State (Prog , σ,NameMap) PV

P[[v ]]ρo = return 〈[[v ]], ṽ〉

P[[e1 op e2]]ρo = do

〈e′
1
, p1〉 ← P[[e1]]ρo

〈e′
2
, p2〉 ← P[[e2]]ρo

case (p1, p2) of

(v1, v2)→ let v = op(v1, v2) in return 〈[[v ]], v〉

(v1, ṽ2)→ let v = op(v1, v2) in return 〈[[v ]], v〉

( ṽ1, v2)→ let v = op(v1, v2) in return 〈[[v ]], v〉

( ṽ1, ṽ2)→ let v = op(v1, v2) in return 〈[[v ]], ṽ〉

else→ return 〈[[e′
1
op e′

2
]],⊤〉

P[[this]]ρo = return 〈[[this]], o〉

P[[CT(e, e ′)]]ρo = do

v ′ ← E[[e ′]]ρo -- Error if e′ is not compile-time

if v ′ ≡ True then do

v ← E[[e]]ρo -- Error if e is not compile-time

return 〈[[v ]], v〉

else P[[e]]ρo

P[[IsCT(e)]]ρo = do

〈e ′, p〉 ← P[[e]]ρo

case p of

v → return 〈[[True]],True〉

else→ return 〈[[False]],False〉

P[[RT(e)]]ρo = do

〈e ′, p〉 ← P[[e]]ρo

return 〈[[e ′]],⊤〉

P[[x ]]ρo = do

( , σ, )← get

case σ(ρ(x )) of

v → return 〈[[v ]], v〉

p → return 〈[[x ]], p〉

P[[var x = e1; e2]]ρo = do

〈e′
1
, p1〉 ← P[[e1]]ρo

[x 7→ l]← allocate [x 7→ p1]

〈e′
2
, p2〉 ← P[[e2]]([x 7→ l] + ρ)o

case p1 of

v → return 〈e′
2
, p2〉

else→ return 〈[[var x = e′
1
; e′

2
]], p2〉

P[[x := e]]ρo = do

( , σ, )← get

case σ(ρ(x )) of

v → do -- compile-time variables not residualized

v ′ ← E[[e]]ρo -- Error if e is not compile-time

update ρ(x ) v ′

return 〈[[v ′]], v ′〉

ṽ → do -- abstract variable must stay abstract

〈e ′, p〉 ← P[[e]]ρo

update ρ(x ) p̃

return 〈[[x := e ′]], p〉

⊤ → do -- unknown runtime value

〈e ′, p〉 ← P[[e]]ρo

return 〈[[x := e ′]],⊤〉

⊥ → do -- variable is not yet defined

〈e ′, p〉 ← P[[e]]ρo

update ρ(x ) p

case p of -- first assignment determines status of variable

v → return 〈[[v ]], v〉

→ return 〈[[x := e ′]],⊤〉

Figure 4. Partial evaluation of basic values, variables, operators, variable declarations, and assignments
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1 method iftest(a) {

2 var x = CT(3, True);

3 var y = CT(4, True);

4 if (a < x) {

5 y := 2 * x;

6 x := 3 + y;

7 }

8 else

9 x := 5 + y;

10 }

Figure 6. The problematic example of an if-expression for

the partial evaluation

so that it is not clear which modified store should be used

for the evaluation of the remainder of the program.

This problem is illustrated in Figure 6 [20]. In this exam-

ple, a is a runtime variable. Thus, the partial evaluation of

the if-condition, a < x, results in the expression a < 3,

which is not a value. During runtime, only one branch must

take place, in which case, the value of x after the evaluation

of if-expression would be 9 and the value of y can be either

4 or 6 based on the branch taken.

A polyvariant computation scheme [10] deals with this

problem by partially evaluating both branches and inserting

necessary assignments called explicators at the end of new

residual branches. Meyer [20] proposed a solution that joins

the environments resulted from the two branches. In a se-

mantics based on continuations, the rest of the program is

specialized separately for each branch [15, 23, 27]. However,

this has the potential to duplicate large amounts of code.

HPE has a pragmatic approach to this problem. The

checkStore function (See Figure 5) evaluates both branches

and then looks for inconsistencies in the state. It also sani-

tizes the store by converting all partially abstract values to

⊤. If the resulting stores (σ1, σ2) are different with respect

to the initial environment (ρ), HPE raises an error. Other-

wise, it continues with the generation of the code for the if

and partial evaluation of the rest of the program. The same

approach is used for while expressions, except that the store

is also sanitized at the top of the loop. We have found that

this pragmatic approach is sufficient for many common pro-

gramming idioms, as shown in Section 4.

For the example in Figure 6, the hybrid partial evaluator

starts with the environment {x = 3, y = 4}. The first branch

changes the environment to {x = 9, y = 6}. The partial

evaluation of the second branch results in {x = 9, y = 4}.
The two branches make inconsistent changes to the environ-

ment and therefore HPE raises an error.

3.4 Class Specialization and Partial Objects

For an object creation expression, new C(a), HPE special-

izes the class C if any of the parameters to the constructor

call are compile-time. Class specialization is defined in Fig-

ure 7. For class specialization, the partial evaluator binds the

actual parameters of the constructor in the environment. It

then finds if this class with such actual parameters has been

already specialized. The findMemoClass returns the name

of the specialized class, if there is one already, along with

its class definition. Otherwise, it generates a new name and

returns it with the original class definition.

When the class has not been specialized, HPE specializes

the body of the constructor in an environment containing the

binding for the parameters, this and fields. Fields are initial-

ized to ⊥. All the methods of the class are likewise special-

ized. The new class and methods are added to the program.

The resulting residual code is an expression that instantiates

the new class with any remaining runtime parameters. Along

with the residual code, HPE returns an abstract object which

has the name of the new class and the partial environment of

the object.

When the class C with those actual parameters has been

already specialized, the hybrid partial evaluator evaluates the

body of the constructor after allocating the fields and the

this object in the store and returns an approximate object

with the required residual code.

3.5 Method Specialization

HPE can specialize method calls o.m(a) on compile-time

objects, which were introduced in Section 3.1. Since a

compile-time object is never residualized, its identity and

field values exist only during partial evaluation. In this case,

hybrid specialization may result in full evaluation of the call,

or create a residual class method.

The cases for method calls on compile-time objects are

defined in Figure 8. If all the arguments to the method call

are compile-time values, then the call is processed as a nor-

mal method call. If zero or more of the method arguments

are compile-time values, then it must be specialized to create

a new method in the residual program. Since the target ob-

ject does not exist in the residual program, the new method

must be static. The function S[[e]]modifierρo C m a (See

Figure 9) creates a specialized version of a method. In this

case the new method is marked as static. New methods

are stored in a cache, so that the same specialization of

a method is not generated twice. The method specializer

S[[e]]modifierρo C m a binds all the parameters in the en-

vironment and partially evaluates the method body. It then

adds the method to the corresponding class and returns the

residual method call expression with runtime arguments.

Program point specialization is a technique that is used

to prevent the specializer from running into the infinite loop

of specializing a recursive function [1, 5, 13]. The hybrid

partial evaluator uses the polyvariant specialization [4, 8,

24] strategy for program point specialization. It memoizes

a call expression, e.m(a), so that it can be reused from

other call sites. It also memoizes object creation expres-

sions (constructor calls). Memoization is implemented in the

findMemoCall and findMemoClass . The partial evaluator

saves the name of either method or class along with the ac-
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P[[new C(a)]]ρo = do

〈a ′, p′〉 ← mapM(P[[·]]ρo) a

if any isCompileTime p′ then do

memc ← findMemoClass C p′

let (z , C ′, class (x) {f init{ec} m}) = memc

[x 7→ l]← allocate [x 7→ p′]

let xd = getRuntimeNames x 〈a ′, p′〉

let ad = getRuntimeExprs 〈a ′, p′〉

ρ′ ← allocate [f 7→ ⊥]

〈e′c, 〉 ← P[[ec]]([x 7→ l] + ρ′)( C̃ ′:ρ′)

when (¬ z ) (do

m′ ← mapM(M[[·]]ρ′( C̃ ′:ρ′)) m

f ′ ← getRuntimeFields f ρ′

addClass class C ′(xd) {f ′ init{e′c} m′})

return 〈[[new C ′(ad)]], C̃
′:ρ′〉

else do

class ( ) {f init{ } }← findClass C

ρ′ ← allocate [f 7→ ⊤]

return 〈[[new C(a′)]], C̃ :ρ′〉

findMemoClass C [xs 7→ vs] = do

(p, σ,n)← get -- n is NameMap

case n(( C [xs 7→ vs])) of

l , [C ]→ do

cdef ← findClass (C + "$"+ l)

return True,C + "$"+ l , cdef

Nothing → do

let l = (length n) + 1

put (p, σ, ( C [xs 7→ vs], (l , [C ])) : n)

cdef ← findClass C

return False,C + "$"+ l , cdef

M[[modifier m(x) {e}]]ρo = do

ρ′ ← allocate [(x ,⊤) | x ← x ]

〈e ′, 〉 ← P[[e]](ρ+ ρ′)o

return modifier m(x) {e ′}

Figure 7. Partial evaluation of constructors for partial ob-

jects

tual parameters passed to that and the content of the store

at the time of specialization. These information are stored in

the NameMap part of the state monad.

Now consider the method call o.m(a) in which o is a

partial object. The hybrid partial evaluator knows the class

of a partial object. When some of the actual parameters

in the method call expression are compile-time values or

objects, HPE specializes using the function S and creates

P[[e.m(a)]]ρo = do

〈e ′, p〉 ← P[[e]]ρo

〈a ′, p′〉 ← mapM(P[[·]]ρo) a

case p of

C :ρ′ → do

if all isCompileTime p′ then do

(x) {eb}← findMethod C m (length a)

[x 7→ l]← allocate [x 7→ p′]

v ← E[[eb]]([x 7→ l] + ρ′)p

return 〈[[v ]], v〉

else

S[[C ]]staticρ′⊤ C m 〈a ′, p′〉

C̃ :ρ′ → -- target is an approximate object

if any isCompileTime p′ then do

S[[e ′]]methodρ′p C m 〈a ′, p′〉

else

return 〈[[e ′.m(a′)]],⊤〉

else→ -- target is unknown

if any isCompileTime p′ then do

m ′ ← specializeAll ρ o m 〈a ′, p′〉

let ad = getRuntimeExprs 〈a ′, p′〉

return 〈[[e ′.m ′(ad)]],⊤〉

else

return 〈[[e ′.m(a′)]],⊤〉

P[[invoke(e, em, a)]]ρo = do

〈e′m, p〉 ← P[[em]]ρo

case e′m of

m → P[[e.m(a)]]ρo

else→ do

〈e ′, p′〉 ← P[[e]]ρo

〈a ′, p′〉 ← mapM(P[[·]]ρo) a

return 〈[[invoke(e ′, e′m, a′)]],⊤〉

Figure 8. Partial evaluation of method calls and reflective

method calls for partial objects

a residual instance method. This is shown in Figure 8. When

all of the parameters are runtime values, the partial evaluator

generates a residual code for the method call.

If the target of the call is not known and the partial

evaluator has no information about it and some of the actual

parameters are compile-time values, HPE specializes the

method call. Since the class of the target is not known, all the

methods in all the classes with the same name and the same

number of the parameters are specialized. The specializeAll

function finds all the methods with the same name and the

same number of parameters in all the classes. It then partially

evaluates each method with a copy of the store. Thereafter, it

checks all the stores resulting from the partial evaluation of
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S[[e]]modifierρo C m 〈a ′, p′〉 = do

(z ,m ′, (x) {eb})← findMemoCall C m p′

let ad = getRuntimeExprs 〈a ′, p′〉

when (¬ z ) (do

[x 7→ l]← allocate [x 7→ p′]

〈e′b, p〉 ← P[[eb]]([x 7→ l] + ρ)o

let xd = getRuntimeNames x 〈a ′, p′〉

addMethod C modifier m ′(xd) {e′b})

return 〈[[e.m ′(ad)]],⊤〉

findMemoCall C m a = do

mdef ← findMethod C m (length a)

(p, σ,n)← get -- n is the NameMap

case n(( m (length a) a)) of

l , cs → do

if (elem C cs) then

return True,m + "$"+ l ,mdef

else do

put (p, σ, ( m (length a) a, (l ,C : cs)) : n)

return False,m + "$"+ l ,mdef

Nothing → do

let l = (length n) + 1

put (p, σ, ( m (length a) a, (l , [C ])) : n)

return False,m + "$"+ l ,mdef

Figure 9. Helper function for partial evaluation of method

calls

each method to make sure that partial evaluation of methods

has not caused any inconsistency in the state.

When the target is unknown and none of the parameters

are compile-time, HPE only generates a residual code.

3.5.1 Reflective Calls

Figure 8 also defines the partial evaluation of reflective calls.

When the partial evaluation of em results in a string value,

m , the name of the method to be called is known at compile

time. Therefore partial evaluator can specialize the method

using the specialization process of a normal method call.

Otherwise, when the name of the reflective method call is

not known, it partially evaluates the target expression and

the arguments and generates an expression for the invoke.

As an example, consider the following example of reflec-

tive method invocation:

Method m =

obj.class.getMethod(name, Integer.TYPE);

m.invoke(obj, arglist);

if name is known at compile time to be "test" then the code

above is optimized to [2]:

obj.test(arglist);

1 class Main() {

2 static main(a) {

3 this.power(CT(11),a);

4 }

5 method power(n,x) {

6 var i = n;

7 var y = 1;

8 var p = x;

9 while (i > 0) {

10 if ((i % 2) = 1)

11 y := y * p;

12 i := i / 2;

13 if (i > 0)

14 p := p * p;

15 }

16 y;

17 }}

Figure 10. Exponentiation Function

1 class Main() {

2 static main(a) {

3 this.power$1(a);

4 }

5 method power$1(x) {

6 var y = 1;

7 var p = x;

8 y := y * p;

9 p := p * p;

10 y := y * p;

11 p := p * p;

12 p := p * p;

13 y := y * p;

14 y;

15 }}

Figure 11. Exponentiation Function Residual Code

3.6 Examples

In this section we give examples of MOOL programs and

their generated residual code. The first example is an integer

exponentiation. This function works by squaring based on

the fact that when n is even xn = xn/2 × xn/2 and when

n is odd xn = x × xn−1. Figure 10 defines the MOOL

program which implements this function. Figure 11 gives

the residual code for the power function when the exponent

has a compile-time value of 11. The power$1 is the residual

function which takes only one parameter, the base of expo-

nentiation, and returns the 11th power of that.

The next example is a regular expression matcher pro-

gram. This program is based on the idea of using derivatives

of a regular expression pattern [3]. This way of constructing

a regular expression matcher does not require using explicit

automatas (NFA, DFA) or backtracking. Figure 12 defines

the code for matching algorithm. In this code the regular ex-
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pression is a compile-time value. The input however is dy-

namic. The partial evaluator specializes the matching algo-

rithm and generates a new code which has no trace of the

classes and function calls on the input regular expression.

The residual code is shown in Figure 13. As shown in this

figure, the for loop in the match method and the Regex def-

inition in the main method are eliminated by HPE.

1 public abstract class Regex {

2 public abstract Regex derivative(Character c);

3 public abstract boolean canBeEmpty();

4 public Set<Character> first();

5 public static boolean match(Regex e, String

input) {

6 if(input.length() == 0) return e.canBeEmpty();

7 Character c = input.charAt(0);

8 for (Character ce : e.first())

9 if(c.equals(ce))

10 return match(e.derivative(ce),

11 input.substring(1));

12 return false;

13 }

14 public static void main(String[] args) {

15 @CompileTime

16 Regex re= RegexParser.parse("(a|b)*(abb|a+b)");
17 String in = "abababababb";

18 boolean matched = match(re, in);

19 System.out.println(matched);

20 }}

Figure 12. Regular expression matcher

3.7 Discussion

Hybrid partial evaluation does not guarantee that all pro-

grams which execute correctly by themselves can be par-

tially evaluated to produce residual code. In other words, hy-

brid partial evaluation can fail even if the program being ana-

lyzed is an otherwise valid program. Unfortunately, the error

cases are not completely explicit in the semantic evaluation

functions. One important error, which can occur anywhere,

is an attempt to create residual code that contains an instan-

tiated compile-time object. For example, the following code

instantiates a hash table at compile time, but then attempts

to use the hash table at runtime to lookup a runtime input

string.

1 var o = CT(new HashTable());

2 o.put("one", 1); ...; o.put("nine", 9);

3 var r = o.get(readLine());

4 if (r != null) then

5 System.out.println(r);

The hybrid partial evaluator raises an error in this case,

because the residual code [[(HashTable:ρ).get(readLine
())]] is invalid, as code cannot contain an instantiated

compile-time object. The partial evaluator would try to spe-

cialize the get method, but it cannot specialize system meth-

1 public abstract class Regex {

2 public abstract Regex derivative(Character c);

3 public abstract boolean canBeEmpty();

4 public Set<Character> first();

5 public static void main(String[] args) {

6 String in = "abababababbb";

7 boolean matched = match$1000001(in);

8 java.lang.System.out.println(matched);

9 }

10 public static boolean match$1000001(String

input) {

11 if(input.length() == 0) return false;

12 Character c = input.charAt(0);

13 if(c.equals(’b’))

14 return match$1000002(input.substring(1));

15 if(c.equals(’a’))

16 return match$1000012(input.substring(1));

17 return false;

18 }

19 // ...

20 public static boolean match$1000013(String

input) {

21 if(input.length() == 0) return true;

22 Character c = input.charAt(0);

23 if(c.equals(’b’))

24 return match$1000005(input.substring(1));

25 if(c.equals(’a’))

26 return match$1000006(input.substring(1));

27 return false;

28 }}

Figure 13. Regular expression matcher residual code

ods. HPE issues a compiler-error when processing the above

code.

It is possible to rewrite this example to avoid the problem,

by taking more advantage of compile-time information and

changing when operations take place. This kind of change is

known as binding time improvement. In this case, the trick is

to iterate over the compile-time hashtable:

1 var o = CT(new HashTable());

2 o.put("one", "1");

3 ...

4 o.put("nine", "9");

5 var input = readLine();

6 for test : o.keys()

7 if input.equals(test) then

8 System.out.println( o.get(test) );

In this version of the program, both o and test variables

are compile-time values, which are not included in the resid-

ual code. The residual code has unrolled and specialized the

loop. The call to get only involves compile-time values, so

it is specialized away:

1 var input = readLine();

2 if input.equals("one") then

3 System.out.println( "1" );
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4 if input.equals("two") then

5 System.out.println( "2" );

6 ...

7 if input.equals("nine") then

8 System.out.println( "9" );

Conversely, the partial evaluator may also through errors

if an expression is marked as CT but involves runtime data.

These places are noted in Figure 4.

4. Civet: A Hybrid Partial Evaluator for Java

We have implemented a hybrid partial evaluator for the Java

language, based on the semantics we explained in the pre-

vious section. This hybrid partial evaluator is called Civet1.

For implementing Civet, we have extended a Java compiler

written using the JastAdd Compiler Compiler [9]. The mod-

ular structure of JastAdd helped us easily extend the Java

compiler. The Civet is about 4600 lines. It can be found at

the following URL:

http://www.cs.utexas.edu/~wcook/Civet/

Civet currently uses annotations to specify compile-time

variables rather than a special expression CT , as in the se-

mantics given here. In Civet, the specification is given using

@CompileTime and @CompileTimeIf Java annotations. The

@CompileTimeIf(other_var) annotation indicates a condi-

tional situation where a variable is compile-time only if an-

other variable with the name other_var is also a compile-

time variable. Civet follows the closest scope rule to find the

other_var. It generates pure Java code after partial evalua-

tion, which makes it easier for debugging and further analy-

sis.

There are several issues in the specialization of Java pro-

grams. One issue is in the class specialization. When Civet

specializes a class constructor, it creates a new class which

is a subclass of the class being specialized. It then copies the

body of the super-class constructor to the subclass and then

follows the semantics. The problem arises when some fields

of the class are private. When the fields are private the new

subclass cannot access them from within the constructor or

methods.

Moreover, because partial evaluator creates a new con-

structor in the new generated class, it requires the original

class to have a default constructor. This is because the origi-

nal class might not have any constructor of the same param-

eters as the new specialized one. Thus, it must have at least

a default constructor so as the program be able to create an

object of the specialized type during runtime. In addition,

a class cannot be final because it cannot be inherited from.

These restrictions in Civet only applies to the classes which

are going to be specialized.

1 Civet is an animal that eats coffee beans and produces partially digested

coffee berries which produce highly priced coffee.

5. Evaluation

We evaluate the performance and scalability of Civet on

samples from several sources.

5.1 JSpec Suite

The JSpec test suite is created by Schultz et al. [25]. We list

some of the examples from this suite with a short descrip-

tion:

• FFT: Fast Fourier Transform. The compile-time input

for this case study is the size of radix which in our

experiments are set to 16, 32 and 64.

• Romberg: This is an integration method. The compile-

time input in this case study is the number of iteration

which is set to 2 in our experiment.

• Power: Power function, xn, where n is a natural number.

The exponent is a compile-time value in this experiment.

• Pipe: Function composition. The composition is fixed.

• Visitor: Visitor pattern for operations on a binary tree.

The choice of operations is known at compile time.

• Strategy: this is an image processing example using the

strategy pattern. The specific operator is known at com-

pile time.

• ArithInt: This case study is a simple arithmetic expres-

sion interpreter.

5.1.1 Performance

We compare the performance of Civet with JSpec on bench-

marks from JSpec suite. We run Civet on the same origi-

nal programs with the same set of partial inputs in order to

get specialized programs. We then, run each specialized pro-

gram with the rest of inputs and measure the execution times.

Each benchmark is run ten times and we take the average

time of all the ten executions to represent the final reported

time. We run all the benchmarks on an Intel Core 2 Duo

CPU P8400 2.26GHz machine with 2.8GiB of memory and

running Ubuntu 10.04. We use the Sun JDK implementation

of Java version 1.6.0. We use no special java command line

option for running benchmarks.

Figure 14 compares execution time between JSpec and

Civet for all the case studies. Time is measured in millisec-

onds using the Java currentTimeMillis() call. This figure

also shows the execution time of the original programs. Civet

performs better than JSpec on all FFTs’, ArithInt, Pipe, Vis-

itor and Strategy and it performs slightly worse on the rest.

The average speedup of JSpec on these examples is 5.19 and

the average speedup of Civet is 5.7.

We measured the number of lines generated by Civet

on different case studies. The number of lines of code of

the program would increase after specialization because of

method generation, loop unrolling etc. The number of lines

of code increase on almost all the examples is about 1.2

to 2 times the number of lines of code in the original. On
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Figure 14. Time comparison between JSpec and Civet

Compile Time

Example Java Civet

Power 0.81 2.50

Romberg 0.82 2.55

Pipe 0.82 2.48

ArithInt 0.82 2.55

FFT 0.85 2.74

Visitor 0.83 2.59

Strategy 0.83 2.64

StateMachine 0.89 2.75

Pontis 0.96 3.09

Table 1. Java and Civet Compile Time comparison for all

the examples

FFT examples, however, due to a lot of loop unrolling, the

increase factor goes up to 7.6 on FFT64. Moreover, we

compared the bytecode size of the generated programs by

JSpec and Civet. The bytecode size would increase for the

same reasons the lines of code would. The average bytecode

size increase on these case studies for Civet is 1.37, while it

is 1.39 for JSpec.

Note that we could not generate any code with JSpec

because the tool is not available. We were only able to

compile and run the generated code by JSpec.

5.1.2 Compile Time Performance

Table 1 compares the compile time of Civet with that of

Java on all the examples. The Civet compile time consists

of code generation time and bytecode generation time. Same

compiler options have been used for bytecode generation in

both Civet and Java.

5.2 ModelTalk Case Study

ModelTalk is a domain specific model driven framework [12].

It has an interpretive approach to model driven development.

Since the execution is interpreter based, it is a good target

Program Time (ms)

Original regex state machine 1189

Specialized regex state machine 573

dk.brics.automaton regex library 816

Table 2. The time comparison of regular expression match-

ing between the state machine before and after specialization

and the fast Brics Automaton

for partial evaluation. We specialized a Dynamic pricing sys-

tem called Pontis based on ModelTalk. The dynamic pricing

system is a system for calculating the prices of different

products by applying a set of price promotions to each of

them. The promotions are known at compile time while the

products are known at runtime. The execution time of the

original system on a set of products for 2 × 106 iteration is

3153ms, while the execution time of the specialized version

of the system using Civet is about 512 ms. This is a factor

of 6 speedup. This speedup is mainly gained by specializ-

ing the reflective method calls and turning them into normal

method calls.

Figure 15 gives some code taken from the Pontis exam-

ple. Figure 16 gives the specialized version of the code ex-

ample. The original code has been partially evaluated with

a compile-time list of price promotions. As shown in the

Figure 16, the calcPromotionalPrice method call on the

promotion object has been turned into a static method call

on the Promotion class. In addition, the reflective method

calls in isEligible has been turned into a normal method

call. The specialized method names have been appended by

a $ and a number.

5.3 Regular Expression Case Study

The motivation behind this case study is to show the success

of the partial evaluation in the optimization of general pro-

grams. This program is a pattern matching application using

regular expressions. For the purpose of pattern matching of

a regular expression we developed a simple and naive de-

terministic state machine library. This state machine library

simply tests the input and makes transitions. After consum-

ing all of the input it reports a successful match if it is in a

final state.

We compare the execution time of the original state-

based machine regular expression matcher with the spe-

cialized version of the state machine for detecting the oc-

currence of this regular expression: (a | b)∗(abb | (a +
b)). We also compare the execution times against that of

dk.brics.automaton [21]. Brics Automaton is a highly tuned

automaton library which claims to do fast regular expression

matching.

Table 2 shows the execution time(in milliseconds) of the

three programs for an input of length 107. Not surprisingly,

the execution time of the specialized version of the state ma-

chine is less than the original state machine for the men-
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1 class PromotionSystem {

2 ...

3 double calcPromotionalPrice(An_Event ev) {

4 double result = ev.getListPrice();

5 for (A_Promotion promotion : promotions) {

6 double p = promotion.calcPromotionalPrice(ev);

7 if (p < result) result = p;

8 }

9 return result;

10 }

11 ...}

12 class Promotion {

13 ...

14 Double calcPromotionalPrice(An_Event ev) {

15 Double result = null;

16 if (eligibility.isEligible(ev))

17 result = discounter.calcDiscountedPrice(ev);

18 else result = ev.getListPrice();

19 return result;

20 }

21 ...}

22 class EligibilityByPropertyValue {

23 ...

24 boolean isEligible(An_Event ev) {

25 boolean result = false;

26 try {

27 String propertyValue = (String)

28 ev.getClass().getMethod("get"+propertyName,

null).invoke(ev, null);

29 if (propertyValue.contains(value)) result =

true;

30 } catch (Exception e) {}

31 return result;

32 }

33 ...}

Figure 15. Pontis System

tioned regular expression. However, the execution time of

the specialized version is also less than that of Brics Automa-

ton. This shows how partial evaluation can be used to gen-

erate efficient programs out of naive and general ones which

can compete with highly tuned hand-written codes for the

same functionality. For the same reason we mentioned be-

fore, we could not compare our results with that of JSpec on

this case.

5.4 Scalability

There are two important aspects to scalability of hybrid

partial evaluation. One is how much effort it requires to

annotate the code for large programs. Second one is how

much time it would take to specialize a program.

To measure the first aspect of the scalability of our

method, we define and measure a factor called NOA/LOC.

NOA is the number of annotations and LOC is the lines of

code of the program. The NOA/LOC factor is the percent-

age of annotation with respect to the program size. We have

1 class PromotionSystem {

2 ...

3 static double calcPromotionalPrice$10508(An_Event

ev) {

4 double result = ev.getListPrice();

5 double p = com.pontis.promotion.Promotion

6 .calcPromotionalPrice$10509(ev);

7 if (p < result) result = p;

8 return result;

9 }

10 ...}

11 class Promotion {

12 ...

13 static Double calcPromotionalPrice$10509(An_Event

ev) {

14 Double result = null;

15 if (com.pontis.eligibility.

EligibilityByPropertyValue.isEligible$10510

(ev))

16 result = com.pontis.discounter.

PercentageDiscounter

17 .calcDiscountedPrice$10511(ev);

18 else result = ev.getListPrice();

19 return result;

20 }

21 ...}

22 class EligibilityByPropertyValue {

23 ...

24 static boolean isEligible$10510(An_Event ev) {

25 boolean result = false;

26 try {

27 String propertyValue = ((com.pontis.event.

MovieRentalEvent) ev).getDirector();

28 if (propertyValue.contains("Cameron")) result

= true;

29 } catch (Exception e) {}

30 return result;

31 }

32 ...}

Figure 16. Specialized Pontis System

listed the NOA/LOC for all the examples in Table 3. The

value of this factor for all of the examples except the FFT is

under %5 and their average is %1.67. This means that when

using Civet, on average, we only need to annotate about

%1.67 of the program regardless of the size of the program.

This result is promising that we can expect almost the same

constant factor of effort for even larger programs.

We investigated the reasons for high NOA/LOC factor in

the FFT example. In this example there are many local and

loop variables that must be tagged which increase the num-

ber of annotations. Civet is an implementation of the seman-

tics of HPE. It is faithful to the semantics but it does not fully

implement the semantics. Thus, in some cases programmer

needs to specify more prior to partial evaluation. The full im-

plementation of the semantics in Civet is left as future work.
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Example NOA LOC NOA/LOC

Power 2 116 1.72

Romberg 6 127 4.72

Pipe 3 149 2.01

ArithInt 2 176 1.13

FFT 35 185 18.9

Visitor 5 226 2.21

Strategy 4 362 1.10

StateMachine 1 325 0.30

Pontis 2 938 0.21

Table 3. Number Of Annotations (NOA), Lines Of Code

(LOC), and NOA/LOC factor for all the examples

Time scalability, on the other hand, depends on input and

how much of the code is going to be affected by that input.

For all the examples, the time taken to specialize was less

than a second for each. We anticipate that even for larger

programs with more than 100K lines of code, the time for

partial evaluation would be linearly proportional to the code

size.

6. Related Work

Partial evaluation has a long history. In this section we dis-

cuss the most relevant related work, specifically online par-

tial evaluation of imperative languages, and partial evalua-

tion of object-oriented languages.

An online partial evaluator makes decisions about what to

specialize during the specialization process, while an offline

partial evaluator makes all the decisions before specializa-

tion. Ruf identifies two ways in which online partial eval-

uators can produce better results than offline partial evalu-

ators [23]. On one hand, offline partial evaluators must ap-

proximate the situations that can arise at runtime, so they are

not as precise as is possible in an online setting. On the other

hand, they also cannot identify commonalities between sit-

uations that depend on actual values of data. Hybrid partial

evaluation supports the improvements identified by Ruf, but

the focus of HPE is ease of use and implementation, not bet-

ter specialization. Since hybrid partial evaluation is guided

by the programmer, the opportunities for specialization are

likewise limited.

Hybrid partial evaluation uses an online strategy because

we believe it is more direct and fits within existing compil-

ers. The approach has some potential disadvantages. Online

partial evaluation are often slower than offline partial evalua-

tors, because they make complicated decisions at specializa-

tion time, and often repeat the same analysis [24]. However,

if specialization time is a small part of the overall product

development process, then specialization performance is not

a major issue. Programmer’s efficiency, and efficiency of the

final software product are the most important factors.

Meyer presents the semantics of online partial evaluator

for a Pascal-like language [20]. The language is imperative

and has binary and unary operations and control flow struc-

tures, conditionals and loops. Meyer uses a continuation-

passing semantics to implement state, but do not clone the

continuation as suggested by Ruf [23]. Meyer has a more

complex treatment of conditionals than the one given here, in

which the stores produced by the two conditional branches

are merged. In practice, we have not found a need for the

more complex approach. Meyer provides a correctness proof

of this Pascal-like language, but no practical evaluation. We

leave the correctness proof of the hybrid partial evaluation

as future works.

There are some works on partial evaluation of object-

oriented languages such as Java [7, 19, 25, 26]. Schultz et

al. [25] present a tool for automatic specialization of Java

programs. Their tool is an offline partial evaluator. They

show how partial evaluation can be used to reduce the over-

head of object-oriented abstraction in generic programs [25].

Their tool does not support exceptions, multi-threading and

reflection. Similarly, our methodology and tool do not offer

anything for exceptions and multi-threading constructs yet.

But we do have semantics and implementation for reflection.

Le Meur et al. [16] present a language which allows pro-

grammers to provide specifications in order to guide the

partial evaluator. The specification tells the partial evalua-

tor how to propagate the compile-time data throughout the

program. The ideas behind their work and ours have simi-

lar roots. They use the programmer provided annotations to

guide the offline partial evaluation of a high level language

which is similar to C. They have adapted the Tempo [6]

partial evaluator so that it uses the provided specifications

by programmers instead of the information gathered by the

binding time analyzer.

7. Conclusion

We presented a hybrid approach to partial evaluation of

object-oriented languages, giving a formal definition of the

technique for a miniature object-oriented language, MOOL.

In MOOL, programmer must specify the compile-time ex-

pressions in programs. The hybrid partial evaluator uses the

provided specification to infer what parts of the code should

be specialized. Moreover, it incorporates the specification as

seeds for exploiting opportunities for further specializations

in other parts of the code. This hybrid approach supports

method and class specialization, including specialization of

partial objects. It can also convert reflective method calls into

ordinary calls. However, it does not support self-application

and therefore it can only provide the first of the three Futa-

mura projections [11].

We described how the approach was used to build a hy-

brid partial evaluator for Java called Civet. While Civet is

sufficient to optimize a number of real-world examples, in

the current prototype some aspects of Java interfere with spe-
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cialization. These include final and private modifiers on

declarations. The burden of specification is light. One goal

of our work is to develop techniques that can be incorporated

into existing compilers. The entire Java partial evaluator took

4 person-months to build as an extension to an existing Java

compiler.

The system was evaluated on a number of examples, in-

cluding several Java programs written by other groups. The

execution time of a small version of the Pontis dynamic pric-

ing system, which uses model interpretation and reflection,

was reduced by a factor of 6 (1/6 of the original execution

time). The code generated by Civet performs as well and in

some cases even better than the code generated by a state-

of-the-art offline partial evaluator for Java, JSpec, which is

based on Tempo [6]. Civet also handles reflection.
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