A Technique for Defining
Predicate Transformers

Wolfgang Polak

TR 17-4
October 1988

Odyssey Research Associates

301A Harris B. Dates Drive

Ithaca, New York 14850-1313
Tel. (607)-277-2020




A Technique for Defining
Predicate Transformers*

Extended Abstract

Wolfgang Polak
October 21, 1988

Abstract

Denotational semantics is a general technique for formally defining programming
languages and for reasoning about their properties. But a logical approach is of-
ten more convenient for reasoning about individual programs. This paper presents
a framework for systematically deriving predicate transformers for procedural lan-
guages from a continuation semantics. Many idioms of denotational semantics, such
as environments and various forms of continuations, are employed in the resulting
predicate transformer definition. Thus, language features such as side effects and ex-
ception handling become amenable to a logical definition. The soundness of derived
predicate transformers follows from the correctness of local transformation. Elements
of such a soundness proof are demonstrated.

*This research was prepared for Odyssey Research Associates and has been sponsored by the USAF,
Rome Air Development Center under contract number F30602-86-C-0071
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1 Introduction

Denotational semantics is a very general technique for formally defining programming lan-
guages and for reasoning about their properties. Simpler logical formalisms are often suf-
ficient and more convenient for reasoning about particular programs of a language. Ver-
ification systems, for example, are often based on a logical definition of the underlying
language. In a logical or assertion-based formalism the effect of a program is described
by predicates on the computation state at various points in the program (e.g. [5]). The
effect of a language fragment can be characterized by pre- and postconditions. The rela-
tion between pre- and postconditions can be defined axiomatically (e.g. [9]) or through a
function mapping one to the other (e.g. [4]). In this paper predicate transformers are func-
tions mapping postconditions to sufficient preconditions. Preconditions in our formalism
are “weak”, i.e. they do not ensure termination of the program.

The definition of proof rules and predicate transformers for new language constructs is
often done in an ad hoc manner, or with unrealistic assumptions about the language being
defined. In contrast, researchers in denotational semantics have developed a large number
of idioms and general mechanisms that make the definition of even complex languages
(tedious) routine. The results presented here allow the systematic derivation of predicate
transformers from a continuation semantics, thus making use of such definitional idioms.
For instance, the use of expression continuations makes possible the description of side
effects, errors during expression evaluation, and exception handling mechanisms.

The concept of a derived definition is introduced to formally describe the relation be-
tween a denotational semantics and a structurally similar definition. For instance, a stack
semantics (see e.g. [11]) may be viewed as derived from a continuation semantics.

A predicate on computation states can be viewed as a precondition on the remainder of
the computation. In this sense a predicate describes a continuation. This relation between
continuations and predicates is formally defined, generalizing results of [14]. It is shown that
predicate transformers can be defined as a derived definition of a continuation semantics.

Details of such a predicate transformer definition are illustrated with a small but non-
trivial example language. The use of the logical equivalents of environments, expression
continuations, and procedure values is demonstrated with the example.

By the nature of their construction, the soundness of the predicate transformers follows
from a simple induction argument. Key steps of such a proof are presented for the example
language.

The technique has been successfully applied to define and implement predicate trans-
formers for a large subset of sequential Ada ([15)).
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2 Predicate Transformers

2.1 Assertion Language

An assertion language is a logical language A for describing the semantics of the data objects
of a programming language. Pre- and postconditions as well as verification conditions are
expressed in A. Predicate transformers are syntactic transformation of terms of A.

An annotation is a syntactic extension of the programming language that provides a
means to associate terms of 4 with a specific language construct. Annotations are used
to provide induction hypotheses for iteration and recursion constructs. Such annotations
affect the precondition generated for a program but not its semantics. Regardless of the
annotations, only sound preconditions are generated. Insufficient annotations result in
preconditions that are too strong (e.g. false).

The semantic definition of any programming language needs to deal with run-time
errors arising as the result of illegal operations. Some languages provide error recovery
mechanisms that allow the program to continue (e.g. exception handling). In this case,
a run-time error may cause a change in control flow. To define the semantics of errors
other researchers (e.g. [1,3,13]) have used assertion languages that include error conditions,
exception values, or undefined values. The resulting logical system embody parts of the
programming language semantics and/or will complicate the reasoning about the assertion
language. Yet, even with such extensions the description of control flow changes due to
errors is difficult.

For the kind of predicate transformers described here a two-valued logic suffices. The
assertion language must be rich enough to describe (i) the values returned by programming
language expressions in the case of error-free execution and (ii) the preconditions under
which evaluation of an expression results in an error. Predicate transformers for expression
evaluation will generate either preconditions to ensure error-free execution, or conditional
terms describing both normal execution and error recovery (see section 3.2).

In section 3 we assume A to be a logical language with an unbounded set of variables
z € X. T(X) is the set of terms (over X), T is the set of ground terms, and formulas
are boolean terms 7p(X). In addition to arithmetic and boolean operators A contains
conditionals if - then - else -. Terms for array selection _ [_] and array update (_; - : .)
are defined as in [6]. Arrays in the assertion language are unbounded and can be indexed
by any integer. Preconditions generated for the evaluation of the programming language
expressions a[i] will guarantee that the index is within the appropriate range.

If op(-,-) is an operator symbol in A then :T(X),T(X) — T(X) is a constructor
function; i.e. given two terms ¢, and t,, t1t2 1s a term that is the application of op to
t; and t,. Function subst € T(X) — X — T(X) — T(X) defines substitution on terms,
l.e. subst pz v denotes the substitution of v for free occurrences of z in p. Let 7 be a set
of variables, the function :i‘.t constructs a universally quantified term. Terms of A are
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interpreted over some fixed structure; |= ¢ is the value of ¢ in this structure.
Results presented here will extend to richer languages. For instance, the assertion
language may contain mechanisms to define new theories for abstract data types (e.g.

Clear [2], Larch [8]).

2.2 Denotational Semantics

Familiarity with the basic concepts of continuation semantics (e.g. [18]) is assumed. This
section summarizes the notation used and introduces the concept of derived definitions.

Domains are complete partial orders ([18]). For aset S, S, is the flat domain. Operators
—, +, and X construct function, sum, and product domains respectively. Elements of
abstract syntax domains are inclosed in brackets, as in [x + y].

Functions are defined in typed lambda calculus. In most cases type information is
clear from the context and will be omitted. Functions are curried, and application is left
associative e.g. fgz = (fg)z. To avoid excessive parentheses the “;” operator indicates
application but has lower precedence than juxtaposition and associates to the right, e.g.
fi9z;hy = f(gz(hy)). Lambda abstraction is of lowest precedence, i.e. Az.f;g; h means
Az.(f; g5 h).

If fe A— B,a€ A, and b € B then f[a/b] is a function such that f[a/bla = b and
fla/bla’ = fa' if a # a'. For a tuple p € A x B the notation p' selects the i-th component
of p. For a sum p € A+ B then p|A is the projection of p to A.

A denotational semantic definition can itself be viewed as a syntactic object consisting
of a set of domains D;, a number of constant symbols d; € D; and a set of terms A, of
typed lambda calculus denoting the meaning functions. We are interested in mapping a
denotational semantics into a derived definition, i.e. a structurally similar definition that
uses different domains. In particular, we shall see that predicate transformers can be defined
as a derived definition from a continuation semantics.

Let P; be a set of (different) domains. Further, let ~» be a mapping that assigns to each
domain D; a domain P;, and assigns to each constant d; € D; a constant p; € P;. We write
D; ~ P; and d; ~+ p; respectively. A mapping ~ extends to a transformation on terms of
a denotational definition in the obvious way, we write A ~» II.

Let Rp, C D; x P; be relations® such that

Rp,~p,(d,p) ::=Vdy,p1.Rp,(d1,p1) = Rp,(d dy,p P1) (1)
RD1+D2 (d') p) = RDI (dIDl)pIPI) \ RDz(dlDZ)pIPZ) (2)
RDI XD, (d’ p) a= RD] (dl,pl) A RDz(dz’ p2) (3)

For D = D; — D,, with D ~+P, the' domain P need not necessarily be a function domain.
If it is not, there must be a function that serves the role of application, e.g. applyp €

!Care must be taken to ensure that recursive definitions of such relations are well defined (see e.g. [11]).
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P — Py — P,. Terms of the form dd; are mapped to apply p p; where d ~ p and d; ~ p;.
Similarly, terms in D that are constructed with lambda abstraction need to be mapped
into suitable combinators in P (see 2.3, 3.3).

Lemma 1: If for all constants d ~+ p relation® R(d, p) is true then for any pair of closed
terms A ~» II relation R(A,II) holds.
The lemma can be proved by structural induction (see full paper for details).

2.3 Predicates as Continuations

The key idea (following [14]) is to define a transformation ~» that maps the domain of
continuations to a domain of predicates. As a result, the meaning functions of the con-
tinuation semantics (which are continuation transformers) become predicate transformers.
This section describes the domains of a predicate transformer semantics and their relation
R to continuation semantics. Where necessary subscripts D and P are used to distinguish
domains from the denotational semantics (D) and predicate transformer definition (P).

Locations are mapped to the domains of variables X, of the assertion language (L ~
X1 ). Intuitively, variables serve as names for locations. The relation R, C L x X,
1s implicitly defined by the respective new functions in the two definitions, i.e., if
new € S — L, then R, is defined such that Rs_r(newp, newp).

Values are mapped to ground terms of A, i.e. V ~» T,. Rv(v,v) holds for v € V and
term v if either » =1 or v is the value denoted by v, i.e. v = (}= v). To describe
abstract data types one may define hv = (}= v), where h is an abstraction function.

States are defined as mappings from locations to values (Sp = L — V). We take Sp =
X1 — T, i.e. a state in the predicate transformer definition assigns a ground term
to each variable. R is defined as required by (1).

Answers Ap are often not further specified. We let A ~» {T,F}, and define R (e, a)
relative to a subset Ag C A as (a = T) = (a € Ay). The set Ay may be arbitrary
but must contain L and must be closed under limits. Intuitively, A, represents a
set of “acceptable” answers. An answer in the predicate transformation is true if the
answer in the continuation semantics is acceptable.

Continuations are of the form C = § — A, we let C ~ P = Tg(X),, i.e. they are
mapped to formulas of the assertion language. Relation R C C x P is defined as

Re(0,p) = V0,5.Rs(0,s) = Ra(b0,s | p)

ZSubscripts of R are omitted whenever the corresponding domain is clear from the context.
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where s |= p is the truth of p when every free variable z in p is replaced by the closed
term sz. Note, that P is not a function domain. Instead, application in P is taken to

be |=. Special rules define transformation of terms of the form Ao.T(c) (see section
3.3).

Function Values will be explained in the full paper.
Other Domains For all other domains R is defined as required by (1), (2), and (3) above.

In continuation semantics statements (Stm) are defined by Dg;, € Stm — Ep — C —
C. The transformed definition is Mg, € Stm — Ep — P — P. Here Ep and Ep are
environments defining context dependent bindings. For fixed statement S and environment
e € Ep the term Mg, [S]e is a predicate transformer 1) € P — P. The full paper shows
that + is a predicate transformer in the usual sense: if ¥p holds before execution of S and
if S terminates then p holds for the state after S.

A predicate transformer definition is sound with respect to a denotational definition if
for arbitrary Ay as above, and for any statement S € Stm it can be shown that

RE—»C—»C (DStm [[S]] P MStm [[S]])

By lemma (1) it is only necessary to show that the mapping of all constants preserve the
relation R.

3 Example Definition

This section shows an example of a predicate transformer definition that is derived from a
continuation semantics. Definitional clauses of the continuation semantics are only shown
where they differ from those in the predicate transformers. Unless otherwise noted, all
symbols refer to the predicate transformer semantics. The full paper contains a more
realistic example language including recursive functions with side effects.

3.1 Statements

The functionality of the predicate transformer for statements (Stm) is Msym € Stm —
E — P — P, i.e. given a statement S, an environment e, and a postcondition p, Mg, [S]ep
1s a precondition of S. For example, predicate transformers for composition and the empty
statement are defined as

- Msim[S1; S2]ep = Msim[S1]e; Msim[S2]ep
Msim[null]ep = p
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Environments define context dependent bindings. For instance, a loop name is bound
to the loop postcondition, i.e. e € E = (I — P) where I € Id is the domain of program
identifiers. The exit statement can be defined as

Msin[exit Ifep = e[I]

The proper binding of I will be established by the definition of the loop statement.

Similarly, gotos can be described by binding labels to the precondition of their defini-
tions; exceptions use a binding of exception identifiers to the precondition of the appro-
priate handlers.

3.2 Expressions

Expression continuations are of the form Kp = Vp — Cp. The corresponding Ezpression
predicates are (K = V — P). It might help the intuition to think of an expression predicate
as a term of the form “some z such that p(z)”. Predicate transformers for expressions (Exp)
are defined by Mg,, € Fzp - E — K — P.

In addition to handling arbitrary side effects in expression evaluation, expression pred-
icates allow the insertion of error checking clauses in preconditions for all subexpressions.
This is illustrated with the definition of array subscripting.

Mgp[N [El]ek = Mpg,,[N]e; Au.Mp,,[Ele; check (type [N]); Av.k(|-[] |uv)

Function check inserts the condition that the given index is within the bounds of the array.
The definition
check t = Ak.\v.(inrange tv)[A](kv)

will generate preconditions that ensure that all index operations are legal. Function
inrange tv returns a term of the assertion language that expresses this condition. Al-
ternatively, the definition

check t = /\k./\v. (inrange tv)| then] (kv)| else]error

describes a semantics whereby computation continues with continuation error after an
illegal indexing operation is encountered.

3.3 Declarations

The full paper defines the logical equivalent of declaration continuations.
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3.4 Locations

Locations are taken to be variables (z € X) of the assertion language. The environment
maps program variables to their location (i.e., associated logical variable). In particular,
different program variables may map to the same logical variable. Thus, the description of
aliasing is possible in principled.

Values are ground terms, i.e. v € V = 7(X),. Structured data objects are stored in
singlie locations. For instance, an assignment to a component of an array is described as
assignment to the whole array, e.g. using terms of the form (_;-:.). Similar constructors
for updates of other structured objects are well known ([6,10]).

In continuation semantics assignments are defined by a function update, € C — L —
K as updatepfe = Av.Ao.0(o[e/v]). The logical correspondent is update, € P — L — K
with updatepp = Av.subst pz v, i.e. the precondition of p before assigning a new value,
say term v, to a location z is given by the substitution of v for = in p. Soundness of
this transformation requires a proof of Re_,rk(updatep, updatep). The full paper will
contain a proof of this lemma, a more complete definition of the semantics of assignment,
and the treatment of data structures.

3.5 Iteration and Recursion

In denotational semantics, iteration and recursion are defined by least fixed points. Because
of the strictness of constructors for terms in A, least fixed points are trivial in P. Instead,
the operator fix is transformed to a different function induct that defines a precondition by
induction.
Let fix € (C — C) — C, we define fix ~» induct, where induct € (P — P) — P is
given by
induct G = p, .:1: 2i=]1(9m))

Here, p; is a (proposed) loop invariant. The origin of p; is not subject of this paper, it
may be given as a program annotation, or may be constructed with heuristics. But note,
that induct is sound for arbitrary p;. The quantification ranges over all variables # that
are subject to substitution in G.

The conjunct :i‘.p,- (Gp;) corresponds to a verification condition for the induction
step of a proof of the invariance of p;. One might consider proving the universal closure
of p;[=]Gp; and simplifying the precondition generated by induct. In practice, the more
restricted quantification results in a weaker precondition and simplifies loop invariants since
trivially invariant properties need not be mentioned.

3The practical problem in describing aliasing is the logical definition of suitable abstractions for
procedures.
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Using induct, the semantics of loops becomes
Msim[I: loop S end loop Ifep = induct ; Ap'. Mg, [S](e[[1]/p])p’

Soundness of this transformation of fix requires proof of the following lemma.

Fixed Point Lemma: Given F € C — C and G € P — P such that Rc_c)(F,G),
then

Re(fix F,induct G).

The proof will be contained in the full paper. Further, we shall see how a similar transfor-
mation can be defined for fixed points of environments that arise in the definition of jumps
and recursive procedures.

4 Conclusions

Idioms from denotational semantics can be used in defining predicate transformers for
procedural languages. Such a predicate transformer definition can be derived systematically
from a continuation semantics. The soundness of the derived definition follows from a set
of lemmas showing the soundness of local transformations. The method is applicable with
a wide variety of assertion languages. In particular, conventional 2-valued logic may be
used, and mechanisms for abstract data type definition can be supported.

The technique described in this paper has been applied successfully to define predicate
transformers for most of the sequential part of Ada. David Guaspari provided the logical
definition of Ada’s data types in the assertion language ([7]). Most of Ada’s constraint
checking and exception handling mechanism could be described easily?. While no formal
soundness proof has been given, the concise notation resulted in a relatively short and
easy to read definition ([15]). Carla Marceau and Norman Ramsey have implemented a
verification condition generator based on this predicate transformer definition. The imple-
mentation uses an attribute grammar where predicates and environments are attributes
of abstract syntax trees. The Cornell Synthesizer Generator ([16]) provided a convenient
framework for the implementation.

Other authors have used syntactic transformations of denotational language definitions
to derive related artifacts. Examples are type checking algorithms (e.g. [12]), and code
generators (e.g. [19]). It may be worthwhile to study and formalize the relationship between
related definitions. For instance, Robinson ([17]) studies the relation between denotational
and axiomatic semantics in a category theory setting.

“Notable omissions are storage errors and numeric errors.
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