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Introduction 

Recently there has been considerable interest in 
the possibility of replacing the use of go to statements 
in programs with iterative constructions such as for 
and while because the latter are more easily understood, 
less error prone, and more easily proved correct. In 
recent papers, Knuth and Floyd [1] and Asheroft and 
Manna [2] and Wulf [3] have presented some theoreti- 
cal results on what can and what cannot be done. This 
paper presents further results along the line of Knuth 
and Floyd's investigation. It is shown here that if we 
require that neither the program length nor the execu- 
tion time be increased, the program constructions if, 
for, while, and even a repeat statement with a multi- 
level exit statement, are not always sufficient. Thus 
it appears unlikely that any construction simpler than 
go to suffices with conditions this strict. 

Then it is shown that if we relax the condition on 
program length but retain the condition on execution 
sequence, an if statement and a repeat statement with 
single-level exit are not always sufficient, but an if 
statement and a repeat statement with a multi-level 
exit are always sufficient. Finally some discussion of 
practical implications is given. 

Programs with the Same Length and Execution Sequence 

We will assume that a program is represented by a 
flowchart with a single starting node S and terminal 
node T, and that two flowcharts represent the same 
computation and are equivalent in that sense if the set 
of all possible paths from the starting node S to the 
terminal node T represents the same set of execution 
sequences. We shall consider the execution sequence 
to include tests, but not other sequence control. We 
shall say that two programs with the same execution 
sequence have the same execution time--this is ap- 
proximately but not precisely true because of the ex- 
clusion of go to statements. By "all possible paths" 
through the flowchart, we mean assuming that all pos- 
sible combinations of test outcomes are possible. This 
is the idea behind Ianov's  "program schema" [4]. Note 
that if a program has no input data, for example, there 
is in fact only one path through the flowchart that can 
actually occur; but in spite of that, we consider the 
entire usually infinite set of paths that could occur if all 
possible combinations of test outcomes could occur. An 
equivalent statement is that, considering the flowcharts 
to be transition graphs, we consider that two flowcharts 
are equivalent and represent the same computation if 
and only if the associated regular sets are equal. 

Three examples of flowcharts are shown in Figure 
1, and corresponding programs are shown. Note that 
lowercase letters here represent some calculation that 
has one entry point and one exit point, such as an as- 
signment statement or an ordinary subroutine call or a 
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number of such statements. In the examples, these 
statements are assumed to include the calculation of the 
predicates used in if statements, which are indicated by 
the letter P with a subscript in the programs. The same 
notation will be used in representing the test in an execu- 
tion sequence. Thus sPAalPBblc is a possible path 
through the flowchart in Figure 1 (a). 

It  is known that if two flowcharts are equivalent 
and both have the minimum possible number of nodes, 
they are isomorphic [5]. Furthermore,  if a flowchart 
does not have the minimum number of nodes, it is 
possible to merge at least one pair of nodes. In order 
for it to be possible to merge two nodes, it is necessary 
(but not sufficient) that the branches going out of those 
nodes represent the same computations. Thus if every 
branch represents a different computation, then a 
flowchart has a minimum number of nodes. Thus, 
for example, in Figure 1 (a), if s, a l ,  a2 , b, C1 , and c2 
all represent different computations,  then this flowchart 
has a minimum number of nodes. Every flowchart 
equivalent to this one is isomorphic to it unless it 
has more nodes and more branches. 

I f  two flowcharts have the same set of  tests and 
branches, we will say that the programs have the same 
length because the coding for each test and branch 
will appear once in the program. Again, the flowchart 
does not include a representation of go to statements, 
and therefore this definition of "same length" does not 
mean that the actual programs will have precisely the 
same length. 

Now let us ask, Can the flowcharts in Figure l be 
implemented in programs that use only if and whi le  

statements for sequence control? Intuitively, the answer 
is no. Figure l(a) needs no loop, and we can see by 
trying all possibilities with two if statements that they 
will not do. Figures l(b) and l(c) represent loops. 
They cannot be implemented with whi le  statements 
because any loop implemented with a while statement 
has exactly one entry point and one exit point, while 
the loop in Figure l(b) has two exit points and the 
one in Figure l(c) has two entry points. This can be 
proved rigorously. 

THEOREM 1. There exist flowcharts that cannot be 
translated into if-while programs without increasing 
their lengths and/or changing their execution sequence. 

PROOF. We will show that the flowcharts in Figure 
1 cannot be translated into if-while programs. For  
any of these flowcharts, if we assume that each branch 
represents a distinct computation,  then this flowchart 
is minimal, and any equivalent flowchart with the 
same number of  branches is isomorphic to it. Thus 
assuming the same execution sequence and program 
length implies using essentially the same flowchart. 

Suppose one of these programs could be imple- 
mented using if and while statements for sequence 
control. Then in that program, either there is an if 
statement that does not contain an if or while state- 
ment in either its then or else clause, or else there is a 

Fig. 1. Some flowchart and program examples. 
(a) 

S 

T 

S: s; 
i f P a  then do; 

at ; 
i fPR then do; b~ ; go to C; end; 
else do; b2 ; go to T; end; 

end; else do; 
a2 ; 

C: c; 
end; 

T: stop; 

(b) 
S 

T 
S: s; 

i f P a  then do; 

i f P ~  then do; bt ; go to C; end; 
else do; b~ ; go to T; end; 

end; else do; 

C: c; 
end; 

T: stop; 

(c) 
S 

a "c c 

T 

S: i f P s  then do $1 ; go to B; end; 
else do; & ; end; 

C: c; 
B: b; 

ifPD then do dl; go to C; end; 
else do; d2 ; end; 

T: stop; 
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Fig. 2. (a) Flowchart of i f P A  then al ; else a2. (b) Flowchart 
ofwhilePA ; al ; end; as ;. 

(a) (b) 

01 O~ A 

2 

while statement that does not contain an if  or while 
statement within its loop. The flowcharts for such i f  
or while statements are shown in Figures 2(a) and 
2(b), respectively. 

Actually, the branch al or a., in Figure 2(a), or the 
branch al in Figure 2(b), or any combination of them 
might be replaced by several branches connected by 
nodes with only one branch coming in and one going 
out, corresponding to a compound statement con- 
taining no i f  or while statement. Then one or the 
other of these must appear as a subgraph of any flow- 
chart corresponding to a program using only i f  and 
while for controlling execution sequence. (We consider 
H to be a subgraph of a graph G if H can be derived 
from G by deleting some nodes and /o r  branches. 
Note that a subgraph may contain a branch without 
containing both nodes that it connects in the graph.) 
But neither of the subgraphs in Figure 2 appears as a 
subgraph in any flowchart in Figure 1. It follows that 
these flowcharts cannot be implemented with if and 
while only as sequence control. QEO 

Figures l(b) and l(c) are topologically equivalent 
to the programs considered by Knuth and Floyd as 
examples. They give a proof  whose meaning is a little 
obscure, that l(b) cannot be implemented with if and 
while even if node splitting is allowed. In fact their 
proof  is related closely to the fact that a while clause 
has only one exit, but Figure l(b) has two. Thus in 
Figure l(b), the statements al and bx are both in the 
loop, but their alternatives are both outside. This 
kind of situation is impossible with a while clause; 
since there is only one exit, only one test can have 
one consequence in the loop and one outside. I f  there 
is another test result in the loop, its alternative must 
also be in the loop. 

Knuth and Floyd show that Figure l(c) can be 
implemented using if and while, if the flowchart is 
changed by node splitting. Note that the resulting 
flowchart seems to indicate a longer p rogram-- i t  
has one more branch than the old program. However, 
they used the semantics of their specific program to 
simplify it. The computation associated with the one 
new branch could be modified slightly without chang- 
ing the result, and with this additional change the 
program is no longer than the original. This could not 
be expected in general-- in general, node splitting will 
result in a longer program. 

Repeat and Exit  Statements 

Knuth and Floyd observed that the program repre- 
sented by Figure l(b) can be implemented with a 
repeat statement and an exit statement that exits from 
the loop formed by the repeat statement. This arrange- 
ment allows additional flexibility compared to the 
while statement in that the exit can be placed at any 
point in the loop, and also multiple exits from a loop 
are possible. This is just exactly what is needed for 
Figure 1 (b), but it would not seem to help with Figures 
l(a) or l(c). Now we examine this question more 
carefully. 

We wish to consider not only the single-level exit 
statement considered by Knuth and Floyd but also a 
multi-level exit statement. For  that purpose, the exit 
statement must show which loop is being exited. We 
have chosen to use as a repeat statement the statement 
do forever that is found in XPL[6]. We will require a 
label on the do forever, and the same label on the match- 
ing end statement, and we will write an exit from that 
loop by exit followed by the label. The following 
example and its equivalent, written with go to state- 
ments, should make these ideas clear: 

.4: 

B: 

do forever; A: 
sl ; s~ ; 
i fPa then exit ,4; i fPa then go to AI; 
do forever; B: 
s2 ; s2 ; 
i fPB then exit B; i fPB then go to BI; 
if Pc then exit A; if Pc  then go to A1 ; 
S~ ; S:~ ; 

end B; go to B; 
s4 ; B1 : s4 ; 
end A; go to A; 
stop; .41 : stop; 

Now let us consider whether the programs in Fig- 
ures l(a) and l(c) can be implemented without in- 
creasing the program length and without changing the 
execution sequence, using the do forever and exit 
statements. It  would appear at first sight that they 
cannot because Figure l(a) doesn' t  even have a loop 
and Figure l(c) requires multiple entry to a loop, 
which is not possible with the do forever. That  the 
problem is not quite so simple is illustrated by the 
following program, which corresponds exactly to 
Figure 1 (a). 

S: s; 
T: do forever; 

C: do forever; 
ifPA then do; 

o t  ; 

ifP~ then do; bi ; exit C; end; 
else do; b~ ; exitT; end; 

end; else do; a.., ; exit C; end; 
end C; 
c; 
exit T; 

end T; 
stop; 
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Neither of the " loops"  T and C can ever loop, but the 
multiple exit feature provides enough flexibility to 
provide the sequence control for this program. 

The program represented by Figure l(c) is actually 
impossible with the multi-level exit statements, however. 

THEOREM 2. There exist flowcharts which cannot 
be translated into if-repeat programs without changing 
their execution sequence o1" increasing their length 
even with multi-level exit allowed. 

PROOF. Assume that we have a program for Figure 
1 (c) using if, do forever, and exit for sequence control. 
Since there is a loop in Figure l(c), there is at least one 
place on the program where control proceeds upward 
in the program. That means that there is at least one 
do forever statement in which control can reach the 
matching end statement.  The set of statements includ- 
ing the do forever, the end, and all statements between 
them corresponds to a subgraph of the graph in Figure 
l(c) that has the following properties. 
1. It  contains a closed path and therefore contains 
at least one node and one branch. 
2. There is one node of the subgraph, the entry point, 
which is on a closed path contained in the subgraph, 
and there is a path from the entry point to each node 
in the subgraph. 
3. There may be any number of nodes in the subgraph 
with branches going to nodes outside the subgraph, 
but there is only one node of the subgraph with branches 
coming in from nodes outside the subgraph, namely, 
the entry point. 

For the flowchart in Figure l(c), these three con- 
ditions are not satisfied by the whole flowchart or 
any subgraph. It  follows that there is no program 
using do forever, multi-level exit, and if alone for se- 
quence control for the program in Figure 1 (c). QED 

Now let us relax the condition that the program 
length be the same and require only that the execution 
sequence be the same. This means that we will con- 
sider flowcharts that can be derived from the original 
flowchart by node splitting. We show in the next 
section that for any flowchart we can, by node splitting, 
make an equivalent flowchart that can be implemented 
with if, do forever, and multi-level exit. First we show 
that the multi-level exit is needed. 

THEOREM 3. There exist flowcharts that cannot be 
translated into if-repeat programs with single-level 
exits, even i f  node splitting is allowed. 

PROOF. Consider the flowchart in Figure 3. Assum- 
ing all the branches represent distinct computations, 
no node merging is possible and this flowchart is 
minimal. Any flowchart equivalent to it can be de- 
rived from this one by node splitting. On such a flow- 
chart, each node can be associated with a node on the 
original g raph- - the  node from which it was derived. 
Then, for example, any node on the new flowchart 
associated with node A on the original graph, has two 
branches going out, one to a node associated with B 
and one to a node associated with D. 

Fig. 3. A flowchart with nested loops. 

s B 

a2 ~ C z  
D cj C 

Now let us assume that we have a flowchart equiv- 
alent to that in Figure 3 and a program which uses 
only if, do forever, and single level exit for sequence 
control. Since the flowchart in Figure 3 has closed 
paths, control must proceed upward in the program 
at some point, and therefore there is at least one do 
forever loop in which control reaches the end of the 
loop and returns to the beginning. Then there must  
be one such do forever loop that has no other such 
do forever loop within it. Consider the subgraph H 
that consists of the entry point  of this loop and all 
statements within the loop, but not the exit node. 
Then it must have the following properties. 
1. Every closed path must go through the entry 
point because we have assumed that this do forever 
loop contains no other closed do forever loop. 
2. There is only one exit node because only single- 
level exit is permitted. 

Now some node in H must be the entry node. 
Let us assume it is associated with A and call it At .  
It has two branches going out to nodes Bt and Dt 
associated with B and D, respectively. At most,  one 
is the exit node, so at least, one is in H.  I f  Bt is in H, 
then branches go from Bt to Ct and T. Since T is the 
end of the program it cannot be in H, so it must  be 
the exit node. Thus Ct ,  and also Dr, must be in H. 
I f  we assume Dt rather than Bt is in H, then we will 
be led to conclude in the same way that B1 and Ca are 
in H also. Then there must be branches going out 
from C1 to nodes associated with D and B, respec- 
tively. The one associated with B cannot be B1 because 
that would make a closed path that doesn' t  go through 
the entry node, so let us call it B2. B2 connects to 
nodes associated with C and T, and the one associated 
with C cannot be Ct because that would result in a 
closed path not going through the entry node. Call 
it C.2. Clearly then, there is no end to the number  of 
nodes associated with B and C; and since the flowchart 
must be finite, we are led to conclude that the entry 
node cannot be associated with A. A similar argument 
shows that it cannot be associated with B either. By 
the symmetry of the flowchart, the situation must 
be the same for C as for A and the same for D as for 
B. Since no node can be the entry node, it is impossible 
to find a flowchart equivalent to Figure 3 that  can be 
implemented with if, do forever, and single-level exit. 
QED 
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Well-formed Flowcharts 

In this section a well-formed flowchart is defined, 
and it is shown that any flowchart can be transformed 
into a well-formed flowchart by node splitting. Later 
sections show that a flowchart is well formed if and 
only if the corresponding program can be written with 
properly nested if, do forever, and multi-level exit 
statements. 

Intuitively, the necessary and sufficient condition 
for a flowchart to correspond to a do forever program 
is simply that no loop should have multiple entry 
nodes. The precise definition of entry node to a loop 
in a complicated flowchart is slightly difficult, however. 

Let us define two nodes A and B as connected if 
there is a path from A to B and a path from B to A, 
i.e. if there is a closed path that goes through both 
points. A subgraph consisting of all nodes connected 
to a given node, and all branches joining two nodes 
in this set, is called a component  [7, 81. Any node 
in a component  which has a branch coming to it from 
outside is an entry node, and if the starting node is in a 
component,  it is also an entry node. 

We will call a flowchart well formed if it satisfies 
the following conditions: every component  must have 
exactly one entry node. It is also necessary to remove 
all branches going into the entry node, thus opening all 
closed paths through the entry node, and to examine 
any new components that occur. Again, multiple entry 
nodes must not occur. This process must be continued 
until there are no more closed paths. 

The first step in our program-writing algorithm 
of the next section is to open all closed paths. We pre- 
sent here an algorithm that examines a component  for 
multiple entry points, removes extra entry points by 
node splitting, and opens the closed paths through the 
entry node. I f  this algorithm is applied repeatedly, the 
result will be a well-formed flowchart with the closed 
paths opened, ready for the program-writing algorithm 
of the next section. 

THEOREM 4. Every flowchart can be transformed into 
an equivalent well-Jbrmed flowchart by node splitting. 

PROOF. Suppose we have a flowchart that contains a 
component  U with multiple entry nodes. Choose one, 
X, to become the unique entry node; the others, Y1, 
Y . , , . . . ,  to be removed by node splitting. Next, intro- 
duce new nodes YI', Y 2 ' , . . .  and remove any entry 
branches from Y~, Y 2 , . . . a n d  connect them to 
YI', Y ~ ' , . . . ,  respectively. Now for each primed 
node Z' ,  including the ones introduced in this step, 
if the original node Z connects to a node W outside U, 
place a branch representing the same processing from 
Z '  to W. I f  Z connects to X, then connect Z '  to X 
with a branch representing the same processing. I f  
Z connects to any other node W of U, then make a 
new node W' if this hasn ' t  already been done, and 
connect Z '  to W' with a branch representing the same 
processing as the branch from Z to W. 

It can be seen that the new flowchart and the old 
one have the same set of execution sequences, and the 
old flowchart results if the corresponding primed and 
unprimed nodes are merged in the new one. In the 
new flowchart, the component  containing X is exactly 
U, as in the old flowchart; for if' there were a closed 
path through X not entirely contained in U on the 
new graph, it must exit from U to another part  of  the 
graph, and return to X through one of the nodes 
Yl', Y2', . . . .  Then there would also be one of the 
original flowchart exiting from U, and returning to U 
via one of the nodes Yl, Y2,. . . -  This path would 
have been included in U, so it is impossible. Finally, 
it can be seen that the component  U, which includes 
X, contains only X as an entry point in the new flow- 
chart. 

The next step is to open the closed paths through X, 
introduce a new node X*, and for each branch in the 
component  Y coming into X, remove the head of the 
branch from X and connect it to X* instead. 

The process of removing entry points and opening 
loops should be repeated until the resulting flowchart 
has no loops. An important  question is, Will the proc- 
ess terminate or can it continue indefinitely? Let us 
define the complexity of a flowchart by a pair of in- 
tegers [N, M] where N is the number of nodes in a 
largest multi-entry component  and M is the number of 
multi-entry components  with N nodes. We define 
[N1, M1] < [N2, M2] to mean that either N1 < N2 
or N1 = N2 and M1 < M2 • The process just described 
for removing multiple entries from one component  
will decrease M by 1 if M > 1, or will cause N to 
decrease if M = 1, thus always decreasing complexity 
[N, M]. Note that although in the process of eliminat- 
ing multiple entries from a component  U node split- 
ting may introduce new components, none of the new 
ones will contain as many nodes as U. Thus repeated 
elimination of multiple entries from the most compli- 
cated components will eventually reduce the complex- 
ity to [0, 0], i.e., the resulting flowchart will be well 
formed. QFD 

AS examples, Figure l(a) has no closed paths, and 
therefore is well formed. In Figure l(b), nodes ,4, B, 
and S form a component,  and S must be considered 
an entry node. However, since this is the only entry, 
this flowchart also is well formed. In Figure 1 (c), nodes 
B, C, and D form a component,  and B and C are entry 
nodes. I f  B is chosen as the entry node and C is split, 
the well-formed flowchart shown in Figure 4 results. 
This turns out to be the better choice. In the flowchart 
of Figure 3, A, B, C, and D make a component,  and 
A is the only entry node. I f  the closed paths through A 
are opened, then B and C form a component,  and B 
is the only entry point. There are no other compo- 
nents, so this flowchart is well formed. It  is shown in 
Figure 5 with its closed paths opened, ready for the 
program-writing algorithm which is given in the next 
section. 
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Well-formed Programs 

In this section, the concept of a well-formed program 
is defined, and it is proved that  from a welLformed 
flowchart a well-formed program using if and go to 
statements for sequence control can be produced. 
It  is also shown that such a program can be con- 
verted into a program using if, do forever, and multi- 
level exit, but no go to statements for sequence control. 

First let us define a go to statement to be upward if 
the target label precedes the go to statement, and other- 
wise downward. We will define the program segment 
of an upward go to statement to be the set of all state- 
ments between the label and the go to statement ex- 
cluding the label and the go to statement. Note that a 
complete if statement consists of a predicate and two 
clauses-- the then clause and the else c lause--and 
either clause may be empty  or may contain a simple 
or compound statement in ALGoL-like or PL/[-like 
languages. We will call the set of statements between a 
do forever statement and its matching end, a do forever 
loop. 

We shall say that a program which may include 
if, go to, do forever, and exit statements is well formed 
provided that the following hold. 
1. Whenever any combination of two if statements, 
do forever loops, or upward go to segments, has a 
statement in common,  one is entirely contained in 
the other. 
2. I f  any if statement, do forever loop, or upward go to 
segment is contained in an if statement, it is contained 
within one clause of that if statement. 
3. I f  a label is in an upward go to segment, every 
go to statement to that label must be in that same up- 
ward go to segment. Similarly if a label is in a do forever 
loop, every go to to that label must be in that loop; 
and finally, if a label is in one clause of an if statement, 
all go to's to that label must be in the same clause. 

Conditions 1 and 2 require that do forever loops, 
upward go to segments, and if statements be nested, 
and 3 requires that do forever loops, upward go to 
segments, and if statements be entered only at their 
beginning. It  follows from this last condition that the 
flowchart for a well-formed program has no multiple- 
entry component,  and is thus well formed. Given a 
well-formed flowchart, if one writes a program using 
if and go to statements, it may or may not be well 
formed. Considerable care must be taken in the order 
in which the program is written. However, given any 
well-formed flowchart, the following algorithm pro- 
duces a well-formed program. 

Let us assume that a well-formed flowchart has 
its closed paths opened as described in the preceding 
section. We will refer to the node X* resulting from 
opening the closed paths through the entry node X 
as the end node corresponding to X. We will say that a 
node is a merge node if more than one branch enters it. 

We will also assume that in the original flowchart, 

Fig. 4. A flowchart equiva- 
lent to Figure l(c) but with 
no multiple-entry loops. 

S 

da~ D d,' 
T 

Fig. 5. The flowchart of 
Figure 3 with closed paths 
opened. 

, b I 

d2 

, ~ C 

c 2  

'A* ' "B* 

for any node X, there is a path from the starting node S 
to X, and there is a path f rom X to the terminal node 
T. I f  there were no path from S to X, then X could 
never be reached and hence could be eliminated with- 
out affecting the execution. I f  there were no path from 
X to T, and if execution reached X, the program could 
not terminate. Thus these are reasonable assumptions. 
Next we introduce a partial order on nodes- -we say 
,4 is above B, or B is below A, if there is a path from 
A to B. Note that since we assume the dosed paths 
have been opened, then if A is above B, B is not above 
.4. Finally we say that a node A covers a subgraph G 
if every path from the starting node S to a node or a 
branch in G goes through A, and A is not contained 
in G. I f  .4 and B both cover G, then every path from 
the starting node to G goes through both .4 and B, 
and either A is above B or B is above A. Thus of all 
the nodes that cover G, there is a unique lowest cover. 

The algorithm, which requires the use of a last-in- 
first-out stack, is this: Initially let X be the starting 
node S, and let this be Case 1. Do the following re- 
peatedly: 

I f  Case 1, then do the following. (The next thing 
to be processed is a node.) 
Step I. I f  X is the lowest cover for any node Y which 

is a merge node but not an end node nor the termi- 
nal node, then stack Y. I f  x is the starting node S, 
then stack T. I f  X is an entry node, then stack X*. 
Note that this implies that no node will be stacked 
more than once. I f  more than one node is stacked 
on one application of this step, then if Y1 is above 
112, then stack Y2 first. Otherwise any order is 
acceptable. 

Step 2. Write the label "X:". 
Step 3. I f  X is the terminal node T, then write "stop",  

and terminate the a lgor i thm-- the  program is com- 
plete. 

Step 4. I f  X is an end node Y*, then write "go to Y;" 
and let this be Case 3. 

Step 5. I f  X has two branches going out, then write 
"if  Px then do;" and stack XT to indicate that the 
then branch coming out of X is being processed. 
Take this branch as the next value of X and let 
this be Case 2. 
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Step 6. Otherwise this node has one branch going out. 
Take it as the next value of X, and let this be Case 2. 

I f  Case 2, then do the following. (The next thing 
to be processed is a branch. Let Y be the node which 
this branch enters.) 
Step 1. Write the coding for the processing indicated 

for this branch. 
Step 2. I f  Y is a merge node or the terminal node T 

or an end node, then write "go to Y" and let this 
be Case 3. 

Step 3. Otherwise take Y as the next value of X, and 
let this be Case 1. 

I f  Case 3, then do the following. (The next thing to 
be processed is determined by the stack.) 
Step 1. I f  the top of the stack is of the form YT for 

some Y, then write "end; else do;", take the else 
branch at Y as the next value of X, replace YT on 
the stack by YF to indicate that the then clause 
starting a t  Y has been completed and the else 
clause is now being processed, and let this be Case 2. 

Step 2. I f  the top of the stack is of the form YF for 
some 11, then write "end;" and remove YF from 
the stack to indicate that the else clause starting at 
Y has been completed. Let this be Case 3. 

Step 3. Otherwise the top of the stack must be a node 
name. Remove it, take it as the next X, and let 
this be Case 1. 

THEOREM 5. This algorithm produces a correct 
well-formed program from a well-formed flowchart. 

PROOF. Corresponding to every node in the flow- 
chart there is a label in the program. I f  a node X has 
only one branch going out, the coding for that branch 
immediately follows the label "X:".  I f  there are two 
branches going out, then the coding corresponding to 
the true branch immediately follows "X: if Px then 
do;" and the coding for the false branch immediately 
follows "end; else do;" and the "end" matches the 
do for the then clause. I f  the node Z follows the branch 
Y, then either "go to Z "  or the label Z immediately 
follows the coding for the branch Y. Thus the execu- 
tion of the program indeed matches the flowchart. 

Next we prove the following about  the algorithm. 
LEMMA. I f  X is a node or a branch and Y is a node 

or branch in the flowchart and X is above Y, then X is 
processed before Y by the algorithm. (This means 
that the corresponding coding for X will precede that 
for Y in the program, also.) 

PROOF. It  follows directly from the algorithm that a 
branch is never processed before the node which it 
leaves. I f  a node is not an end node, a merge node, or 
the terminal node, then Case 2 Step 3 applies, and the 
node is processed after the branch which enters it. 
I f  we can prove that for merge nodes, end nodes, and 
the terminal node, that the node isn't  processed before 
all entering branches are processed, then the lemma 
follows. 
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Let X denote any end node, merge node, or the 
terminal node, and let g denote the node at which X 
is stacked. I f  X is a merge node but not an end node 
or the terminal, Y is the lowest cover of X. I f  X is an 
end node, then Y is the corresponding entry node. 
Since the flowchart is well formed, this component  
containing X and Y has only one entry node, If, and 
thus every path from S to X goes through 11. I f  X is 
the terminal node, then ¥ is the starting node S, and 
trivially every path from S to X goes through Y. Thus 
in each case Y is a cover for X, but not necessarily 
the lowest. 

Such a node X is processed when reference is made 
to the stack (Case 3 in the algorithm) and when X is 
on the top of the stack. Let us assume that (a) a refer- 
ence to the stack is about  to be made, and (b) there 
is at least one branch B entering X which has not yet 
been processed. I f  Y has not yet been processed, then 
X hasn' t  yet even been put on the stack (Case 1, Step 
2 of the algorithm) and so cannot be on top. Now 
let us assume Y has been processed. There must exist a 
path from S to B. Since B goes to X, that is also a path 
from S to X and hence goes through Y because Y is a 
cover for X. Let Z be the first node or branch below 
Y on that path that hasn ' t  been processed. We must 
consider two cases- -Z is a branch and Z is a node. 

l f Z  is a branch, then the node W which Z goes out 
of  is processed. W must not have been the last thing 
processed, for in that case no reference to the stack 
would be required at this point. The only possibility 
is that W has two branches going out and Z is the 
else branch. In that case WT  must be on the stack, 
and since either W is Y or W is below Y, WT must be 
above X on the stack. Thus X is certainly not on top. 

Now suppose Z is a node. Since there must be a 
branch going out of Z, Z cannot be an end node or 
the terminal node. I f  Z were not a merge node, then 
it would have been processed immediately after the 
branch going into it was processed (Case 1 Step 5) 
without reference to the stack. Thus Z is a merge node. 
Since Z is on a path from Y to X, every path from S 
to Z can be extended to X. Since Y is a cover for X, 
every path from S to X, and hence every path from S 
to Z, goes through Y. Thus Y is a cover for Z. The 
lowest cover for Z is either Y or below Y. In either 
case, the algorithn, (Case 1 Step 2) will stack Z after 
it stacks X, and Z is still on the stack. Thus X is not 
on top. 

We are forced to conclude that any stack reference 
made before all branches going into X are processed 
cannot result in processing X, and thus X is not proc- 
essed until after all branches entering it have been 
processed, and thus the lemma is proved. QED 

The algorithm will terminate only when the terminal 
node T is processed. Since we have assumed that there 
is a path from every node to T, every node and every 
branch is above T, and it follows directly from the 
lemma that every other branch and node will be proc- 
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essed before T, and when T is processed, processing 
is indeed complete. 

Let X be an entry node and X* the corresponding 
end node. Since the flowchart is well formed, every path 
from S to X* must go through X, and thus X is above 
X*. Thus the go to written in Case I Step 4 of  the al- 
gorithm is an upward go to. It follows from the lemma 
that all go to's produced by Case 2 Step 2 are down- 
ward. 

Every time an upward go to segment, then clause, 
or else clause is started, an item of the form X*, XT, or 
XF, respectively, is stacked. Thus at any point in the 
writing of a program, the stack indicates which seg- 
ments contain that point in the program. At the end 
of any such segment, the corresponding item is re- 
moved from the stack. Since it is a last-in-first-out 
stack, these segments must be properly nested. Now 
suppose X is the target of one or more downward 
go to's. The go to must have been produced by Case 2 
Step 2, and thus X must be an end node, a merge node, 
or the terminal node. Let Y be the node at which X 
is stacked. It was shown in the proof of the lemma that 
Y is a cover for X. Every upward go to segment or 

then or else clause containing X is indicated by an 
item on the stack below X. Thus any such item was 
stacked no later than the time at which Y was processed. 
The go to X statements are written whenever a branch 
entering X is processed. By the lemma, these will 
always occur after Y is processed and before X is 
processed because every branch entering X is below Y 
and above X. Thus these go to X statements will 
be written while X is stacked and hence will be within 
every upward go to segment or if clause containing X. 
Thus the program resulting from the algorithm is well 
formed, and the theorem is proved. QED 

As an example, the flowchart of Figure 3, shown in 
Figure 5 with its closed paths opened, has A and B as 
entry nodes, A* and B* as end nodes, and T and D as 
merge nodes. For  both T and D, A is the lowest cover. 
The program resulting from the application of the 
algorithm, along with the stack contents after each 
step that affects the stack, is as follows: 

Program Stack (after this step) 

S: s; T 
A:  i f  P a then do; T, A*, D, AT 

at ", 
B: ifPB then do; T, A*, D, AT, B*, BT 

b~ ; 
C: if Pc then do; ct ; T, A*, D, AT, B*, BT, CT 

go to D; 
end; else do; c2 ; T,/t*, D, ~iT, B*, BT, CF 

go to B*; 
end; T, A*, D, AT, B*, BT 

end; else do; b~. ; T, A*, D, AT, B*, BF 
go to T; 

end; 7; A*, D, AT, B* 
B*: go to B; T, A*, D, ,4T 

end; else do; as; T, A*, D, AF 
go to D ; 

end; T, A*, D 

D: ifPD then do; dt; T, A*, DT 
go to A*; 

end; else do; d.~ ; T, A*, DF 
go to T; 

end; T, A* 
A*: go to A; T 
T: stop; empty 

This program can be simplified. For example, the 
statements "go to B*:" "go to A*:", and the second 
"go to D;"  could simply be,, omitted with no effect 
on execution. It is clearly possible to refine the al- 
gorithm to eliminate these unneeded go to's, but all our 
attempts so far have resulted in considerably more 
complicated algorithms and proofs. 

Next we show that every well-formed program can 
be written without go to statements. 

THEOREM 6. A well-formed program can be trans- 
formed into an equivalent program by deleting the go 
to's and inserting repeat and exit statements and labels, 
but without rearranging or altering other statements. 

ProoF. For  each upward go to statement, go to 
X, place a do forever statement immediately following 
the target label X and replace the statement go to X 
by end X. This changes upward go to segments into 
do forever loops. It follows directly from the defini- 
tion of a well-formed program that if the original pro- 
gram was well formed, the new one is also. 

Next, if there are any labels which serve as targets 
for downward go to statements and simultaneously 
serve some other function such as labeling a do forever 
statement, insert a new distinct label preceding the 
existing label, and relabel all the downward go to 
statements using the new label. 

Now the last target label X of downward go to 
statements and those go to statements can be replaced 
by do forever and exit  statements as follows. 
1. Replace the label X by "exit X; end X;" and re- 
move the label. 
2. Find the smallest do forever loop or i f  clause that 
contains X. If  it is a do forever loop labeled Y, place 
"X: do forever" immediately following the statement 
"Y: do forever;". If it is an if clause, place "X: do 
forever;" immediately following "then do;" "else do;" 
or if no "do;"  occurs, immediately following the 
"then" or "else". If  there is none, place "X: do for- 
ever;" at the beginning of the program. 
3. Replace each statement go to X; by exit X;. 

It follows directly from the definition of the state- 
ments "do forever" and "exi t"  that this doesn't affect 
the sequence of execution. It follows from the as- 
sumption that the program is welI formed, that any 
statement go to X is inside the smallest do forever loop 
or i f  clause that contained the label X. Since the go 
to's are forward, they, and hence the exit statements 
which replace them, are in the new do forever loop 
labeled X. Furthermore, the new loop, being com- 
pletely inside the smallest do forever loop or if clause 
that contains X, will be properly nested with all existing 
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do forever loops and if statements. Thus the resulting 
program is well formed. 

By repeatedly eliminating the last label of downward 
go to statements we can eventually eliminate all go to 
statements, and the resulting program is a well-formed 
program using if, do forever, and exit  statements but 
no go to's. 

The previous example of  a well-lbrmed program 
for the flowchart of Figure 3 (with the three redundant 
statements go to B*, go to A*, and go to D omitted) 
is shown here with the go to's removed and replaced 
by do forever and exit  statements: 

T: do forever; 
S: s: 
A : do forever; 
D: do forever; 

i fPz then do; 
al  ; 

B: do forever; 
ifP~ then do; 

bl ; 
if Pc then do; c~ ; exit D; 
end; else do; ce ; end; 

end; else do; b2 i exit T; end; 
B*; end B; 

end; else do; a2 ; end; 
exit D; 

end D; 
ifPD then do; d~ ; end; 
else do; de ; exit T; end; 

A * :  end .4; 
exit T; 

end T; 
stop; 

Note that this program also is not the simplest 
possible. For  example, the statements "T: do forever;" 
and "end T;" could be omitted, and then each "exit 
T;" could be replaced by "exit ,4 ;". 

Relation to Practical  Software 

The motivation for studying the implications of  
having a programming language with no go to state- 
ments is primarily software reliability, and therefore 
these two questions arise: (1) Will use of the ideas 
presented here improve software reliability? and (2) 
Are there disadvantages that will make the use of 
other sequence-control statements in place of  go to 
undesirable? Let us consider the second question first. 
We have shown that, in general, if we insist on the 
same execution sequence, the flowchart may have to 
be altered by node splitting, which implies that copies 
of  certain codes may have to appear at several points 
in the program. This means a longer program, which 
is undesirable. However, it is certainly possible to 
keep the increase in program length within reasonable 
bounds. I f  the code that must be repeated is short, 
it is not serious. I f  it is long, then it can be written as a 
procedure and called at several places. This will cause a 
small increase in execution time, but will keep the in- 
crease in program length modest. Ashcroft and Manna 
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[2] give another method for writing programs with 
while statements by introducing additional Boolean 
variables. Their method will result in a program that 
is slightly longer and slower than the original program. 
Together, these results seem to show that elirfiinating 
the use of go to statements will, at worst, result in 
modest increases in program length and execution time. 

Next is the question, Is there a benefit that offsets 
this apparently, modest cost? This question is certainly 
debatable. A few observations can be made, however. 

First, it is easy to write a program that is obscure, 
complicated, and difficult to understand without using 
go to statements. Certainly any algorithms that we 
have now do  not generally transform a complicated 
program with go to statements into a simple program 
with no go to's. In fact, the program shown for Figure 
1 (a) without go to statements is more difficult to under- 
stand than the one using go to's, and the very idea of 
introducing do forever loops that cannot actually loop 
merely for the purpose of eliminating go to statements 
is the kind of gimmick that we ought to avoid in pro- 
gramming. 

Yet it is certainly true that programs can be written 
most clearly and simply when full advantage is taken 
of any constructs like for and while that may be avail- 
able. Why do such programs seem clear and simple? 
Perhaps the most important  reason is that they are 
well formed. It appears  that it is not the go to state- 
ments themselves that are harmful, but rather their 
unrestricted use, especially in ways prohibited in our 
definition of a well-formed program. And on the other 
hand, a well-formed program written with go to 
statements may be at least as clear and easy to under- 
stand as the corresponding program with do forever 
and exit statements--especially if the upward and down- 
ward go to's are distinguished in some way in the pro- 
gram listings. 

For practical purposes there is another perhaps 
more convincing "p roof"  that well-formed programs 
can be used in practical p rogramming- -a  demonstra- 
tion. 

Wulf has reported extensive programming ex- 
perience with a go to--less language designed for sys- 
tems programming [3, 10] with no serious problems 
and general enthusiasm about  its effectiveness. A 
less extensive experience, but one for which complete 
documentation is readily available has been published 
by McKeeman,  Horning, and Wortman [6]. The pro- 
grams shown in their book comprise about  5000 
statements typical of  systems programming. There 
seems to be one go to statement, and that certainly 
could be eliminated. They use XPL, a PL/I-like lan- 
guage with do and while statements like those in PL/I. 
They make  generous use of procedures, and there is 
one feature that they use which allows multiple exits 
from a loop--within a procedure, any number of 
return statements may appear, and they may be within 
nested loops, of course. 

Communications August 1973 
of Volume 16 
the ACM Number 8 



The most important observation to be made is 
that the program listings published by McKeeman 
are unusually clear and easy to understand, and there 
seems to be no need for flowcharts. Furthermore, the 
programming is natural and straightforward. There 
is no point at which it is obvious that they were in- 
convenienced by their choice not to use go to's. (There 
are some places' in their programs that are obscure, 
but these result from unrelated weaknesses in XPL-- 
especially the lack of  floating-point arithmetic and 
double-word boundaries.) 

It seems very likely that there were, in fact, times 
when the first way to solve a problem that occurred to 
the authors involved the use of go to, and they had 
to think to find an alternative approach. If the result 
of that thinking is a clearer, better organized pro- 
gram, it was effort well spent. 

There are other potential benefits to writing well- 
formed programs. The best optimizing compilers must 
analyze the flow of control in the program, and this 
may prove to be easier in well-formed programs [8]. 
It has proved helpful in at least one program verifica 
tion system [11]. In well-formed programs the flow 
is always forward except between very clearly defined 
and paired endpoints of loops. 

Some objections might be raised to the suggested 
notation for multi-level exits. There are other possi- 
bilities, of course. But the following points should be 
considered also. 

Again, the motivation for the work presented here 
is software reliability--making programs less error 
prone and easier to understand. One very error-prone 
feature of ALGOL, PL/I, and similar languages is the 
fact that pairing of do's and end's can easily go awry. 
When it does, the compiler may give no diagnostic 
message, or it may give a profusion of diagnostic 
messages not obviously related to the true problem. 
And what ALGOL or PL/I programmer hasn't spent 
much time checking the pairings of do's and end's? 
Yet this problem appears to have escaped discussion 
in the literature. Elspas [9] has suggested that some 
discipline should be imposed on the programmer to 
promote software reliability. We suggest that requiring 
all matching do's and end's to be labeled is a discipline 
on the programmer which would definitely contribute 
to making programs less error prone and more easily 
understood. It would also make possible accurate 
diagnosis of this type of error by compilers. 

Conclusion 

We have shown that for any given flowchart, a 
program can be written using if statements, repeat 
statements, and multi-level exit  statements. The flow- 
chart may have to be modified by node splitting. We 
have also shown that if one insists on precisely the 
same execution sequence as represented by the original 
flowchart, node splitting is sometimes necessary, and 
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if, while, and repeat statements with only a single-level 
exit are not sufficient. 

This study has led us to define a "well-formed 
program" as one in which loops and conditional state- 
ments are properly nested and entered only at their 
beginning. As a prerequisite to program clarity, requir- 
ing a program to be well formed, thus restricting the 
ways in which go to statements can be used, appears 
much more important than merely avoiding go to state- 
ments. The results presented in this paper, together 
with related work by other authors, indicate that it is 
certainly possible with modest sacrifice in execution 
time and/or  program length to write well-formed pro- 
grams. It also appears that we have not yet found the 
best language for sequence control in programs, and 
further discussion and research is indicated. 
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