
Programming T.A. Standish
Languages Editor

On the Capabilities of
While, Repeat, and
Exit Statements
W.W. Peterson
University of Hawaii
and
T. Kasami and N. Tokura
Osaka University

A well-formed program is defined as a program in
which loops and if statements are properly nested and
can be entered only at their beginning. A corresponding
definition is given for a well-formed flowchart. It is
shown that a program is well formed if and only if it
can be written with if, repeat, and multi-level exit
statements for sequence control. It is also shown that
if, while, and repeat statements with single-level exit
do not suffice. It is also shown that any flowchart can
be converted to a well-formed flowchart by node
splitting. Practical implications are discussed.

Key Words and Phrases: well-formed program,
while statement, repeat statement, exit statement, go
to statement, flowchart, node splitting, software
reliability

CR Cate gories: 4.39, 4.49, 5.29

Copyright @ 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Peterson's work was supported in part by the U.S. Army Re-
search Office, Durham, under Grant No. DA-ARO-D-31-124-71-
G43 and the National Science Foundation under Grant No. GJ-596.
Authors' addresses: Department of Information and Computer
Sciences, University of Hawaii, 2565 The Mall, Honolulu, HA
96822; Osaka University, Osaka, Japan.

503

Introduction

Recently there has been considerable interest in
the possibility of replacing the use of go to statements
in programs with iterative constructions such as for
and while because the latter are more easily understood,
less error prone, and more easily proved correct. In
recent papers, Knuth and Floyd [1] and Asheroft and
Manna [2] and Wulf [3] have presented some theoreti-
cal results on what can and what cannot be done. This
paper presents further results along the line of Knuth
and Floyd's investigation. It is shown here that if we
require that neither the program length nor the execu-
tion time be increased, the program constructions if,
for, while, and even a repeat statement with a multi-
level exit statement, are not always sufficient. Thus
it appears unlikely that any construction simpler than
go to suffices with conditions this strict.

Then it is shown that if we relax the condition on
program length but retain the condition on execution
sequence, an if statement and a repeat statement with
single-level exit are not always sufficient, but an if
statement and a repeat statement with a multi-level
exit are always sufficient. Finally some discussion of
practical implications is given.

Programs with the Same Length and Execution Sequence

We will assume that a program is represented by a
flowchart with a single starting node S and terminal
node T, and that two flowcharts represent the same
computation and are equivalent in that sense if the set
of all possible paths from the starting node S to the
terminal node T represents the same set of execution
sequences. We shall consider the execution sequence
to include tests, but not other sequence control. We
shall say that two programs with the same execution
sequence have the same execution time--this is ap-
proximately but not precisely true because of the ex-
clusion of go to statements. By "all possible paths"
through the flowchart, we mean assuming that all pos-
sible combinations of test outcomes are possible. This
is the idea behind Ianov's "program schema" [4]. Note
that if a program has no input data, for example, there
is in fact only one path through the flowchart that can
actually occur; but in spite of that, we consider the
entire usually infinite set of paths that could occur if all
possible combinations of test outcomes could occur. An
equivalent statement is that, considering the flowcharts
to be transition graphs, we consider that two flowcharts
are equivalent and represent the same computation if
and only if the associated regular sets are equal.

Three examples of flowcharts are shown in Figure
1, and corresponding programs are shown. Note that
lowercase letters here represent some calculation that
has one entry point and one exit point, such as an as-
signment statement or an ordinary subroutine call or a

Communications August 1973
of Volume 16
the ACM Number 8

number of such statements. In the examples, these
statements are assumed to include the calculation of the
predicates used in if statements, which are indicated by
the letter P with a subscript in the programs. The same
notation will be used in representing the test in an execu-
tion sequence. Thus sPAalPBblc is a possible path
through the flowchart in Figure 1 (a).

It is known that if two flowcharts are equivalent
and both have the minimum possible number of nodes,
they are isomorphic [5]. Furthermore, if a flowchart
does not have the minimum number of nodes, it is
possible to merge at least one pair of nodes. In order
for it to be possible to merge two nodes, it is necessary
(but not sufficient) that the branches going out of those
nodes represent the same computations. Thus if every
branch represents a different computation, then a
flowchart has a minimum number of nodes. Thus,
for example, in Figure 1 (a), if s, a l , a2 , b, C1 , and c2
all represent different computations, then this flowchart
has a minimum number of nodes. Every flowchart
equivalent to this one is isomorphic to it unless it
has more nodes and more branches.

I f two flowcharts have the same set of tests and
branches, we will say that the programs have the same
length because the coding for each test and branch
will appear once in the program. Again, the flowchart
does not include a representation of go to statements,
and therefore this definition of "same length" does not
mean that the actual programs will have precisely the
same length.

Now let us ask, Can the flowcharts in Figure l be
implemented in programs that use only if and whi le

statements for sequence control? Intuitively, the answer
is no. Figure l(a) needs no loop, and we can see by
trying all possibilities with two if statements that they
will not do. Figures l(b) and l(c) represent loops.
They cannot be implemented with whi le statements
because any loop implemented with a while statement
has exactly one entry point and one exit point, while
the loop in Figure l(b) has two exit points and the
one in Figure l(c) has two entry points. This can be
proved rigorously.

THEOREM 1. There exist flowcharts that cannot be
translated into if-while programs without increasing
their lengths and/or changing their execution sequence.

PROOF. We will show that the flowcharts in Figure
1 cannot be translated into if-while programs. For
any of these flowcharts, if we assume that each branch
represents a distinct computation, then this flowchart
is minimal, and any equivalent flowchart with the
same number of branches is isomorphic to it. Thus
assuming the same execution sequence and program
length implies using essentially the same flowchart.

Suppose one of these programs could be imple-
mented using if and while statements for sequence
control. Then in that program, either there is an if
statement that does not contain an if or while state-
ment in either its then or else clause, or else there is a

Fig. 1. Some flowchart and program examples.
(a)

S

T

S: s;
i f P a then do;

at ;
i fPR then do; b~ ; go to C; end;
else do; b2 ; go to T; end;

end; else do;
a2 ;

C: c;
end;

T: stop;

(b)
S

T
S: s;

i f P a then do;

i f P ~ then do; bt ; go to C; end;
else do; b~ ; go to T; end;

end; else do;

C: c;
end;

T: stop;

(c)
S

a "c c

T

S: i f P s then do $1 ; go to B; end;
else do; & ; end;

C: c;
B: b;

ifPD then do dl; go to C; end;
else do; d2 ; end;

T: stop;

504 Communicat ions
of
the A C M

August 1973
Volume 16
Number 8

Fig. 2. (a) Flowchart of i f P A then al ; else a2. (b) Flowchart
ofwhilePA ; al ; end; as ;.

(a) (b)

01 O~ A

2

while statement that does not contain an if or while
statement within its loop. The flowcharts for such i f
or while statements are shown in Figures 2(a) and
2(b), respectively.

Actually, the branch al or a., in Figure 2(a), or the
branch al in Figure 2(b), or any combination of them
might be replaced by several branches connected by
nodes with only one branch coming in and one going
out, corresponding to a compound statement con-
taining no i f or while statement. Then one or the
other of these must appear as a subgraph of any flow-
chart corresponding to a program using only i f and
while for controlling execution sequence. (We consider
H to be a subgraph of a graph G if H can be derived
from G by deleting some nodes and /o r branches.
Note that a subgraph may contain a branch without
containing both nodes that it connects in the graph.)
But neither of the subgraphs in Figure 2 appears as a
subgraph in any flowchart in Figure 1. It follows that
these flowcharts cannot be implemented with if and
while only as sequence control. QEO

Figures l(b) and l(c) are topologically equivalent
to the programs considered by Knuth and Floyd as
examples. They give a proof whose meaning is a little
obscure, that l(b) cannot be implemented with if and
while even if node splitting is allowed. In fact their
proof is related closely to the fact that a while clause
has only one exit, but Figure l(b) has two. Thus in
Figure l(b), the statements al and bx are both in the
loop, but their alternatives are both outside. This
kind of situation is impossible with a while clause;
since there is only one exit, only one test can have
one consequence in the loop and one outside. I f there
is another test result in the loop, its alternative must
also be in the loop.

Knuth and Floyd show that Figure l(c) can be
implemented using if and while, if the flowchart is
changed by node splitting. Note that the resulting
flowchart seems to indicate a longer p rogram-- i t
has one more branch than the old program. However,
they used the semantics of their specific program to
simplify it. The computation associated with the one
new branch could be modified slightly without chang-
ing the result, and with this additional change the
program is no longer than the original. This could not
be expected in general-- in general, node splitting will
result in a longer program.

Repeat and Exit Statements

Knuth and Floyd observed that the program repre-
sented by Figure l(b) can be implemented with a
repeat statement and an exit statement that exits from
the loop formed by the repeat statement. This arrange-
ment allows additional flexibility compared to the
while statement in that the exit can be placed at any
point in the loop, and also multiple exits from a loop
are possible. This is just exactly what is needed for
Figure 1 (b), but it would not seem to help with Figures
l(a) or l(c). Now we examine this question more
carefully.

We wish to consider not only the single-level exit
statement considered by Knuth and Floyd but also a
multi-level exit statement. For that purpose, the exit
statement must show which loop is being exited. We
have chosen to use as a repeat statement the statement
do forever that is found in XPL[6]. We will require a
label on the do forever, and the same label on the match-
ing end statement, and we will write an exit from that
loop by exit followed by the label. The following
example and its equivalent, written with go to state-
ments, should make these ideas clear:

.4:

B:

do forever; A:
sl ; s~ ;
i fPa then exit ,4; i fPa then go to AI;
do forever; B:
s2 ; s2 ;
i fPB then exit B; i fPB then go to BI;
if Pc then exit A; if Pc then go to A1 ;
S~ ; S:~ ;

end B; go to B;
s4 ; B1 : s4 ;
end A; go to A;
stop; .41 : stop;

Now let us consider whether the programs in Fig-
ures l(a) and l(c) can be implemented without in-
creasing the program length and without changing the
execution sequence, using the do forever and exit
statements. It would appear at first sight that they
cannot because Figure l(a) doesn' t even have a loop
and Figure l(c) requires multiple entry to a loop,
which is not possible with the do forever. That the
problem is not quite so simple is illustrated by the
following program, which corresponds exactly to
Figure 1 (a).

S: s;
T: do forever;

C: do forever;
ifPA then do;

o t ;

ifP~ then do; bi ; exit C; end;
else do; b~ ; exitT; end;

end; else do; a.., ; exit C; end;
end C;
c;
exit T;

end T;
stop;

505 Communications August 1973
of Volume 16
the ACM Number 8

Neither of the " loops" T and C can ever loop, but the
multiple exit feature provides enough flexibility to
provide the sequence control for this program.

The program represented by Figure l(c) is actually
impossible with the multi-level exit statements, however.

THEOREM 2. There exist flowcharts which cannot
be translated into if-repeat programs without changing
their execution sequence o1" increasing their length
even with multi-level exit allowed.

PROOF. Assume that we have a program for Figure
1 (c) using if, do forever, and exit for sequence control.
Since there is a loop in Figure l(c), there is at least one
place on the program where control proceeds upward
in the program. That means that there is at least one
do forever statement in which control can reach the
matching end statement. The set of statements includ-
ing the do forever, the end, and all statements between
them corresponds to a subgraph of the graph in Figure
l(c) that has the following properties.
1. It contains a closed path and therefore contains
at least one node and one branch.
2. There is one node of the subgraph, the entry point,
which is on a closed path contained in the subgraph,
and there is a path from the entry point to each node
in the subgraph.
3. There may be any number of nodes in the subgraph
with branches going to nodes outside the subgraph,
but there is only one node of the subgraph with branches
coming in from nodes outside the subgraph, namely,
the entry point.

For the flowchart in Figure l(c), these three con-
ditions are not satisfied by the whole flowchart or
any subgraph. It follows that there is no program
using do forever, multi-level exit, and if alone for se-
quence control for the program in Figure 1 (c). QED

Now let us relax the condition that the program
length be the same and require only that the execution
sequence be the same. This means that we will con-
sider flowcharts that can be derived from the original
flowchart by node splitting. We show in the next
section that for any flowchart we can, by node splitting,
make an equivalent flowchart that can be implemented
with if, do forever, and multi-level exit. First we show
that the multi-level exit is needed.

THEOREM 3. There exist flowcharts that cannot be
translated into if-repeat programs with single-level
exits, even i f node splitting is allowed.

PROOF. Consider the flowchart in Figure 3. Assum-
ing all the branches represent distinct computations,
no node merging is possible and this flowchart is
minimal. Any flowchart equivalent to it can be de-
rived from this one by node splitting. On such a flow-
chart, each node can be associated with a node on the
original g raph- - the node from which it was derived.
Then, for example, any node on the new flowchart
associated with node A on the original graph, has two
branches going out, one to a node associated with B
and one to a node associated with D.

Fig. 3. A flowchart with nested loops.

s B

a2 ~ C z
D cj C

Now let us assume that we have a flowchart equiv-
alent to that in Figure 3 and a program which uses
only if, do forever, and single level exit for sequence
control. Since the flowchart in Figure 3 has closed
paths, control must proceed upward in the program
at some point, and therefore there is at least one do
forever loop in which control reaches the end of the
loop and returns to the beginning. Then there must
be one such do forever loop that has no other such
do forever loop within it. Consider the subgraph H
that consists of the entry point of this loop and all
statements within the loop, but not the exit node.
Then it must have the following properties.
1. Every closed path must go through the entry
point because we have assumed that this do forever
loop contains no other closed do forever loop.
2. There is only one exit node because only single-
level exit is permitted.

Now some node in H must be the entry node.
Let us assume it is associated with A and call it At .
It has two branches going out to nodes Bt and Dt
associated with B and D, respectively. At most, one
is the exit node, so at least, one is in H. I f Bt is in H,
then branches go from Bt to Ct and T. Since T is the
end of the program it cannot be in H, so it must be
the exit node. Thus Ct , and also Dr, must be in H.
I f we assume Dt rather than Bt is in H, then we will
be led to conclude in the same way that B1 and Ca are
in H also. Then there must be branches going out
from C1 to nodes associated with D and B, respec-
tively. The one associated with B cannot be B1 because
that would make a closed path that doesn' t go through
the entry node, so let us call it B2. B2 connects to
nodes associated with C and T, and the one associated
with C cannot be Ct because that would result in a
closed path not going through the entry node. Call
it C.2. Clearly then, there is no end to the number of
nodes associated with B and C; and since the flowchart
must be finite, we are led to conclude that the entry
node cannot be associated with A. A similar argument
shows that it cannot be associated with B either. By
the symmetry of the flowchart, the situation must
be the same for C as for A and the same for D as for
B. Since no node can be the entry node, it is impossible
to find a flowchart equivalent to Figure 3 that can be
implemented with if, do forever, and single-level exit.
QED

506 Communications August 1973
of Volume 16
the ACM Number 8

Well-formed Flowcharts

In this section a well-formed flowchart is defined,
and it is shown that any flowchart can be transformed
into a well-formed flowchart by node splitting. Later
sections show that a flowchart is well formed if and
only if the corresponding program can be written with
properly nested if, do forever, and multi-level exit
statements.

Intuitively, the necessary and sufficient condition
for a flowchart to correspond to a do forever program
is simply that no loop should have multiple entry
nodes. The precise definition of entry node to a loop
in a complicated flowchart is slightly difficult, however.

Let us define two nodes A and B as connected if
there is a path from A to B and a path from B to A,
i.e. if there is a closed path that goes through both
points. A subgraph consisting of all nodes connected
to a given node, and all branches joining two nodes
in this set, is called a component [7, 81. Any node
in a component which has a branch coming to it from
outside is an entry node, and if the starting node is in a
component, it is also an entry node.

We will call a flowchart well formed if it satisfies
the following conditions: every component must have
exactly one entry node. It is also necessary to remove
all branches going into the entry node, thus opening all
closed paths through the entry node, and to examine
any new components that occur. Again, multiple entry
nodes must not occur. This process must be continued
until there are no more closed paths.

The first step in our program-writing algorithm
of the next section is to open all closed paths. We pre-
sent here an algorithm that examines a component for
multiple entry points, removes extra entry points by
node splitting, and opens the closed paths through the
entry node. I f this algorithm is applied repeatedly, the
result will be a well-formed flowchart with the closed
paths opened, ready for the program-writing algorithm
of the next section.

THEOREM 4. Every flowchart can be transformed into
an equivalent well-Jbrmed flowchart by node splitting.

PROOF. Suppose we have a flowchart that contains a
component U with multiple entry nodes. Choose one,
X, to become the unique entry node; the others, Y1,
Y . , , . . . , to be removed by node splitting. Next, intro-
duce new nodes YI', Y 2 ' , . . . and remove any entry
branches from Y~, Y 2 , . . . a n d connect them to
YI', Y ~ ' , . . . , respectively. Now for each primed
node Z' , including the ones introduced in this step,
if the original node Z connects to a node W outside U,
place a branch representing the same processing from
Z ' to W. I f Z connects to X, then connect Z ' to X
with a branch representing the same processing. I f
Z connects to any other node W of U, then make a
new node W' if this hasn ' t already been done, and
connect Z ' to W' with a branch representing the same
processing as the branch from Z to W.

It can be seen that the new flowchart and the old
one have the same set of execution sequences, and the
old flowchart results if the corresponding primed and
unprimed nodes are merged in the new one. In the
new flowchart, the component containing X is exactly
U, as in the old flowchart; for if' there were a closed
path through X not entirely contained in U on the
new graph, it must exit from U to another part of the
graph, and return to X through one of the nodes
Yl', Y2', Then there would also be one of the
original flowchart exiting from U, and returning to U
via one of the nodes Yl, Y2,. . . - This path would
have been included in U, so it is impossible. Finally,
it can be seen that the component U, which includes
X, contains only X as an entry point in the new flow-
chart.

The next step is to open the closed paths through X,
introduce a new node X*, and for each branch in the
component Y coming into X, remove the head of the
branch from X and connect it to X* instead.

The process of removing entry points and opening
loops should be repeated until the resulting flowchart
has no loops. An important question is, Will the proc-
ess terminate or can it continue indefinitely? Let us
define the complexity of a flowchart by a pair of in-
tegers [N, M] where N is the number of nodes in a
largest multi-entry component and M is the number of
multi-entry components with N nodes. We define
[N1, M1] < [N2, M2] to mean that either N1 < N2
or N1 = N2 and M1 < M2 • The process just described
for removing multiple entries from one component
will decrease M by 1 if M > 1, or will cause N to
decrease if M = 1, thus always decreasing complexity
[N, M]. Note that although in the process of eliminat-
ing multiple entries from a component U node split-
ting may introduce new components, none of the new
ones will contain as many nodes as U. Thus repeated
elimination of multiple entries from the most compli-
cated components will eventually reduce the complex-
ity to [0, 0], i.e., the resulting flowchart will be well
formed. QFD

AS examples, Figure l(a) has no closed paths, and
therefore is well formed. In Figure l(b), nodes ,4, B,
and S form a component, and S must be considered
an entry node. However, since this is the only entry,
this flowchart also is well formed. In Figure 1 (c), nodes
B, C, and D form a component, and B and C are entry
nodes. I f B is chosen as the entry node and C is split,
the well-formed flowchart shown in Figure 4 results.
This turns out to be the better choice. In the flowchart
of Figure 3, A, B, C, and D make a component, and
A is the only entry node. I f the closed paths through A
are opened, then B and C form a component, and B
is the only entry point. There are no other compo-
nents, so this flowchart is well formed. It is shown in
Figure 5 with its closed paths opened, ready for the
program-writing algorithm which is given in the next
section.

507 Communications August 1973
of Volume 16
the ACM Number 8

Well-formed Programs

In this section, the concept of a well-formed program
is defined, and it is proved that from a welLformed
flowchart a well-formed program using if and go to
statements for sequence control can be produced.
It is also shown that such a program can be con-
verted into a program using if, do forever, and multi-
level exit, but no go to statements for sequence control.

First let us define a go to statement to be upward if
the target label precedes the go to statement, and other-
wise downward. We will define the program segment
of an upward go to statement to be the set of all state-
ments between the label and the go to statement ex-
cluding the label and the go to statement. Note that a
complete if statement consists of a predicate and two
clauses-- the then clause and the else c lause--and
either clause may be empty or may contain a simple
or compound statement in ALGoL-like or PL/[-like
languages. We will call the set of statements between a
do forever statement and its matching end, a do forever
loop.

We shall say that a program which may include
if, go to, do forever, and exit statements is well formed
provided that the following hold.
1. Whenever any combination of two if statements,
do forever loops, or upward go to segments, has a
statement in common, one is entirely contained in
the other.
2. I f any if statement, do forever loop, or upward go to
segment is contained in an if statement, it is contained
within one clause of that if statement.
3. I f a label is in an upward go to segment, every
go to statement to that label must be in that same up-
ward go to segment. Similarly if a label is in a do forever
loop, every go to to that label must be in that loop;
and finally, if a label is in one clause of an if statement,
all go to's to that label must be in the same clause.

Conditions 1 and 2 require that do forever loops,
upward go to segments, and if statements be nested,
and 3 requires that do forever loops, upward go to
segments, and if statements be entered only at their
beginning. It follows from this last condition that the
flowchart for a well-formed program has no multiple-
entry component, and is thus well formed. Given a
well-formed flowchart, if one writes a program using
if and go to statements, it may or may not be well
formed. Considerable care must be taken in the order
in which the program is written. However, given any
well-formed flowchart, the following algorithm pro-
duces a well-formed program.

Let us assume that a well-formed flowchart has
its closed paths opened as described in the preceding
section. We will refer to the node X* resulting from
opening the closed paths through the entry node X
as the end node corresponding to X. We will say that a
node is a merge node if more than one branch enters it.

We will also assume that in the original flowchart,

Fig. 4. A flowchart equiva-
lent to Figure l(c) but with
no multiple-entry loops.

S

da~ D d,'
T

Fig. 5. The flowchart of
Figure 3 with closed paths
opened.

, b I

d2

, ~ C

c 2

'A* ' "B*

for any node X, there is a path from the starting node S
to X, and there is a path f rom X to the terminal node
T. I f there were no path from S to X, then X could
never be reached and hence could be eliminated with-
out affecting the execution. I f there were no path from
X to T, and if execution reached X, the program could
not terminate. Thus these are reasonable assumptions.
Next we introduce a partial order on nodes- -we say
,4 is above B, or B is below A, if there is a path from
A to B. Note that since we assume the dosed paths
have been opened, then if A is above B, B is not above
.4. Finally we say that a node A covers a subgraph G
if every path from the starting node S to a node or a
branch in G goes through A, and A is not contained
in G. I f .4 and B both cover G, then every path from
the starting node to G goes through both .4 and B,
and either A is above B or B is above A. Thus of all
the nodes that cover G, there is a unique lowest cover.

The algorithm, which requires the use of a last-in-
first-out stack, is this: Initially let X be the starting
node S, and let this be Case 1. Do the following re-
peatedly:

I f Case 1, then do the following. (The next thing
to be processed is a node.)
Step I. I f X is the lowest cover for any node Y which

is a merge node but not an end node nor the termi-
nal node, then stack Y. I f x is the starting node S,
then stack T. I f X is an entry node, then stack X*.
Note that this implies that no node will be stacked
more than once. I f more than one node is stacked
on one application of this step, then if Y1 is above
112, then stack Y2 first. Otherwise any order is
acceptable.

Step 2. Write the label "X:".
Step 3. I f X is the terminal node T, then write "stop",

and terminate the a lgor i thm-- the program is com-
plete.

Step 4. I f X is an end node Y*, then write "go to Y;"
and let this be Case 3.

Step 5. I f X has two branches going out, then write
"if Px then do;" and stack XT to indicate that the
then branch coming out of X is being processed.
Take this branch as the next value of X and let
this be Case 2.

508 Communications August 1973
of Volume 16
the ACM Number 8

Step 6. Otherwise this node has one branch going out.
Take it as the next value of X, and let this be Case 2.

I f Case 2, then do the following. (The next thing
to be processed is a branch. Let Y be the node which
this branch enters.)
Step 1. Write the coding for the processing indicated

for this branch.
Step 2. I f Y is a merge node or the terminal node T

or an end node, then write "go to Y" and let this
be Case 3.

Step 3. Otherwise take Y as the next value of X, and
let this be Case 1.

I f Case 3, then do the following. (The next thing to
be processed is determined by the stack.)
Step 1. I f the top of the stack is of the form YT for

some Y, then write "end; else do;", take the else
branch at Y as the next value of X, replace YT on
the stack by YF to indicate that the then clause
starting a t Y has been completed and the else
clause is now being processed, and let this be Case 2.

Step 2. I f the top of the stack is of the form YF for
some 11, then write "end;" and remove YF from
the stack to indicate that the else clause starting at
Y has been completed. Let this be Case 3.

Step 3. Otherwise the top of the stack must be a node
name. Remove it, take it as the next X, and let
this be Case 1.

THEOREM 5. This algorithm produces a correct
well-formed program from a well-formed flowchart.

PROOF. Corresponding to every node in the flow-
chart there is a label in the program. I f a node X has
only one branch going out, the coding for that branch
immediately follows the label "X:". I f there are two
branches going out, then the coding corresponding to
the true branch immediately follows "X: if Px then
do;" and the coding for the false branch immediately
follows "end; else do;" and the "end" matches the
do for the then clause. I f the node Z follows the branch
Y, then either "go to Z " or the label Z immediately
follows the coding for the branch Y. Thus the execu-
tion of the program indeed matches the flowchart.

Next we prove the following about the algorithm.
LEMMA. I f X is a node or a branch and Y is a node

or branch in the flowchart and X is above Y, then X is
processed before Y by the algorithm. (This means
that the corresponding coding for X will precede that
for Y in the program, also.)

PROOF. It follows directly from the algorithm that a
branch is never processed before the node which it
leaves. I f a node is not an end node, a merge node, or
the terminal node, then Case 2 Step 3 applies, and the
node is processed after the branch which enters it.
I f we can prove that for merge nodes, end nodes, and
the terminal node, that the node isn't processed before
all entering branches are processed, then the lemma
follows.

509

Let X denote any end node, merge node, or the
terminal node, and let g denote the node at which X
is stacked. I f X is a merge node but not an end node
or the terminal, Y is the lowest cover of X. I f X is an
end node, then Y is the corresponding entry node.
Since the flowchart is well formed, this component
containing X and Y has only one entry node, If, and
thus every path from S to X goes through 11. I f X is
the terminal node, then ¥ is the starting node S, and
trivially every path from S to X goes through Y. Thus
in each case Y is a cover for X, but not necessarily
the lowest.

Such a node X is processed when reference is made
to the stack (Case 3 in the algorithm) and when X is
on the top of the stack. Let us assume that (a) a refer-
ence to the stack is about to be made, and (b) there
is at least one branch B entering X which has not yet
been processed. I f Y has not yet been processed, then
X hasn' t yet even been put on the stack (Case 1, Step
2 of the algorithm) and so cannot be on top. Now
let us assume Y has been processed. There must exist a
path from S to B. Since B goes to X, that is also a path
from S to X and hence goes through Y because Y is a
cover for X. Let Z be the first node or branch below
Y on that path that hasn ' t been processed. We must
consider two cases- -Z is a branch and Z is a node.

l f Z is a branch, then the node W which Z goes out
of is processed. W must not have been the last thing
processed, for in that case no reference to the stack
would be required at this point. The only possibility
is that W has two branches going out and Z is the
else branch. In that case WT must be on the stack,
and since either W is Y or W is below Y, WT must be
above X on the stack. Thus X is certainly not on top.

Now suppose Z is a node. Since there must be a
branch going out of Z, Z cannot be an end node or
the terminal node. I f Z were not a merge node, then
it would have been processed immediately after the
branch going into it was processed (Case 1 Step 5)
without reference to the stack. Thus Z is a merge node.
Since Z is on a path from Y to X, every path from S
to Z can be extended to X. Since Y is a cover for X,
every path from S to X, and hence every path from S
to Z, goes through Y. Thus Y is a cover for Z. The
lowest cover for Z is either Y or below Y. In either
case, the algorithn, (Case 1 Step 2) will stack Z after
it stacks X, and Z is still on the stack. Thus X is not
on top.

We are forced to conclude that any stack reference
made before all branches going into X are processed
cannot result in processing X, and thus X is not proc-
essed until after all branches entering it have been
processed, and thus the lemma is proved. QED

The algorithm will terminate only when the terminal
node T is processed. Since we have assumed that there
is a path from every node to T, every node and every
branch is above T, and it follows directly from the
lemma that every other branch and node will be proc-

Communications August 1973
of Volume 16
the ACM Number 8

essed before T, and when T is processed, processing
is indeed complete.

Let X be an entry node and X* the corresponding
end node. Since the flowchart is well formed, every path
from S to X* must go through X, and thus X is above
X*. Thus the go to written in Case I Step 4 of the al-
gorithm is an upward go to. It follows from the lemma
that all go to's produced by Case 2 Step 2 are down-
ward.

Every time an upward go to segment, then clause,
or else clause is started, an item of the form X*, XT, or
XF, respectively, is stacked. Thus at any point in the
writing of a program, the stack indicates which seg-
ments contain that point in the program. At the end
of any such segment, the corresponding item is re-
moved from the stack. Since it is a last-in-first-out
stack, these segments must be properly nested. Now
suppose X is the target of one or more downward
go to's. The go to must have been produced by Case 2
Step 2, and thus X must be an end node, a merge node,
or the terminal node. Let Y be the node at which X
is stacked. It was shown in the proof of the lemma that
Y is a cover for X. Every upward go to segment or

then or else clause containing X is indicated by an
item on the stack below X. Thus any such item was
stacked no later than the time at which Y was processed.
The go to X statements are written whenever a branch
entering X is processed. By the lemma, these will
always occur after Y is processed and before X is
processed because every branch entering X is below Y
and above X. Thus these go to X statements will
be written while X is stacked and hence will be within
every upward go to segment or if clause containing X.
Thus the program resulting from the algorithm is well
formed, and the theorem is proved. QED

As an example, the flowchart of Figure 3, shown in
Figure 5 with its closed paths opened, has A and B as
entry nodes, A* and B* as end nodes, and T and D as
merge nodes. For both T and D, A is the lowest cover.
The program resulting from the application of the
algorithm, along with the stack contents after each
step that affects the stack, is as follows:

Program Stack (after this step)

S: s; T
A: i f P a then do; T, A*, D, AT

at ",
B: ifPB then do; T, A*, D, AT, B*, BT

b~ ;
C: if Pc then do; ct ; T, A*, D, AT, B*, BT, CT

go to D;
end; else do; c2 ; T,/t*, D, ~iT, B*, BT, CF

go to B*;
end; T, A*, D, AT, B*, BT

end; else do; b~. ; T, A*, D, AT, B*, BF
go to T;

end; 7; A*, D, AT, B*
B*: go to B; T, A*, D, ,4T

end; else do; as; T, A*, D, AF
go to D ;

end; T, A*, D

D: ifPD then do; dt; T, A*, DT
go to A*;

end; else do; d.~ ; T, A*, DF
go to T;

end; T, A*
A*: go to A; T
T: stop; empty

This program can be simplified. For example, the
statements "go to B*:" "go to A*:", and the second
"go to D;" could simply be,, omitted with no effect
on execution. It is clearly possible to refine the al-
gorithm to eliminate these unneeded go to's, but all our
attempts so far have resulted in considerably more
complicated algorithms and proofs.

Next we show that every well-formed program can
be written without go to statements.

THEOREM 6. A well-formed program can be trans-
formed into an equivalent program by deleting the go
to's and inserting repeat and exit statements and labels,
but without rearranging or altering other statements.

ProoF. For each upward go to statement, go to
X, place a do forever statement immediately following
the target label X and replace the statement go to X
by end X. This changes upward go to segments into
do forever loops. It follows directly from the defini-
tion of a well-formed program that if the original pro-
gram was well formed, the new one is also.

Next, if there are any labels which serve as targets
for downward go to statements and simultaneously
serve some other function such as labeling a do forever
statement, insert a new distinct label preceding the
existing label, and relabel all the downward go to
statements using the new label.

Now the last target label X of downward go to
statements and those go to statements can be replaced
by do forever and exit statements as follows.
1. Replace the label X by "exit X; end X;" and re-
move the label.
2. Find the smallest do forever loop or i f clause that
contains X. If it is a do forever loop labeled Y, place
"X: do forever" immediately following the statement
"Y: do forever;". If it is an if clause, place "X: do
forever;" immediately following "then do;" "else do;"
or if no "do;" occurs, immediately following the
"then" or "else". If there is none, place "X: do for-
ever;" at the beginning of the program.
3. Replace each statement go to X; by exit X;.

It follows directly from the definition of the state-
ments "do forever" and "exi t" that this doesn't affect
the sequence of execution. It follows from the as-
sumption that the program is welI formed, that any
statement go to X is inside the smallest do forever loop
or i f clause that contained the label X. Since the go
to's are forward, they, and hence the exit statements
which replace them, are in the new do forever loop
labeled X. Furthermore, the new loop, being com-
pletely inside the smallest do forever loop or if clause
that contains X, will be properly nested with all existing

510 Communications August 1973
of Volume 16
the ACM Number 8

do forever loops and if statements. Thus the resulting
program is well formed.

By repeatedly eliminating the last label of downward
go to statements we can eventually eliminate all go to
statements, and the resulting program is a well-formed
program using if, do forever, and exit statements but
no go to's.

The previous example of a well-lbrmed program
for the flowchart of Figure 3 (with the three redundant
statements go to B*, go to A*, and go to D omitted)
is shown here with the go to's removed and replaced
by do forever and exit statements:

T: do forever;
S: s:
A : do forever;
D: do forever;

i fPz then do;
al ;

B: do forever;
ifP~ then do;

bl ;
if Pc then do; c~ ; exit D;
end; else do; ce ; end;

end; else do; b2 i exit T; end;
B*; end B;

end; else do; a2 ; end;
exit D;

end D;
ifPD then do; d~ ; end;
else do; de ; exit T; end;

A * : end .4;
exit T;

end T;
stop;

Note that this program also is not the simplest
possible. For example, the statements "T: do forever;"
and "end T;" could be omitted, and then each "exit
T;" could be replaced by "exit ,4 ;".

Relation to Practical Software

The motivation for studying the implications of
having a programming language with no go to state-
ments is primarily software reliability, and therefore
these two questions arise: (1) Will use of the ideas
presented here improve software reliability? and (2)
Are there disadvantages that will make the use of
other sequence-control statements in place of go to
undesirable? Let us consider the second question first.
We have shown that, in general, if we insist on the
same execution sequence, the flowchart may have to
be altered by node splitting, which implies that copies
of certain codes may have to appear at several points
in the program. This means a longer program, which
is undesirable. However, it is certainly possible to
keep the increase in program length within reasonable
bounds. I f the code that must be repeated is short,
it is not serious. I f it is long, then it can be written as a
procedure and called at several places. This will cause a
small increase in execution time, but will keep the in-
crease in program length modest. Ashcroft and Manna

511

[2] give another method for writing programs with
while statements by introducing additional Boolean
variables. Their method will result in a program that
is slightly longer and slower than the original program.
Together, these results seem to show that elirfiinating
the use of go to statements will, at worst, result in
modest increases in program length and execution time.

Next is the question, Is there a benefit that offsets
this apparently, modest cost? This question is certainly
debatable. A few observations can be made, however.

First, it is easy to write a program that is obscure,
complicated, and difficult to understand without using
go to statements. Certainly any algorithms that we
have now do not generally transform a complicated
program with go to statements into a simple program
with no go to's. In fact, the program shown for Figure
1 (a) without go to statements is more difficult to under-
stand than the one using go to's, and the very idea of
introducing do forever loops that cannot actually loop
merely for the purpose of eliminating go to statements
is the kind of gimmick that we ought to avoid in pro-
gramming.

Yet it is certainly true that programs can be written
most clearly and simply when full advantage is taken
of any constructs like for and while that may be avail-
able. Why do such programs seem clear and simple?
Perhaps the most important reason is that they are
well formed. It appears that it is not the go to state-
ments themselves that are harmful, but rather their
unrestricted use, especially in ways prohibited in our
definition of a well-formed program. And on the other
hand, a well-formed program written with go to
statements may be at least as clear and easy to under-
stand as the corresponding program with do forever
and exit statements--especially if the upward and down-
ward go to's are distinguished in some way in the pro-
gram listings.

For practical purposes there is another perhaps
more convincing "p roof" that well-formed programs
can be used in practical p rogramming- -a demonstra-
tion.

Wulf has reported extensive programming ex-
perience with a go to--less language designed for sys-
tems programming [3, 10] with no serious problems
and general enthusiasm about its effectiveness. A
less extensive experience, but one for which complete
documentation is readily available has been published
by McKeeman, Horning, and Wortman [6]. The pro-
grams shown in their book comprise about 5000
statements typical of systems programming. There
seems to be one go to statement, and that certainly
could be eliminated. They use XPL, a PL/I-like lan-
guage with do and while statements like those in PL/I.
They make generous use of procedures, and there is
one feature that they use which allows multiple exits
from a loop--within a procedure, any number of
return statements may appear, and they may be within
nested loops, of course.

Communications August 1973
of Volume 16
the ACM Number 8

The most important observation to be made is
that the program listings published by McKeeman
are unusually clear and easy to understand, and there
seems to be no need for flowcharts. Furthermore, the
programming is natural and straightforward. There
is no point at which it is obvious that they were in-
convenienced by their choice not to use go to's. (There
are some places' in their programs that are obscure,
but these result from unrelated weaknesses in XPL--
especially the lack of floating-point arithmetic and
double-word boundaries.)

It seems very likely that there were, in fact, times
when the first way to solve a problem that occurred to
the authors involved the use of go to, and they had
to think to find an alternative approach. If the result
of that thinking is a clearer, better organized pro-
gram, it was effort well spent.

There are other potential benefits to writing well-
formed programs. The best optimizing compilers must
analyze the flow of control in the program, and this
may prove to be easier in well-formed programs [8].
It has proved helpful in at least one program verifica
tion system [11]. In well-formed programs the flow
is always forward except between very clearly defined
and paired endpoints of loops.

Some objections might be raised to the suggested
notation for multi-level exits. There are other possi-
bilities, of course. But the following points should be
considered also.

Again, the motivation for the work presented here
is software reliability--making programs less error
prone and easier to understand. One very error-prone
feature of ALGOL, PL/I, and similar languages is the
fact that pairing of do's and end's can easily go awry.
When it does, the compiler may give no diagnostic
message, or it may give a profusion of diagnostic
messages not obviously related to the true problem.
And what ALGOL or PL/I programmer hasn't spent
much time checking the pairings of do's and end's?
Yet this problem appears to have escaped discussion
in the literature. Elspas [9] has suggested that some
discipline should be imposed on the programmer to
promote software reliability. We suggest that requiring
all matching do's and end's to be labeled is a discipline
on the programmer which would definitely contribute
to making programs less error prone and more easily
understood. It would also make possible accurate
diagnosis of this type of error by compilers.

Conclusion

We have shown that for any given flowchart, a
program can be written using if statements, repeat
statements, and multi-level exit statements. The flow-
chart may have to be modified by node splitting. We
have also shown that if one insists on precisely the
same execution sequence as represented by the original
flowchart, node splitting is sometimes necessary, and

512

if, while, and repeat statements with only a single-level
exit are not sufficient.

This study has led us to define a "well-formed
program" as one in which loops and conditional state-
ments are properly nested and entered only at their
beginning. As a prerequisite to program clarity, requir-
ing a program to be well formed, thus restricting the
ways in which go to statements can be used, appears
much more important than merely avoiding go to state-
ments. The results presented in this paper, together
with related work by other authors, indicate that it is
certainly possible with modest sacrifice in execution
time and/or program length to write well-formed pro-
grams. It also appears that we have not yet found the
best language for sequence control in programs, and
further discussion and research is indicated.

Acknowledgment. The idea of explicitly defining a
"well-formed" program and several important im-
provements in our proofs were suggested to us by one
reviewer.

Received October 1971, revised November 1972

References
1. Knuth, D.E., and Floyd, R.W. Notes on avoiding'GO TO'
statements, blf. Proc. Letters I (1971), 23-31.
2. Ashcroft, E., and Manna, Z. The translation of"go to"
programs into "while" programs. Comput. Sci. Dep. Rep. CS 188,
Stanford U., Jan. 1971.
3. Wulf, W.A. Programming without the GOTO. IFIP 71
TA-3-84.
4. Ianov, Y.I. The logical schemes of algorithms. In Problems of
Cybernetics, Vol. 1, English ed., Pergamon Press, New York, 1960,
pp. 82-140.
5. Hopcroft, J.E., and Ullman, J.D. FormalLanguages and Their
Relation to Automata. Addison-Wesley, Reading, Mass., 1969.
6. McKeeman, W.M., Homing, J.J., and Wortman, D.B. A
Compiler Generator. Prentice-Hall, Englewood Cliffs, N.J., 1970.
7. Harary, F. Graph Theory. Addison-Wesley, Reading, Mass.,
1968.
8. Cocke, J., and Miller, R. Some analysis techniques for
optimizing computer programs. Proc. 2nd Int. Conf. of Syst. Sci.,
Hawaii, Jan. 1969.
9. Elspas, B., Green, M.W., and Levitt, K.N. Software reliability.
Computer 4 (Jan. 1971), 21-27.
10. Wulf, W.A. A case against the GOTO. Proe. ACM 72, pp.
791-796.
11. Lyons, T., and Bruno, J. An interactive system for program
verification. Tech. Rep. No. 91, Dept. of E.E., Princeton U.,
Princeton, N.J., 1971.

Communications August 1973
of Volume 16
the ACM Number 8

