
Manifest

Abstract

types, modules, and separate compilation

Xavier Leroy *

Stanford University

This paper presents a variant of the SML module system

that introduces a strict distinction between abstract types

and manifest types (types whose definitions are part of the

module specification), while retaining most of the expressive

power of the SML module system. The resulting module

system provides much better support for separate compila-

tion.

1 Introduction

1.1 IVIodules and separate compilation

ikfodular~zation is the process of decomposing a program
in small units (modules) that can be understood in isola-
tion by the programmers, and making the relations between
these units explicit to the programmers. Separate corr@a-
tzon is the process of decomposing a program in small units
(compdation units) that can be typechecked and compiled

separately by the compiler, and making the relations be-

tween these units explicit to the compiler and linker. Both

processes are required for realistic programming: modular-

ization makes large programs understandable by program-

mers; separate compilation makes large programs tractable

by compilers.

Several languages rely on a common mechanism to pro-

vide modules and separate compilation. A typical example

is Modula-2 [27], where modules are identified with compila-

tion units composed of an implementation file (source code)

and an interface file (specification). However, this identifica-

tion is limiting. Since compilation units are usually directly

mapped onto file system objects, separate compilation tends

to keep the structure of compilation units simple, with the

dependencies “hard-wired” inside the units. Modern mod-

ule systems go much farther in their attempts to accurately

express the program structure. A well-known example is the

module system of SML [14], which is actually a small typed

language of its own, with modules (also called structures) as

the base data structure, module specifications (signatures)

as types, functions from modules to modules (functors) to

*Dept. of Computer Science, Stanford University, Stanford CA
94305-2140. E-mail: xavier@cs. stanford .edu. Supported by an IN-
RIA post-doctoral grant.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantege, the ACM copyright notice and the

title of the publication and its data appear. m-d notice is given

that copying ia by perm”esion of the Association for Computing

Machinery. To copy otherwiaa, or to republish, requires a fea

and/or specific permission.

POPL 94- 1/94, Portland Oregon, USA

@ 1994 ACM o-89791 -636+’941W1 ..$3.50

represent parameterized modules, and function applications
to connect modules—all features that cannot be accounted
for in the “modules as compilation units” approach.

As a consequence of this tension, SML makes no provision
for separate compilation. SML is defined as “an interactive
language” [17], implying that users are expected to build

their programs linearly in strict bottom-up order. This re-

quirement can be alleviated by systematic use of functors,

at the cost of extra declarations (sharing constraints) and

late detection of inter-compilation unit type clashes. Re-

cently, Shao and Appel [24] have proposed a more free-form

separate compilation mechanism for SML, which infers the

required constraints, but delays all type checks between com-

pilation units to the linking phase, which is much too late.

Late detection of type errors increases the likeliness of pro-

grammers writing large quantities of inconsistent code, only

to discover later that major changes are required to bring

the parts together.

The work presented in this paper grew out of an attempt

to apply the Modula-2 separate compilation techniques

(which ensure early detection of inter-compilation unit type

clashes) to the SML module system. The starting idea is to

abandon the identification of modules and compilation

units, and consider compilation units as an additional layer

on top of modules: just as Modula-2 compilation units are

collections of language objects (types, variables, functions),

SML compilation units should be collections of module

objects (signatures, structures, functors). These collections

of modules can, then, be defined in implementation files

and specified (by their signatures) in interface files, and

their dependencies can be expressed by Modula-2-style

import declarations.

1.2 The problem with SML modules

The simple approach outlined above turns out to fail, not be-
cause it is inherently flawed, but because it exposes a weak-
ness in the SML module system: a module signature does not
express all the typing properties that the remainder of the
program can assume about the corresponding structure. In
other terms, SML signatures are not complete specifications
with respect to typing. This is because type specifications
in signatures are “transparent”: they do not hide the actual
type provided by the structure. For inst ante, assume a struc-
ture S has a signature z specifying a type component t. Even
though the signature does not say anything about the imple-
mentation of t, another structure S‘ can rely on S. t being
implemented as some particular type, say, int. If S and S‘
are not defined in the same compilation unit, the implemen-
tation defining S‘ cannot therefore be typechecked until the
implementation defining S has been written: the correspond-

109

ing interface, specifying only structure S : Z, does not suf-

fice to determine whether S‘ is correct in assuming S. t to

be int. Hence, typechecking and compilation must be done

in bottom-up order, just as in a toplevel-based approach. In

contrast, “true” separate compilation, as in Modula-2, al-

lows typechecking and compilation of a program fragment

at any time, based only on the interfaces of the fragments it

imports.

The fact that type specifications in SML signatures are

transparent is no accident: it accounts for a large part of the

expressive power of SML modules. Treating type specifica-

tions as opaque, that is, making all exported types abstract,

would fix the problem with separate compilation but drasti-

cally reduce the expressiveness of the module system [15].

1.3 This work

This paper proposes a way out of this dilemma: make type

specifications opaque (so that the users of a structure can

only assume what is declared in its signature), but enrich

signatures with manzfest type spectficatzons. A manifest type

specification of the form type t = -r not only declares a type

identifier t, but also publicizes that it is implemented as the

type expression ~. This way, signatures become complete

module specifications with respect to typing, making sepa-

rate compilation feasible while retaining the expressiveness

of the SML module system. (Harper and Lillibridge [10]

have investigated similar ideas independently.)

The two components of this approach—manifest types

and opaque signatures—have already been proposed as ex-

tensions to the SML module system: type abbreviation in

signatures and Mac Queen’s abstraction construct, respec-

tively. The novelty of this paper is to take these two con-

cepts as the basic mechanisms of a module system, replacing

SML’S transparent type specifications instead of supplement-

ing them.

The bulk of this paper is devoted to the study of the re-

sulting variant of the SML module system, with opaque type

specifications and manifest types in signatures. This mod-

ule system supports the SML modular programming style

in a satisfactory way. It provides a strong type abstraction

mechanism, which guarantees interesting representation in-

dependence properties [18] and easily accounts for genera-

tive datatypes. More surprisingly, the manifest type mecha-

nism subsumes large parts of the SML sharing constraint

machinery, an essential part of the SML module system:

manifest types in functor argument position express sharing

constraints between types, and the simple typing rules for

manifest types suffice to check these constraints. The main

missing SML feature is sharing constraints between struc-

tures (though identity checks on structures can be encoded

using abstract types); we argue that this is a small price to

pay for the overall simplifications resulting from this restric-

tion.

On the technical side, the main originality of this paper

is the use of what is essentially weak sums [19, 7]—albeit

with an unusual elimination construct: the “dot notation”

[4, 5]—instead of the strong sums that have been used so far

to give type-theoretic accounts of SML modules [15, 12, 13].

Unlike strong sums, weak sums provide direct support for

type abstraction and make the “phase distinction” [13] obvi-

ous. The well-known inadequacies of weak sums for modular

programming [15] are here offset by the extra expressiveness

brought by manifest types.

The present paper also puts forward a new way to ac-

count for type sharing, distinct from the heavy graph-based

formalism of the Dejinitzon [11, 17, 25] and from Aponte’s

record-based module algebra [1], Previous approaches to

sharing focus on structure generativity and sharing between

structures; as a consequence, they require stamps over struc-

tures and consistency conditions between structures having

the same stamp. In contrast, sharing restricted to types, as

in this paper, can be expressed by a standard term algebra

without extra consistency checks. More generally, the Def-

trutton uses semantic objects (richer than signature expres-

sions) in the static semantics, while our type system uses

only syntactic objects (signature and module type expres-

sions), in keeping with the typed A-calculus tradition.

1.4 Outline

The remainder of this paper is organized as follows. Sec-

tion 2 introduces manifest types and illustrates how they

propagate type equalities and express sharing constraints.

Section 3 formalizes a small SML-like module calculus with

manifest types. Section 4 shows the expressiveness of this

calculus by encoding a first-order calculus with strong sums

in it. Section 5 mentions some simple extensions of this

work, followed by concluding remarks in section 6.

2 Informal development

2.1 Transparency in SML

The SML module language is often presented as a small

typed functional language, with structures as base values

and data structures, funct ors as functions, and signatures as

types. However, this module language departs significantly

from most typed languages on one point: to typecheck a

module expression cent aining a free structure identifier S, it

does not suffice to know the signature (the type) of S; the ac-

tual structure (the value) bound to S is also needed in some

cases. Consider the following code fragment:

. . . S.less 1 2 . . .

where S is assumed to have the following signature:

s : slg type t; val less: t -> t -> bool end

The code fragment above is well-typed if S is bound to a

structure that implements t as the type int of integers. But

it is ill-typed if S. t has been implemented as another type,

Both implementations of S satisfy the signature given above,

though.

As shown by this example, signatures are not complete

type specifications for structures: some information required

to typecheck code that uses the structure is missing from the

signature, and must be extracted from the structure itself.

This is because type specifications in SML signatures are

transparent: even if the signature only says type t without

any indication on how t is implemented, the actual imple-

ment at ion of t “shows through” the signature.

110

This makes sense in the context of a toplevel-based sys-

tem: because of static scoping, the user must provide a

definition for S before being able to enter code that men-

tions S; hence the typechecker has access to the actual struc-

ture bound to S when typing expressions referring to S. This

is no longer true in the context of separate compilation: S

can be defined in a compilation unit A and used in another

unit B, and A might not yet be written at the time we wish

to typecheck and compile B. Hence, the fact that type spec-

ifications are transparent precludes Modula-2-style separate

compilation, where program fragments are typed and com-

piled independently, relying only on their export interfaces.

In spite of these difficulties with separate compilation,

transparent type specifications are an important feature of

the SML module system, one that accounts for a large part

of its expressive power. In the traditional view of structures

as types equipped with operations over them [14], transpar-

ent type specifications makes it possible to add operations to

a preexisting type, and apply these operations to preexisting

values. A stricter interpretation of type specifications would

generate a new type, incompatible with the original type,

therefore compromising the usefulness of the additional op-

erations. Consider for instance the following signature for a

type equipped with a total ordering function:

datatype order = Less I Equal I Greater;

signature Order =

sig

type t

val cmp: t -> t -> order

end

We can define an Order structure for a base type such as

int:

structure lntOrder: Order =

struct

type t = int

fun cmp il i2 =

if il = 12 then Equal else

if i.1 < 12 then Less else Greater

end

Since the type specification in Order is transparent,

intOrder.t is compatible with int, hence intOrder.cmp

can be applied to any integer. If type specifications

were opaque, intOrder.t would be an abstract type,

incompatible with any other type, and intOrder.cmp could

not be applied to any value, making the structure useless.

Transparency also works across functors. Consider the

following functor that takes an ordered type and produces

an ordering over lists of elements of that type:

functor listOrder(base: Order): Order =

struct

type t = base.t list

fun cmp [] [] = Equal

I cmp [1 _ = Less

I cmp _ [1 = Greater

I cmp (hl::tl) (h2::t2) =

case base.cmp hi h2 of

Equal => cmp tl t2

]C=>c

end

The application of listOrder to intOrder produces an

Order structure whose typet is compatible with int list,

hence whose cmp function can be applied to preexisting

lists of integers. Again, functors such as listOrder would

be useless without transparency.

2.2 Manifest types

So far, we have seen two interpretations of type declarations

in signatures: the opaque interpretation, which supports

separate compilation but is too restrictive, and the trans-

parent interpretation, which is expressive enough but causes

dHFiculties with separate compilation. We now propose a

third approach, which combines expressiveness and separate

compilation. We consider type declarations as opaque, but

allow two kinds of type declarations: abstract type declara-

tions, of the form type t, which give no clue on how t is

implemented and therefore makes t incompatible with any

other type (opaque interpretation); and mantfest type dec-

larations, of the form type t = -r, which require that t be

implemented as the type expression T, and therefore makes

t compatible with ~.1 This way, signatures become expres-

sive enough to capture the required type equivalences, and

there is no need to refer to the structures to establish these

equivalences. Consider again the intOrder example above.

The structure

structure intOrder =

struct

type t = int

fun cmp ii i2 =

if il = i2 then Equal else

if il < i2 then Less else Greater

end

now has signature

intOrder: sig

type t = int

val crop: t -> t -> order

end

From this signature, we can deduce that intOrder.t and

int are compatible; hence, the application ofintOrder.cmp

to integer values is well-typed. Notice that we have estab-

Iished this by looking at the signature only, but not at the

actual structure bound to i.ntOrder. We can show that

intOrder.cmp 1 2 is well-typed even ifintOrder is defined

in another compilation unit and all we know about it is its

signature, as provided by the interface of the unit.

Manifest types also work across functors. Consider again

the listOrder functor above. With manifest types, we can

define it as:

functor listOrder(base: Order):

sig

type t = base.t list

val crop: t -> t -> order

l~e do not ~on~ider generative datatype declarations in sig-
natures. since thev can be viewed as declarations of abstract
types plus injection and projection operations. For instance,
the type specification sig type t = A I B of mt end is equiva-
lent to slg type t; val inj_A: t; val inj-B: int->t, val elim-t: t
-> (unit-> ’a) -> (int->’a) -> ‘a end.

111

end

= struct

type t = base.t list

funcmpll 12= . . .

end

The result signature for listOrder rnakesit apparent that

the component t in the result structure is compatible with

base. t list, where base isthe argument structure. This is

a dependent function type: the type of the result depends on

the value of the argument. Then, consider the application

structure intListOrder = listOrder(intOrder)

This application is well-typed, even though the signature of

intOrder is different from Order, the argument signatureof

the functor: Order specifies type t (an abstract type) but

the signature of intOrder says type t = int (a manifest

type). However, a manifest type is a special case of an ab-

stract type: we can always make a manifest type abstract

by forgetting the additional information. We shall formalize

this idea as a subtyping relation between signatures. This

relation will show that the signature of intOrder is a sub-

type of Order, hence the application listOrder(intOrder)

is well-typed.

According to the standard elimination rule for dependent

function types (substitute the actual parameter for the

formal parameter in the result type), the signature of

intListOrder is:

intListOrder:

sig

type t = intOrder.t list

val crop: t -> t -> order

end

From this signature, it follows that intListOrder.t is

equivalent to intOrder.t list, and we already know

that intOrder.t is equivalent to int. Since type

equivalence is transitive and a congruence, it follows that

intListOrder.t is equivalent to int list, which is the

result we need to be able to apply intListOrder.cmp to

integer lists. Again, we have reached the same conclusions

as with the SML module system, but the reasoning is

completely different: we have reasoned only at the level of

signatures, while in SML we had to look inside structures.

2.3 Avoiding signature duplication

An apparent weakness oftheapproach presentedabove isthe

duplication ofsignatures: intOrder, intListOrder and the

result of the list Order functor all have different signatures,

while in SML they share the same signature Order. Worse,

the result signature for the listOrder functor cannot be

declared andnamed before, sinceit depends ontheargument

of the functor.

To factor out the common parts between these signatures

(the val declarations, usually),onesolution is to introduce

signatures parameterized by type expressions:

signature ManifestOrder(type ~) =

Sig type t = ‘r; val crop: t -> t -> order end

so that the signature of intOrder is ManifestOrder(int),

and listOrder can be declared as:

functor listOrder(base: Order):

ManifestOrder(base.t) = . . .

Theremaining problem is that the generic Order signature,

with t left abstract, cannot be obtained by application of

ManifestOrder and must therefore be declared separately.

Another approach is to introduce the notation

Order with type t =T as syntactic sugar for the signature

Order where the specification of t is replaced by

type t =T, that is:

sig type t = T; val crop: t -> t -> order end

This style of “after the fact” parameterization, reminiscent

of SML’S syntax for sharing constraints, makes it possible

to write the signature only once and use it in both abstract

and manifest contexts. (Tofte [26] has proposed a similar

notation toexpress type abbreviations in signatures, though

for different purposes.)

The with construct is just a notational convenience: it

can always be expanded before typing as described above, as

long as signatures can be named but not abstracted over nor

stored in structures. A typechecker would certainly avoid

this expansion for the sake of efficiency, but the point is

that the with construct does not complicate the formalism.

This is no longer true if signatures can appear as struc-

ture components or as functor parameters: if S is a func-

torparameter, S with type t= 7cannot be expanded be-

fore typing. Inthiscontext, theunrestricted with construct

seems to require a type system similar to those for polymor-

phic extensible records [6]. A more reasonable alternative is

to restrict with to situations where the left-hand side can be

statically reduced to a sig . . . end expression.

2.4 Sharing constraints for free!

So far, we have seen that manifest types in toplevel position

or functor result position can replace SML’s transparent type

specifications. We shall now see that manifest types in func-

tor argument position can replace SML’S sharing constraints,

Theidea is that afunctorof the form

functor F

(structure S1: sig type t; . . . end

structure S2: sig type t = S1.t; . . . end) . . .

can only be applied to structures S1 and S2 for which we

can prove that S1.t isthe same type as S2.t—just like the

corresponding SML functor with a sharing constraint:

functor F

(structure S1: sig type t; . . . end

structure S2: sig type t; . . . end

sharing type S1.t = S2.t) . . .

Sharing constraints are an essential feature of the SML mod-

ule system: they guarantee that a functor combining oper-

ations from several structures will only be applied to con-

sistent sets of structures—typically, structures derived from

one common structure by addition of operations. This pro-

gramming situation, known as the “diamondimport prob-

lem” [15], arises often in practice. The following “diamond

import” example shows that manifest types suffice to ex-

press and check the required sharing properties. We start

by a structure implementing some abstract data type, say,

integer lists:

112

signature Intlist =

sig

type t

val nil: t

val cons: int -> t -> t

end

Then, we define two functors that take an Intlist structure

and equip its type t with derived operations.

signature Interval =

sig type t; val interval: int -> int -> t end

functor interval(intlist: Intlist):

Interval with type t = intlist.t

= struct

type t = intlist.t;

fun interval i j = . . .

end

signature Sumlist =

sig type t; val sumlist: t -> int end

functor sumlist(intlist: Intlist):

Sumlist with type t = intlist.t

= struct

type t = intlist.t;

fun sumlist 1 = . . .

end

Finally, we define a functor that combines the structures

returned by the functors interval and sumlist.

functor main

(structure

structure

= struct

fumfn=

end

i: Interval

s: Sumlist with type t = it)

s.sumlist(i. interval 1 n)

The application of s.sumlist to the result of i.interval

is well-typed because the signature of s guarantees that the

types s.t and i.t are compatible. Now, wecan show that

the application

main(interval(list) sumlist(list))

is well-typed, given a structure list of type Intlist. First,

the signature of interval(list) is

interval(list): Interval with type t = list.t

which is included in the expected signature for i in main.

Then, following the typing rule for functor application, we

substitute the actual parameter interval (list) for the for-

mal parameter i in the remainder of the functor arguments:

s: Sumlist with type t = interval(list).t

We must now prove that the signature of thesecondargu-

ment:

sumllst(list): Sumlist with type t = list.t

is included in the signature for s. According to the subtyp-

ingrules insection3, this amounts toshowing that the types

list.t and interval(list).t are identical. This immedi.

ately follows from the signature of interval(list); again,

only the signature is used. Hence the application ofmain is

well-typed. On the other hand, we will correctly reject ap-

placations ofmain to inconsistent iands structures, such as

main(interval(list) sumlist(list2))

where list2 is another implementation of Intlist with a

type tincompatible with list .t. Typing proceeds as above,

but fails because interval(list).t and list2.t are not

compatible, hence the signature of sumlist(list2) is not

included in the signature specified for s.

Notice that we have checked the sharing constraint using

only the general rules forsubtyping and functor application:

no special typing rule is required—at least for this simple

diamond import problem; section 3.4 shows that an addi-

tional “type strengthening” rule is sometimes necessary to

establish the expected sharing properties.

2.5 Expressible sharing constraints

The sharing constraints expressible with manifest types are

Iessgeneral than those expressible inthe SML module sys-

tem. First, manifest types canonly express constraints of the

form type Mentzjier= type expression, which are both asym-

metrical and local (constraint over atypet must appear in

the signature that declares). In contract, SMLallowsshar-

ing constraints of the form long adentijier = long identifier

(e.g. p.t = q.x. t), more symmetrical and non-local. This

difference is mostly cosmetic, however: SML-style sharing

constraints can be compiled into manifest types by choosing

a representative for each equivalence class of shared types,

and pushing the constraints down the constrained signa-

tures.

A more substantial difference is that manifest types can

only express the equality of two types, while SML sharing

constraints can also express the equality of two structures.

Manifest types can account for the most common use of shar-

ing constraints over structures: to specify sharing between

all type components of two structures in a compact way. A

more advanced use of sharing constraints over structures is

to ensure that the value components of the structures are

also identical, which is useful to deal with structures that

have a local state [11]. This can beencoded to some extent

in our calculus, by introducing an abstract type to act as a

structure stamp. For instance, the SML specification

functor F

(structure

structure

sharing A

becomes

functor F

(structure

structure

A: sig val r: int ref . . . end

B: sig val r: int ref . . . end

= B)

A: sig type stamp;

val r: int ref . . . end

B: sig type stamp = A.stemp;

val r: int ref . . . end)

If the stamp type fields are abstract types in all structures,

then the equality of stamp types guarantees the equality of

the structures, bygenerativityof abstract types. This relies

on programmer’s discipline, however; hence the type system

cannot infer that all components of these two structures are

113

themselves shared. On the other hand the absence of sharing

constraints over structures greatly simplifies the formalism:

since structures have no “identity”, there is no need to rep-

resent them by unique stamps, as in [17]; simple record-like

terms suffice.

2.6 The problem with type abbreviations in

signatures

Manifest types are similar to an often proposed extension

of SML called “type abbreviations in signatures”. This ex-

tension has been excluded from the Standard because it is

known to cause serious difficulties [16]: if t ype abbreviations

are allowed in signatures, signature elaboration becomes un-

decidable. It is worth pointing out that this problem is not

inherent to type abbreviations in signatures, but stems from

their interaction with sharing constraints. In the simple ap-

proach suggested in [16], sharing constraints may involve

abbreviated type constructors, as in:

sig

type t = T

type s = u

sharing type t = s

end

In this approach, sharing constraints are therefore no longer

restricted to equalities between type constructors: they can

now express arbitrary equations between type expressions

(~ = a in the example above). Since type equations may

involve abstract type constructors (as in int t = int where

t is declared as type ‘ a t), second-order unification is re-

quired to elaborate these sharing constraints.

Our approach avoids this difficulty: since sharing con-

straints are expressed in terms of manifest types, all express-

ible sharing constraints are of the format long identifier =

type expression, where long identifier refers to an abstract

type. Hence there is no way to equate two arbitrary type

expressions. For instance, the pathological signature given

above is not expressible in our system: assuming t is chosen

as representative for the equivalence class of s and t, then s

would have to be declared as equal to o and equal to t also,

which is syntactically impossible.

3 A calculus of modules

We now formalize the ideas presented above in a simple mod-

ule calculus built on top of a typed base language.

3.1 Syntax

In the following grammar, v ranges over value names, tover

type names and x over module names. Identifiers W,, t, and

z, are composed of a name plus a stamp z taken from some

infinite set of stamps.

Stamps are used to distinguish identifiers having the same

name. We cannot allow arbitrary renamings on identifiers,

since the calculus relies on the names to extract structure

fields. Instead, we will use renamings that only change the

stamp parts of identifiers, but preserve the name parts of

identifiers. This causes no difficulties with structure access,

since access is by name, not by name plus stamp.

Stamps are needed only during typechecking. In particu-

lar, they can be omitted from program texts, since they can

be recovered by applying the standard scoping rules (each

binding generates a new stamp, each reference to an identi-

fier is given the stamp of its most recent binding). We will

follow this convention to make examples more legible.

Value expressions:

e ::= W; value identifier

I p.v value component of a structure

1 depends on the base language

Type expressions:

‘r::=tt type identifier

\ p.t type component of a structure

I depends on the base language

Module expressions:

m ::= x, module identifier

I p.x module component of a structure

I struct s end structure construction

I functor(z, : M) m functor

I ml (mz) functor application

Module types:

M ::= sig S end signature type

I functor(c, : Al) A@ dependent function type

Structure body:

S::= olsc; s

Structure components:

SC ::= val v; = e

I type t, = 7

I module z, : M’

Signature body:

S::= olsc; s

Signature components:

S= ::= val v%: r

I type t,
Itype t, = -r

I module x, : M

Access paths:

p ::= z, I p.%

Typing environments:

E::= OIE; SC

value binding

type binding

module binding

value declaration

abstract type declaration

manifest type declaration

module declaration

Terms are identified up to alpha-conversion. The bind-

ing constructs are functor (with scope the functor result

part) and val, type and module (with scope the remainder

of the structure or signature). Alpha-conversion can rename

the stamp part of identifiers, but is required to preserve the

name part. The components of a structure or signature are

assumed to have distinct names.

The base language

The base language (value and type expressions) is left mostly

unspecified, since the module calculus makes few assump-

tions about it and should accommodate a variety of base

languages. (We have experimented with two base languages:

ML and a more Algol-like language derived from [22].) The

base language can access values and types bound earlier in

the same structure (v, and t,).It can also refer to value and

114

