
Abstra
t types and the dot notation

Lu
a Cardelli Xavier Leroy

Resear
h report 56

Digital Equipment Corporation, Systems Resear
h Center

Mar
h 10, 1990

Authors' abstra
t

We investigate the use of the dot notation in the
ontext of abstra
t types. The dot

notation|that is, a:f referring to the operation f provided by the abstra
tion a|is

used by programming languages su
h as Modula-2 and CLU. We
ompare this notation

with the Mit
hell-Plotkin approa
h, whi
h draws a parallel between type abstra
tion and

(weak) existential quanti�
ation in
onstru
tive logi
. The basi
 operations on existentials

oming from logi
 give new insights about the meaning of type abstra
tion, but di�er

ompletely from the more familiar dot notation. In this paper, we formalize simple
al
uli

equipped with the dot notation, and relate them to a more
lassi
al
al
ulus �a la Mit
hell

and Plotkin. This work provides some theoreti
al foundations for the dot notation, and

suggests some useful extensions.

Publi
ation history

This report is based on a paper presented at the IFIP TC2 working
onferen
e on Pro-

gramming Con
epts and Methods, Tiberias, Israel, april 1990. (Pro
eedings published by

North-Holland in 1990.)

Contents

1 Introdu
tion 1

2 A simple
al
ulus with abstra
t types 5

2.1 Syntax : 5

2.2 Type
he
king : 6

2.3 Evaluation : 8

3 A
al
ulus with the dot notation 10

3.1 Syntax : 10

3.2 Type
he
king : 11

3.3 Evaluation : 12

3.4 En
oding the dot
al
ulus in the open
al
ulus : : : : : : : : : : : : : : : : 12

3.4.1 Formal de�nition of the translation : : : : : : : : : : : : : : : : : : 13

3.4.2 Preservation of typing : 14

3.4.3 Preservation of semanti
s : 18

3.5 En
oding the open
al
ulus in the dot
al
ulus : : : : : : : : : : : : : : : : 19

4 A more powerful
al
ulus with dot 20

4.1 Typing : 21

4.2 Evaluation : 21

4.3 Relation to the open
al
ulus : 22

4.3.1 A translation fun
tion : 22

4.3.2 Preservation of typing : 24

4.3.3 Preservation of semanti
s : 26

4.4 Type equivalen
e modulo redu
tion : 27

5 Con
lusion 27

Referen
es 31

1 Introdu
tion

Type abstra
tion has emerged as one of the most important te
hniques for spe
ifying and

building large software systems [6, 4℄, sin
e it provides fundamental typing support for

modularization [14℄.

Abstra
t types (sometimes
alled opaque types) are therefore one of the ne
essary

features of modern programming languages. However, for a long time their standing

has been rather mysterious, and their type rules have been explained in ad-ho
 and

operational ways, making formal reasoning about abstra
t types diÆ
ult. For example,

it is still
ommonly said that an opaque type is \di�erent from any other type in the

system when seen from outside the abstra
tion", or that a new abstra
t type is \
reated"

whenever its des
ription is evaluated. Su
h statements are both informal and arbitrary;

learly, a formal ba
kground is needed to de�ne pre
isely what type abstra
tion means,

derive sensible type
he
king rules, and reason about programs using abstra
t types.

In an attempt to �ll this need, Mit
hell and Plotkin [13℄ made an important
onne
tion

between type abstra
tion and the se
ond-order existential quanti�ers of logi
. They pro-

posed that an abstra
tion|that is, an abstra
t type A, together with operations f; g; : : :

whose types F;G; : : : normally involve A|should be viewed as an \existential" statement.

That is, there should exist a
on
rete type representation of A and an implementation

of the operations f; g; : : : su
h that f; g; : : : have the types F;G; : : :, respe
tively

1

. For

instan
e, a pa
kage implementing
omplex numbers
ould be spe
i�ed by the existential

type shown in �gure 1; two di�erent implementations meeting this spe
i�
ation are shown

in �gure 2. An abstra
tion is therefore an assertion that adequate implementations exist;

it provides a partial spe
i�
ation of su
h implementations. These existential statements

might be false, in whi
h
ase the spe
i�
ation of the abstra
t type should be seen as

in
onsistent.

The approa
h of Mit
hell and Plotkin showed for the �rst time that the type rules

for abstra
t types
ould be des
ribed non-operationally, by looking at the well-known

rules of
onstru
tive logi
 from the standpoint of programming. It also provided the

ne
essary formal framework for proving fundamental properties of abstra
t types, su
h as

representation independen
e [15, 11℄.

The
onne
tion between this approa
h to type abstra
tion and the notion of type

abstra
tion found in several modern programming languages is however not
omplete.

These languages use a dot notation, su
h as a:f , to refer to an operation f provided

by an abstra
tion a, or in other words, to the �eld named f of module a. The type

theory approa
h provides an elimination
onstru
t that looks totally di�erent, for the

same purpose . We set out in this paper to investigate this di�eren
e in notation, explore

1

This type-theoreti
al notion of \abstra
t types", should not be
onfused with the many-sorted algebra

approa
h. It is both weaker, sin
e it does not involve equations (whi
h
an however be added in a type-

theoreti
al logi
), and also stronger, be
ause of higher-order fun
tions.

1

type Complex =

9C: make : Real! Real! C

re : C ! Real

im : C ! Real

mul : C ! C ! C : : :

Figure 1: A spe
i�
ation of a
omplex arithmeti
 pa
kage

val
artesian
omplex : Complex =

h C = Real� Real

make = �x :Real: �y :Real: (x; y)

re = �x :C: first(x)

im = �x :C: se
ond(x)

mul = �x :C: �y :C: (first(x): first(y)� se
ond(x): se
ond(y);

first(x): se
ond(y) + se
ond(x): first(y)) i

val polar
omplex : Complex =

h C = Real� Real

make = �x :Real: �y :Real: (

p

x

2

+ y

2

; atan2(y; x))

re = �x :C: first(x):
os(se
ond(x))

im = �x :C: first(x): sin(se
ond(x))

mul = �x :C: �y :C: (first(x): first(y); se
ond(x) + se
ond(y)) i

Figure 2: Two implementations of the
omplex arithmeti
 pa
kage

2

�
omplex :Complex :

open
omplex as hC;mk ; re; im;muli in

let square = �x :C:mul x x in re(square(mk 2 3))

Figure 3: Using a pa
kage with the open notation

�
omplex :Complex :

let square = �x :
omplex :C: (
omplex :mul x x) in

omplex :re(square(
omplex :make 2 3))

Figure 4: Using a pa
kage with the dot notation

also whether there is a di�eren
e in expressive power, and try to relate both notations, in

the hope of �lling one of the remaining gaps between the theory and the pra
ti
e of type

abstra
tion.

The \logi
al" notation for abstra
tion uses a
onstru
t, whi
h we
all open here,

orresponding to the logi
al rule for existential elimination. Namely, given a pa
kage p

implementing an abstra
tion A; f; g; : : :, we
an open the pa
kage p, bind its
omponents

to variables A

0

; f

0

; g

0

; : : :, and use su
h variables in a usage s
ope (following in):

p : 9A: f; g; : : :

open p as A

0

; f

0

; g

0

; : : : in : : : A

0

: : : f

0

: : : g

0

: : :

The result of this expression is the result of the subexpression following in. Figure 3 shows

how the
omplex arithmeti
 pa
kage above
an be used with this notation. Additional

examples using this notation
an be found in Cardelli and Wegner [3℄.

It is easy to see why abstra
tion is enfor
ed. Although A may be implemented in

p as, say, Int, A

0

is a formal variable and
annot mat
h any type ex
ept itself. This

orresponds to the informal idea that abstra
t types are \di�erent from any other type".

There is also a
ru
ial restri
tion that the type variable A

0

should not es
ape its s
ope: it

must not appear free in the type of the result of open or in the types of global variables.

Existential types provide a fully satisfa
tory theoreti
al solution to the problem of

modelling abstra
t types. However, the open notation is very
lumsy for programming

purposes; if a pa
kage is opened twi
e, the two abstra
t type variables thus introdu
ed

will not mat
h. Hen
e one must �nd a suÆ
iently large usage s
ope around whi
h to

pla
e the open
onstru
t without violating the typing rules; Ma
Queen [9℄ points out that

the required usage s
ope may be so large that most bene�ts of abstra
tion are lost.

This diÆ
ulty motivated Ma
Queen to take a di�erent approa
h to abstra
tion, using

dependent types and general sums [9℄. His approa
h is adequate for modules (when they

are not �rst-
lass values, as in Standard ML [8℄), but not for abstra
t types, sin
e pa
kages

3

must now ne
essarily stop being �rst-
lass values to preserve typing de
idability [12℄. In

addition, general sums do not ensure abstra
tion by themselves; hen
e, Standard ML

provides a separate abstra
tion
onstru
t.

Independently, programming languages providing fa
ilities for type abstra
tion were

developed, and most of them use a di�erent notation. This programming notation uses a

dot operator to sele
t the
omponents of a pa
kage, in
luding sele
ting the abstra
t type

when it is in a type
ontext:

p : 9A: f; g; : : :

: : : p:A : : : p:f : : : p:g : : :

See �gure 4 for a reformulation of the example above using this notation.

This dot notation has proved very
onvenient for a
tual programming, espe
ially for

programming in the large. However, it does not lend itself to formalization as readily as

the open notation.

One diÆ
ulty with the dot notation is that the name A is bound and
an be renamed:

9A:B = 9A

0

:BfA A

0

g. Hen
e what does p:A really mean? Similarly, how are the names

f; g; : : : handled? Programming languages seem to avoid this problem by reje
ting �-

onversion of existential variables. Here we
ir
umvent the problem by using positions

instead of names: p:Fst refers to the type
omponent of an abstra
tion, and p:snd to the

operation-set
omponent.

Apart from this diÆ
ulty, the main problem is that we no longer have a pre
ise notion

of the usage s
ope of a pa
kage. If p:A always mat
hes (another o

urren
e of) p:A, why

should it not mat
h Int, or some other type?

Moreover, p:A (or p:Fst) is now a type; hen
e we have introdu
ed value expressions as

subexpressions of type expressions. Should p:A mat
h p

0

:A only if p = p

0

? Or if p and p

0

have the same normal form? Clearly some restri
tion should be imposed here to preserve

typing de
idability.

Finally, are pa
kages �rst-
lass values? In Modula-2 for instan
e, modules are not �rst-

lass values. In this paper, we wish to avoid this additional strati�
ation, and assume

that the p in p:A is a �rst-
lass value, so we
an handle general abstra
t types and not

just modules. Alternatively, we are assuming that our modules are �rst-
lass values and

that multiple implementations of an interfa
e
an
oexist [2℄. But should we require p in

p:A to be a simple identi�er x, as in most programming languages, or a sequen
e x:y:z : : :

? Or
an we allow p to be an arbitrarily
omplex expression, provided that it has no

side-e�e
t, and that equality of two su
h expressions is de
idable?

If we had a translation between some
avor of dot notation and the open notation, we

ould avoid answering dire
tly all su
h hard questions about the dot notation. We should

not be afraid of losing expressiveness in the translation, sin
e we believe existential types

hara
terize the
orre
t notion of abstra
tion.

4

The main question then that this paper addresses is under whi
h
ir
umstan
es is the

dot notation equivalent to the open notation?

First, in se
tion 2, we introdu
e a simple
al
ulus with the open notation, intended

to serve as a referen
e point. We give type
he
king rules, denotational semanti
s, and

show the soundness of the type system. In se
tion 3, the open elimination
onstru
t is

repla
ed by a simpli�ed dot notation,
onsisting of two proje
tions, :Fst and :snd, that

are synta
ti
ally restri
ted to apply to simple variables only. Then we prove that the

al
ulus thus obtained is equivalent to the former one by translating one
al
ulus into

the other. The translations are reasonably faithful, sin
e they preserve both typing and

semanti
s. Finally, in se
tion 4, we lift the restri
tion on :Fst and :snd, and allow them

to operate on any term; it seems that not all terms of this
al
ulus with generalized dot

notation have equivalents in the original
al
ulus with open; however, we
hara
terize a

large
lass of terms that
an be en
oded in the open notation, while retaining typing and

semanti
s.

2 A simple
al
ulus with abstra
t types

The
al
ulus in this se
tion is based upon the usual simply typed �-
al
ulus, extended with

onstants and primitive operations as needed (su
h as integers, booleans and pairs, though

we shall axiomatize only integers for simpli
ity.) To model type abstra
tion, we add

existential quanti�
ation on types, and two term
onstru
tors: se
ond-order dependent

pairs and the open
onstru
t. These term
onstru
tors
orrespond to the introdu
tion

and elimination rules for existential quanti�
ation in
onstru
tive logi
.

2.1 Syntax

In the following, X and Y range over a given
ountable set of type variable identi�ers, A

and B range over the
lass of types, similarly, x and y range over the set of term variable

identi�ers, and a, b,
 range over the
lass of terms.

A ::= X j A! B j 9X: A

a ::= x j �x :A: b j b(a) j hX=A; b :Bi j open a as hX; y :Bi in b

The
onstru
t hX=A; b :Bi builds a se
ond-order dependent pair. This is basi
ally a

pair of a type A and a term b of type B; however, b and B may depend on the binding

X = A; that is, X may appear in b or in B, and is
onsidered to be bound to A there.

This binding is not visible outside of the pair; in parti
ular, the type of the pair is simply

9X: B, without any mention of A.

5

The elimination
onstru
t open a as hX; y :Bi in b evaluates a to a pair, binds X to

its internal type and y to its value, and returns the value of b in this new environment.

The variable X gets bound in B and b; y is bound in b.

For some purposes, we also
onsider the
al
ulus above extended with integer
on-

stants:

A ::= : : : j Int

a ::= : : : j 0 j su

(a) j
ase a of 0: b; su

(x):

The pattern-mat
hing
onstru
t
ase a of 0: b; su

(x):
 subsumes test for zero, the

prede
essor fun
tion, and the usual if : : : then : : : else
onstru
t; x is
onsidered bound

(to the prede
essor of a) in
.

As usual, expressions are identi�ed up to a renaming of bound variables.

2.2 Type
he
king

We spe
ify the typing of terms of this
al
ulus by a system of inferen
e rules. The rules

de�ne the judgment \term a has type A under the assumptions E", written E `

o

a : A.

The assumptions are either \variable x has type A" or \identi�er X is a valid type

variable", hen
e the syntax of typing environments E is as follows:

E ::= ; j E;X j E; x :A:

We write Dom(E) for the set of variables introdu
ed in E, that is:

Dom(;) = ; Dom(E;X) = Dom(E) [fXg Dom(E; x :A) = Dom(E) [fxg

However, we must put additional
onstraints on the environments, to ensure that type

variables are introdu
ed in the environment before being used in types. So we have to

de�ne two more judgments: \typing environment E is well-formed", written `

o

E env;

and \type A is valid in environment E", written E `

o

A type, as follows.

`

o

; env

`

o

E env X =2 Dom(E)

`

o

E;X env

E `

o

A type x =2 Dom(E)

`

o

E; x :A env

`

o

E env

E `

o

Int type

`

o

E;X;E

0

env

E;X;E

0

`

o

X type

6

E `

o

A type E `

o

B type

E `

o

A! B type

E;X `

o

A type

E `

o

9X: A type

We
an now give the type
he
king rules for terms. The �rst rules are exa
tly those of

the simply typed �-
al
ulus:

`

o

E; x :A;E

0

env

E; x :A;E

0

`

o

x : A

E `

o

A type E; x :A `

o

b : B

E `

o

�x :A: b : A! B

E `

o

b : A! B E `

o

a : A

E `

o

b(a) : B

Typing rules for integers are straightforward:

`

o

E env

E `

o

0 : Int

E `

o

a : Int

E `

o

su

(a) : Int

E `

o

a : Int E `

o

b : A E; x :Int `

o

 : A

E `

o

ase a of 0: b; su

(x):
 : A

A pair hX =A; b :Bi has type 9X: B if the
laim b : B holds when
onsidering the

binding X = A in b and B. The type A does not appear in the type of the pair; it is

therefore hidden outside of the pair.

E `

o

A type E `

o

bfX Ag : BfX Ag

E `

o

hX=A; b :Bi : 9X: B

If a has an existential type 9X: B, then an open a as hX; y :Bi in

onstru
tion has

the same type as
. The term
 is
onsidered in an environment where the type variable

X is de�ned and the term variable y has type B. Inside
, the type X is a formal variable,

whi
h
annot mat
h any type ex
ept itself. To ensure that X does not es
ape the s
ope

of the open expression, we require that X is not free in the type C of the body
. This is

ensured by requiring that C is a valid type in the original environment E, in whi
h X is

unbound.

E `

o

a : 9X: B E `

o

C type E;X; y :B `

o

 : C

E `

o

open a as hX; y :Bi in
 : C

7

It is easy to see that E `

o

a : A implies E `

o

A type, whi
h implies `

o

E env in turn.

This fa
t is used impli
itly in the rules above.

2.3 Evaluation

The usual approa
h to evaluation would be to de�ne redu
tion rules on the typed terms;

following Mit
hell and Plotkin [13℄, we
ould take, for instan
e:

(�x :A: b)(a) ! bfx ag

open hX=A; b :Bi as hX; y :Bi in
 !
fy bgfX Ag

plus some rules for
onstants. However, these rules do not identify terms that intuitively

have exa
tly the same meaning, for instan
e

open x as hY; z :Inti in su

(z)

and

su

(open x as hY; z :Inti in z):

Though the open a as : : :
onstru
t performs very little
omputation, it is not allowed to

disappear until a is redu
ed to an expli
it pair, whi
h may never o

ur. This prevents a

number of desirable redu
tions: (open x as hY; z :Y i in �u :Int: u)(0) is in normal form,

while the
orresponding untyped term (�z: �u: u)(x)(0) may be redu
ed. This turns out

to be a major problem when trying to relate other
al
uli with this one, as we shall do

later on, sin
e the various typed redu
tions do not mat
h, while the untyped redu
tions

are the same.

We
ould add other redu
tion rules to perform the desired identi�
ations, but it is

un
lear whether the Chur
h-Rosser and strong normalization properties would still hold.

Instead, we
hoose to redu
e the underlying untyped �-terms, obtained by erasing all

type annotations. Pairs of a type and a term are identi�ed with the term itself, hen
e

the pairing operation simply disappears, and open be
omes a simple binding of a term

to a variable, similar to the let
onstru
t of ML. For simpli
ity, we express it by mere

substitution of the variable by the term.

Erase

o

(x) = x

Erase

o

(�x :A: b) = �x: Erase

o

(b)

Erase

o

(b(a)) = Erase

o

(b)(Erase

o

(a))

Erase

o

(hX=A; b :Bi) = Erase

o

(b)

Erase

o

(open a as hX; y :Ai in b) = Erase

o

(b)fy Erase

o

(a)g

Erase

o

(0) = 0

8

Erase

o

(su

(a)) = su

(Erase

o

(a))

Erase

o

(
ase a of 0: b; su

(x):
) =
ase Erase

o

(a) of 0:Erase

o

(b);

su

(x):Erase

o

(
)

After the erasing is performed, the untyped �-term thus obtained is redu
ed in the

usual way [1℄. However, when we add
onstants to this
al
ulus, there is a possibility of

a run-time type error during redu
tion; for instan
e, an integer
ould be applied as if it

were a fun
tion. It remains to show that this
annot o

ur if the initial term is well-typed.

To be more pre
ise, we shall use a denotational semanti
s for the untyped �-
al
ulus.

Following Ma
Queen, Plotkin and Sethi [10℄, we
hoose a domain V isomorphi
 to N

?

+

(V ! V) + fwrongg

?

. Then to ea
h untyped term m,
onsidered in an environment �,

we asso
iate a meaning that is a value [[m℄℄

�

of the \universe" V; meaningless terms, that

is terms whose evaluation leads to a type error, are mapped to wrong. The environment

� is a partial mapping from term variables to values of V.

[[x℄℄

�

= �(x) if de�ned, wrong otherwise

[[�x:m℄℄

�

= v 7! [[m℄℄

�[x v℄

[[m(n)℄℄

�

= if [[m℄℄

�

is in V! V then ([[m℄℄

�

)([[n℄℄

�

) else wrong

[[0℄℄

�

= 0

[[su

(m)℄℄

�

= if [[m℄℄

�

2 N

?

then [[m℄℄

�

+ 1 else wrong

[[
ase m of 0:n; su

(x): p℄℄

�

= if [[m℄℄

�

= 0 then [[n℄℄

�

if [[m℄℄

�

= i + 1 then [[p℄℄

�[x i℄

else wrong

We
an now state the soundness of the typing rules:

Proposition 1 For all terms a and types A, if ; `

o

a : A, then Erase

o

(a) does not denote

wrong, that is [[Erase

o

(a)℄℄

;

6= wrong.

To prove this proposition, we shall �rst give a meaning to type expressions as well.

Following the ideal model of types [10℄, we interpret type expressions as ideals of V, as

follows:

[[Int℄℄

�

= N

?

[[X℄℄

�

= �(X) if de�ned, ; otherwise

[[A! B℄℄

�

= ff 2 V! V j 8v 2 [[A℄℄

�

; f(v) 2 [[B℄℄

�

g

[[9X: A℄℄

�

=

G

W ideal

wrong=2W

[[A℄℄

�[X W ℄

where in addition � maps type variables to ideals of V. Noti
e that if wrong is not in

�(X) for any X, then wrong =2 [[A℄℄

�

for all types A. The soundness of typing then follows

easily from the following
laim, whi
h is proved in [10℄:

9

Proposition 2 Assume E `

o

a : A. Let � be a mapping
ompatible with E; that is, for

all type variables X 2 Dom(E), the ideal �(X) does not
ontain wrong, and for all term

variables x 2 Dom(E), the denotation �(x) belongs to [[E(x)℄℄

�

. Then [[Erase

o

(a)℄℄

�

2 [[A℄℄

�

.

Apart from
on�rming that the type rules are sensible, this soundness result is a

lue that indeed data abstra
tion is ensured in this
al
ulus. Data abstra
tion is usually

hara
terized by representation independen
e properties. These properties formalize the

intuition that two \equivalent" implementations of an abstra
t type are not distinguish-

able; that is, the observed behavior of a program using one or the other is the same.

Soundness of typing is a (weak) representation independen
e property, where two terms

are equivalent when they have the same type, and observed behavior is the absen
e of

run-time type errors. Stronger representation independen
e properties hold for this
al-

ulus; for instan
e, Mit
hell [11℄ shows (for a superset of the
al
ulus in this se
tion) that

if two implementations of an abstra
tion are related by a logi
al relation, then one
an

be substituted for the other in any
losed term without modifying its meaning.

3 A
al
ulus with the dot notation

We now formalize a
al
ulus based on the dot notation. This is a �-
al
ulus with se
ond-

order dependent produ
ts, di�ering from the one in the previous se
tion only in the way

of splitting existentials: instead of a single open
onstru
t, it provides two
onstru
ts:

one for a

essing the value part of the pair, written x:snd; and one to get a witness of the

abstra
ted type, written x:Fst. As this is intended to model the \quali�ed identi�ers" of

Modula-2 [16℄ and the \abstra
t tuples" of Quest [2℄, we shall in this se
tion restri
t :Fst

and :snd to operate on term variables only.

3.1 Syntax

We keep the same notational
onventions: X and Y are type variables, A and B are types,

x and y are term variables, and a and b are terms.

A ::= X j A! B j 9X: A j x:Fst

a ::= x j �x :A: b j b(a) j hX=A; b :Bi j x:snd

As previously, we
an extend this dot
al
ulus with integer
onstants:

A ::= : : : j Int

a ::= : : : j 0 j su

(a) j
ase a of 0: b; su

(x):

10

3.2 Type
he
king

As in the previous se
tion, we have to de�ne the judgment E `

d

a : A, as well as two

auxiliary judgments `

d

E env and E `

d

A type.

Type environments have exa
tly the same stru
ture, and are well-formed under the

same
onditions :

`

d

; env

`

d

E env X =2 Dom(E)

`

d

E;X env

E `

d

A type x =2 Dom(E)

`

d

E; x :A env

For type validity, we have to add one rule for the new
onstru
tion x:Fst, stating that

it is a valid type whenever x is shown to have an existential type.

`

d

E;X;E

0

env

E;X;E

0

`

d

X type

E;X `

d

A type

E `

d

9X: A type

E `

d

A type E `

d

B type

E `

d

A! B type

E `

d

x : 9X: A

E `

d

x:Fst type

For type
he
king of terms, we drop the open rule and keep the other four rules. As

term variables may now appear in a type expression, they must be prevented from es
aping

their s
ope. Hen
e, the rule for fun
tions �x :A: b states that x is not free in the type B

of the body b. As in se
tion 2.2, this is ensured by requiring that B is a valid type in the

original environment E, whi
h does not de�ne x.

`

d

E; x :A;E

0

env

E; x :A;E

0

`

d

x : A

E `

d

A type E `

d

B type E; x :A `

d

b : B

E `

d

�x :A: b : A! B

E `

d

b : A! B E `

d

a : A

E `

d

b(a) : B

E `

d

A type E `

d

bfX Ag : BfX Ag

E `

d

hX=A; b :Bi : 9X: B

11

The new
onstru
t x:snd is well-typed provided that x has an existential type 9X: A;

its type is A, where the abstra
ted type X is substituted by its witness x:Fst.

E `

d

x : 9X: A

E `

d

x:snd : AfX x:Fstg

3.3 Evaluation

As in se
tion 2.3, we do not redu
e typed terms dire
tly, but rather strip all type informa-

tion �rst and then evaluate the untyped �-term thus obtained. This stripping is de�ned

on terms with dot in the same vein as in se
tion 2.3, with the additional
ase:

Erase

d

(x:snd) = x

Instead of dire
tly investigating this
al
ulus | proving the soundness of the type

system, for instan
e | we shall �rst try to relate it to the open
al
ulus. Indeed, we

are going to provide translations from terms of one
al
ulus into the other
al
ulus. The

translations are reasonably faithful in that they preserve typing and semanti
s. Most

interesting properties of the open
al
ulus
an then be e�ortlessly shown to hold in the

dot
al
ulus as well.

3.4 En
oding the dot
al
ulus in the open
al
ulus

The idea behind both translations is that, in the body of an open x as hY; z : Ai in b

expression, Y and z seem to have the same meaning as x:Fst and x:snd, respe
tively.

This remark suggests the following strategy to transform a program with dot into one

with open: insert some open x as hY; z :Ai in : : : for ea
h variable x used in a x:Fst or

x:snd
onstru
t, and use Y and z instead of x:Fst and x:snd. In other words:

b[x:Fst; x:snd℄ 7�! open x as hY; z :Ai in b[Y; z℄

For instan
e, this would allow the following translation:

�x :9X: X �X ! Int: (se
ond(x:snd))(first(x:snd)) 7�!

�x :9X: X �X ! Int: (open x as hY; z :Y � Y ! Inti in se
ond(z))

(open x as hY; z :Y � Y ! Inti in first(z))

and this is obviously wrong, sin
e the s
oping
onstraint of open is not respe
ted. (Y

appears free in the types of the results.) So, this s
heme must be restri
ted to the
ases

where x:Fst does not appear in the type of b[x:Fst; x:snd℄. Presumably, this may be

a
hieved by taking a subexpression b large enough to en
lose all uses of x:Fst and x:snd;

12

ComplexWRT (X) abbreviates

(Real! Real! X)� (X ! Real)� (X ! Real)� (X ! X ! X)

In the dot
al
ulus:

�x :9X: ComplexWRT (X):

se
ond(x:snd)

�

(�z :x:Fst: fourth(x:snd)(z)(z))(first(x:snd)(3)(2))

�

In the open
al
ulus:

�x :9X: ComplexWRT (X):

open x as hX; y :ComplexWRT(X)i in

se
ond(y)

�

(�z :X: fourth(y)(z)(z))(first(y)(3)(2))

�

Figure 5: Translation from the dot
al
ulus to the open
al
ulus

indeed, the body of the �-abstra
tion binding x will do, sin
e the typing rule for � prevents

x (and, hen
e, x:Fst) from being free in the type of the body.

Therefore, the following translation s
heme seems sensible:

�x :9X: A: b 7�! �x :9X: A: open x as hX; y :Ai in bfx:Fst Xgfx:snd yg

For instan
e, if we express the
omplex arithmeti
 example (�gures 3 and 4) in the open

al
ulus and in the dot
al
ulus (see �gure 5), the translation outlined above a
tually

transforms the �rst program into the se
ond one. This s
heme works for
losed terms,

but we shall soon des
ribe a translation for open terms as well.

Now, we would like to show that a well-typed term translates to a well-typed term.

To allow for easy indu
tion on derivations, we need to translate not only terms, but also

whole judgments. Hen
e, we �rst reformulate the translation in a more general (and more

ontrolled) way.

3.4.1 Formal de�nition of the translation

Let a

0

be a
losed, well-typed term of the dot
al
ulus. To avoid name
lashes, we rename

the identi�ers appearing in a

0

so that none gets bound more than on
e.

Let P be the set of term variables x su
h that x:Fst or x:snd appear in a

0

. Given

the type
he
king rules for proje
tions, ea
h x 2 P has an existential type; we write it as

9T

x

: A

x

, after renaming if ne
essary

2

.

2

Due to the typing rule for pairs, this type may di�er from the type de
lared for x by the abstra
tion

binding it, as in hX = 9Y: Int; �x :X: x:snd :X ! Inti. The type 9T

x

: A

x

we asso
iate with x is the

\true" type of x; that is, the type given to it in the derivation of a

0

: A

0

(this derivation is unique, given

the typing rules), or alternatively the type de
lared for x, where all bindings su
h as X = 9Y: Int above

have been performed.

13

To ea
h x 2 P, we asso
iate a term variable v

x

that does not appear in a

0

.

For ea
h subterm a of a

0

, we de�ne its translation ba
 as follows:

bx
 = x

bx:snd
 = v

x

b�x :A: b
 = �x :bA
: open x as hT

x

; v

x

:bA

x

i in bb
 if x 2 P

b�x :A: b
 = �x :bA
: bb
 if x =2 P

bb(a)
 = bb
(ba
)

bhX=A; b :Bi
 = hX=bA
; bb
 :bB
i

This is basi
ally the transformation outlined above, with substitutions delayed, and per-

formed only when ne
essary: we insert an open x as : : : only when x 2 P; that is, when

x:Fst or x:snd are a
tually used.

In the same vein, types translate as follows:

bX
 = X

bx:Fst
 = T

x

bA! B
 = bA
 ! bB

b9X: A
 = 9X: bA

To translate environments, the only
ase that needs spe
ial treatment is the intro-

du
tion of a variable x belonging to P. In the derivation, this
ase
orresponds to the

type
he
king of the body b of a fun
tion �x :A: b. After translation, b will be pre
eded

by an open x as hT

x

; v

x

: bA

x

i in : : :, so we must type
he
k the translation of b in an

environment where T

x

and v

x

are de�ned. Hen
e the translation of E; x :A introdu
es T

x

and v

x

:bA

x

 in addition to x :bA
.

b;
 = ;

bE;X
 = bE
; X

bE; x :A
 = bE
; x :bA
; T

x

; v

x

:bA

x

 if x 2 P

bE; x :A
 = bE
; x :bA
 if x =2 P

3.4.2 Preservation of typing

We are now able to translate any judgment
omponentwise, and in parti
ular ; `

d

a

0

: A

0

.

To prove that the translation preserves typing, it remains to show that its translation

; `

o

ba

0

 : bA

0

an be derived in the open
al
ulus.

Proposition 3 Let a

0

be a
losed, well-typed term of the dot
al
ulus. Let b
 be the

asso
iated translation fun
tion. Let D be the derivation of ; `

o

a

0

: A

0

.

14

� If `

d

E env is proved in D, then `

o

bE
 env.

� If E `

d

A type is proved in D, then bE
 `

o

bA
 type.

� If E `

d

a : A is proved in D, then bE
 `

o

ba
 : bA
.

Proof: By indu
tion on the three derivations, starting with the one of E `

d

a : A.

� For value variables: we have the following derivation

.

.

.

`

d

E

1

; x :A;E

2

env

E

1

; x :A;E

2

`

d

x : A

By indu
tion, we have a derivation of `

o

bE

1

; x : A;E

2

 env. By de�nition of the

translation, bE

1

; x : A;E

2

 has
learly the form E

0

1

; x : bA
; E

0

2

. Hen
e the desired

result bE

1

; x :A;E

2

 `

o

x : bA
 follows.

� For value a

ess in a pair: from the original derivation

.

.

.

`

d

E

1

; x :9T

x

: A

x

; E

2

env

E

1

; x :9T

x

: A

x

; E

2

`

d

x : 9T

x

: A

x

E

1

; x :9T

x

: A

x

; E

2

`

d

x:snd : A

x

fT

x

 x:Fstg

we get by indu
tion a derivation of `

o

bE

1

; x : 9T

x

: A

x

; E

2

 env. As x:snd appears

in the derivation above, x belongs to P. Therefore, bE

1

; x :9T

x

: A

x

; E

2

 introdu
es

the variable v

x

with type bA

x

. Hen
e bE
 `

o

v

x

: bA

x

, whi
h implies the expe
ted

result

bE
 `

o

bx:snd
 : bAfX x:Fstg

sin
e, as bx:Fst
 = T

x

,

bAfT

x

 x:Fstg
 = bA

� For abstra
tion:

.

.

.

E `

d

A type

.

.

.

E `

d

B type

.

.

.

E; x :A `

d

b : B

E `

d

�x :A: b : A! B

15

If x =2 P, by indu
tion we have proofs of

bE
 `

o

bA
 type

bE; x :A
 `

o

bb
 : bB

that is

bE
; x :bA
 `

o

bb
 : bB

hen
e

bE
 `

o

�x :bA
: bb
 : bA
 ! bB

whi
h is the desired result.

If x 2 P, then A = 9T

x

: A

x

, and the same steps lead to:

bE
 `

o

9T

x

: bA

x

 type

bE
 `

o

bB
 type

bE
; x :9T

x

: bA

x

; T

x

; v

x

:bA

x

 `

o

bb
 : bB

so we have the following derivation:

bE
; x :9T

x

: bA

x

 `

o

x : 9T

x

: bA

x

bE
 `

o

bB
 type

bE
; x :9T

x

: bA

x

; T

x

; v

x

:bA

x

 `

o

bb
 : bB

bE
; x :9T

x

: bA

x

 `

o

open x as hT

x

; v

x

:bA

x

i in bb
 : bB

bE
 `

o

9T

x

: bA

x

 type

bE
 `

o

�x :9T

x

: bA

x

: open x as hT

x

; v

x

:bA

x

i in bb
 : 9T

x

: bA

x

 ! bB

that leads to the desired result:

bE
 `

o

b�x :A: b
 : bA! B

� For appli
ation: obvious by indu
tion hypothesis.

� For pair
onstru
tion: from

E `

d

A type E `

d

bfX Ag : BfX Ag

E `

d

hX=A; b :Bi : 9X: B

we get by indu
tion hypothesis proofs of

bE
 `

o

bA
 type bE
 `

o

bbfX Ag
 : bBfX Ag

16

To
on
lude that bE
 `

o

hX=bA
; bb
 :bB
i : 9X: bB
, it suÆ
es to show that

bbfX Ag
 = bb
fX bA
g

bBfX Ag
 = bB
fX bA
g

The proof is by indu
tion on b and B. We give the non-trivial
ase: b = �x :C: d

with x 2 P.

bbfX Ag
 = �x :bCfX Ag
: open x as hT

x

; v

x

:bA

x

i in bdfX Ag

= �x :bC
fX bA
g: open x as hT

x

; v

x

:bA

x

i in bd
fX bA
g

by indu
tion hypothesis. The type variableX is not free in A

x

(indeed, by de�nition

of T

x

and A

x

, the type 9T

x

:A

x

is C where some type variables have been substituted,

and espe
ially X has been substituted by A). Therefore X is not free in bA

x

 either.

Hen
e the desired result:

bbfX Ag
 = (�x :bC
: open x as hT

x

; v

x

:bA

x

i in bd
)fX bA
g

= bb
fX bA
g

We turn now to the E `

d

A type judgment. All
ases are straightforward, ex
ept

maybe the one for x:Fst; but then the original derivation is:

.

.

.

`

d

E

1

; x :9T

x

: A

x

; E

2

env

E

1

; x :9T

x

: A

x

; E

2

`

d

x : 9T

x

: A

x

E

1

; x :9T

x

: A

x

; E

2

`

d

x:Fst type

The translation of E

1

; x : 9T

x

: A

x

; E

2

introdu
es the type variable T

x

, and it is a well-

formed environment, so bE

1

; x :9T

x

: A

x

; E

2

 `

o

T

x

type holds, whi
h is the desired result

sin
e bx:Fst
 = T

x

.

Similarly, for the `

d

E env judgment, the only interesting
ase is the introdu
tion of

an x belonging to P. By de�nition of T

x

and A

x

, the type given to x must be 9T

x

: A

x

.

.

.

.

E; T

x

`

d

A

x

type

E `

d

9T

x

: A

x

type x =2 Dom(E)

`

d

E; x :9T

x

: A

x

env

17

By indu
tion, we have a proof of bE
; T

x

`

o

bA

x

 type, hen
e the following derivation:

bE
; T

x

`

o

bA

x

 type

bE
 `

o

9T

x

: bA

x

 type x =2 Dom(bE
)

`

o

bE
; x :9T

x

: bA

x

 env T

x

=2 Dom(bE
; x :9T

x

: bA

x

)

`

o

bE
; x :9T

x

: bA

x

; T

x

env

We
an substitute this for the proof of `

o

bE
; T

x

env in the derivation of bE
; T

x

`

o

bA

x

 type, thereby obtaining a proof of bE
; x :9T

x

: bA

x

; T

x

`

o

bA

x

 type. Hen
e:

bE
; x :9T

x

: bA

x

; T

x

`

o

bA

x

 type v

x

=2 Dom(bE
; x :9T

x

: bA

x

; T

x

)

`

o

bE
; x :9T

x

: bA

x

; T

x

; v

x

:bA

x

 env

2

3.4.3 Preservation of semanti
s

As the translation respe
ts the stru
ture of fun
tions and appli
ations, a
losed term of

the dot
al
ulus and its translation in the open
al
ulus have exa
tly the same underlying

untyped terms. More pre
isely, we have:

Proposition 4 For all subterms a of a

0

,

Erase

o

(ba
)fv

x

 x for all x 2 Pg = Erase

d

(a):

Hen
e Erase

o

(ba

0

) = Erase

d

(a

0

).

Proof: By indu
tion on a. We give the main
ases:

� if a = x:snd, Erase

d

(a) = x and Erase

o

(ba
) = v

x

.

� if a = �x :A: b and x 2 P, then

Erase

o

(ba
) = Erase

o

(�x :bA
: open x as hT

x

; v

x

:bA

x

i in bb
)

= �x: (Erase

o

(bb
)fv

x

 xg)

hen
e, by indu
tion hypothesis,

Erase

o

(ba
)fv

y

 y for all y 2 Pg =

�x: (Erase

o

(bb
)fv

x

 xgfv

y

 y for all y 2 P n fxgg) =

�x: Erase

d

(bb
)

whi
h is the expe
ted result.

18

The remaining
ases are obvious. 2

Using the last two propositions, we
an show the soundness of the type system of

the dot
al
ulus, extended with integer
onstants as mentioned in se
tion 3.1. (The

translation fun
tion is extended to the integer
onstru
ts in the trivial way, by translating

their
omponents re
ursively; it is easy to see that propositions 3 and 4 still hold.)

Corollary 1 If ; `

d

a

0

: A

0

, then Erase

d

(a

0

) does not denote wrong.

Proof: The translation ba

0

 is a well-typed
losed term of the open
al
ulus. Hen
e, by

proposition 1, [[Erase

o

(ba

0

)℄℄

;

6= wrong, whi
h is the desired result, sin
e Erase

o

(ba

0

) =

Erase

d

(a

0

). 2

3.5 En
oding the open
al
ulus in the dot
al
ulus

The reverse translation is mu
h less informative, but would
on�rm the intuition that the

dot
al
ulus is no less powerful than the open
al
ulus, so we shall sket
h it qui
kly.

The basi
 idea is to repla
e every open a as hX; y :Ai in b by

(�z :9X: A: bfX z:Fst; y z:sndg)(a)

for some unused term variable z. In
ontrast with the previous translation, any type

of the open
al
ulus is also a type of the dot
al
ulus, and this also holds for well-

formed environments. Hen
e we just have to provide a translation for terms, whi
h is

straightforward:

dxe = x

d�x :A: be = �x :A: dbe

db(a)e = dbe(dae)

dhX=A; b :Bie = hX=A; dbe :Bi

dopen a as hX; y :Ai in be = (�z : (9X: A): dbefX z:Fst; y z:sndg)(dae)

where z is not free in open a as hX; y :Ai in b

We must
he
k that, in the last rule, the substitution of y by z:snd
an be performed,

sin
e in x:Fst or x:snd, x
annot be substituted by any term but another variable without

produ
ing a synta
ti
ally in
orre
t term su
h as a(b):Fst. Happily, by de�nition of the

translation, if y:Fst or y:snd appears in dbe, then y is bound by a �, and hen
e will not

have to be substituted.

As b
, the fun
tion d e preserves typing and semanti
s:

19

Proposition 5 If E `

o

a : A, then E `

d

dae : A.

Proof: by indu
tion on the original derivation. The only interesting
ase is the trans-

lation of an open
onstru
t:

E `

o

a : 9X: A E `

o

B type E;X; y :A `

o

b : B

E `

o

open a as hX; y :Ai in b : B

By indu
tion, it follows that E `

d

dae : 9X: A and E;X; y :A `

d

dbe : B. By indu
tion on

the proof of the latter, we get a derivation of

E; z :9X: A `

d

dbefX z:Fst; y z:sndg : BfX z:Fstg

As X is not free in B, we have BfX z:Fstg = B. Finally, from the proof of E `

d

dae :

9X: A, we
an prove that E `

d

9X: A type. Putting all together, we get:

E `

d

9X: A type

E `

d

B type

E; z :9X: A `

d

dbefX z:Fst; y z:sndg : B

E `

d

�z :9X: A: dbefX z:Fst; y z:sndg : 9X: A! B E `

d

dae : 9X: A

E `

d

(�z :9X: A: dbefX z:Fst; y z:sndg)(dae) : B

This is the expe
ted result. 2

Proposition 6 For any term a of the open
al
ulus, Erase

d

(dae) �-redu
es to Erase

o

(a).

Proof: similar to the proof of proposition 4. 2

4 A more powerful
al
ulus with dot

In this se
tion, we simply lift the restri
tion that only a value variable may be the argument

of a :Fst or :snd
onstru
tion, and allow instead any term, provided it has an existential

type.

Regarding the formalism, this is a very natural generalization of the previous dot

al
ulus, reminis
ent of the se
ond-order general sums (also
alled strong sums) of type

theory [7, 5℄.

From the point of view of programming languages, this extension, in its full generality,

does not seem to model any real situation, espe
ially sin
e :Fst now embeds the whole

20

lass of values into the
lass of types; this means that the dividing line between types and

values begins to blur dangerously.

However, we may feel the need for a
al
ulus less restri
tive than the dot
al
ulus of

the previous se
tion. For instan
e, to deal with nested modules, it seems natural to have

not only one-level a

ess in modules, su
h as module.Type, but also a

ess through paths

of arbitrary length, su
h as module.submodule.data. To formalize this, the argument of

a :Fst or :snd must be allowed to be a path, where a path is a term variable followed by

an arbitrary number of :snd.

We
ould study this �rst extension of the dot
al
ulus in the same way as for the

dot
al
ulus, by �nding a translation to the open
al
ulus and proving that it is faithful.

However, other similar extensions may
ome to mind, and the same work would have to

be done for ea
h. Therefore, it seems easier to study the most general extension of all,

where any term
an appear to the left of a :Fst or :snd
onstru
t.

4.1 Typing

The typing rules are exa
tly those of the simple dot
al
ulus, with the obvious general-

ization for the proje
tions:

E `

s

a : 9X: A

E `

s

a:Fst type

E `

s

a : 9X: A

E `

s

a:snd : AfX a:Fstg

It may be tempting to identify
ertain type expressions of this
al
ulus, for instan
e

hX = A; b : Bi:Fst and A, and to use this notion of type equivalen
e for type
he
king,

instead of for stri
t equality. This amounts to adding the following rule:

E `

s

a : A A$ B

E `

s

a : B

At �rst, we
hoose to disallow the latter rule and require synta
ti
 equality for two types

to be
ompatible; we shall
ome ba
k to this issue later on.

4.2 Evaluation

As usual, we strip all type information before redu
ing. The :snd operation be
omes

identity on �-terms:

Erase

s

(a:snd) = Erase

s

(a)

As for the simple
al
ulus with dot, we shall not investigate this
al
ulus dire
tly, but

try to relate it to the open
al
ulus �rst.

21

4.3 Relation to the open
al
ulus

When we try to en
ode this
al
ulus into the open
al
ulus, we �nd terms whi
h apparently

have no equivalents in the open
al
ulus. For instan
e, assume a : A and
onsider the

following term:

hX=A; hY =X; a :Y i:snd :hY =X; a :Y i:Fsti

To express it in the open
al
ulus, we have to insert an open hY =X; a :Y i as : : : at some

point, and sin
e X is free in the pair, the only literal translation is:

hX=A; open hY =X; a :Y i as hZ; z :Zi in z :Zi

but then Z es
apes the s
ope of the open
onstru
t. (See later for a similar term but with

no trivial redexes.)

To try to �nd an equivalent term in the open
al
ulus, the general strategy is the same

as in se
tion 3.4: repla
e subterms su
h as b[a:Fst; a:snd℄ by open a ashX; y :Aiin b[X; y℄,

with the additional
onstraints that a:Fst should not appear in the type of b[a:Fst; a:snd℄,

and that b must not bind any of the free variables of a. However, the previous example

shows that sometimes both
onstraints
annot be satis�ed, espe
ially when type variables

are free in a.

If a has no free type variables, the transformation might work: let b be the body of the

smallest abstra
tion �x :A: b en
losing all uses of a:Fst and a:snd. Either a:Fst does not

appear in the type B of b, in whi
h
ase it is possible to insert an open a as : : : there, or

a:Fst is part of B. But in the latter
ase, x =2 FV (B), hen
e x is not free in a. Therefore,

we
an \lift" a out of b,
onsider the next en
losing �, and iterate.

We are now going to formalize this argument in the same way as in the previous se
tion

by providing translations for terms, types, and environments.

4.3.1 A translation fun
tion

Let a

0

be a
losed, well-typed term, renamed so that ea
h variable gets bound on
e at

most, and let D be the derivation of ; `

s

a

0

: A

0

. We write P for the set of subterms a of

a

0

su
h that a:Fst or a:snd appears in D.

From now on, we shall suppose that the following
ondition holds:

(C) For all a 2 P, there are no type variables free in a.

For instan
e, it was not the
ase in the previous example, where P = fhY =X; a :Y ig.

For ea
h a 2 P, the term a has no free type variables, therefore D derives a type

for a

3

; this type is an existential type (given the type
he
king rules for .Fst and .snd),

3

Hypothesis (C) is
ru
ial here, sin
e in general, it is not true that any subterm of a

0

is given a type

in D, be
ause of the typing rule for pairs hX=A; b :Bi, whi
h requires that bfX Ag has a type, but not

ne
essarily b itself. For instan
e, �x :X: su

(x) has no type by itself, though hX=Int; �x :X: su

(x) :

X ! Inti is well-typed.

22

and we write 9T

a

: A

a

for it (after renaming of variables if ne
essary). Furthermore, we

asso
iate with a a value variable v

a

unused in a

0

.

Now we have to de
ide, for all a 2 P, where to insert an open a as : : : Let a 2 P.

We
onsider the smallest subexpression b of a

0

binding all free variables of a. Sin
e no

variables are bound twi
e, su
h a b exists, and it
ontains all o

uren
es of a:Fst and

a:snd. If a is
losed, it is a

0

. Otherwise, as there are no type variables free in a, it is

the body of a �-abstra
tion �x : A: b. We shall
onsider only the latter
ase, sin
e we

an assume without loss of generality that a

0

itself is a �-abstra
tion. We say that the

variable x bound by this abstra
tion is the �rst free variable of a.

For all term variables x, we write F(x) for the sequen
e of all a 2 P su
h that x is the

�rst free variable of a. The translation of terms
onsists mainly in inserting, before the

body b of any fun
tion �x :A: b, an open ba
 as hT

a

; v

a

: bA

a

i in : : : for ea
h a 2 F(x).

However, we must take
are of the order of insertion, to avoid using a T

a

or v

a

before

it is de�ned. More pre
isely, if a and a

0

belong to F(x) and a is a subexpression of a

0

,

then open a as : : : must pre
ede open a

0

as : : : Therefore, we enumerate the sequen
e

F(x) = a

1

; : : : ; a

n

in topologi
al order, that is if a

i

is a subexpression of a

j

, then i � j.

bx
 = x

ba:snd
 = v

a

b�x :A: b
 = �x :bA
: open ba

1

 as hT

a

1

; v

a

1

:bA

a

1

i in : : :

open ba

n

 as hT

a

n

; v

a

n

:bA

a

n

i in bb

if F(x) = a

1

; : : : ; a

n

bb(a)
 = bb
(ba
)

bhX=A; b :Bi
 = hX=bA
; bb
 :bB
i

Noti
e that the third rule remains valid if F(x) = ;, and means b�x :A: b
 = �x :bA
: bb

in this
ase. The translation of types is the same as for the original dot
al
ulus:

bX
 = X

ba:Fst
 = T

a

bA! B
 = bA
 ! bB

b9X: A
 = 9X: bA

As for the original dot
al
ulus, we must syn
hronize the translation of environments with

the translation of terms. Adding x :A to E means that we are about to type
he
k the

body b of �x :A: b. After translation, b will be pre
eded by open a as hT

a

; v

a

:bA

a

iin : : :

for ea
h a 2 F(x). So, the translation of E; x :A must de�ne T

a

and v

a

: bA

a

 for ea
h

a 2 F(x).

b;
 = ;

23

bE;X
 = bE
; X

bE; x :A
 = bE
; x :bA
; T

a

1

; v

a

1

:bA

a

1

; : : : ; T

a

n

; v

a

n

:bA

a

n

if F(x) = a

1

; : : : ; a

n

Condition (C) ensures that all a 2 P are translated, and that no T

a

or v

a

is free in

ba

0

, sin
e the open a as hT

a

; v

a

:bA

a

i in : : : en
loses all uses of T

a

and v

a

.

4.3.2 Preservation of typing

Proposition 7 If one of the judgments `

s

E env, E `

s

A type, or E `

s

a : A is a step

of the derivation D, then we
an prove `

o

bE
 env, bE
 `

o

bA
 type, or bE
 `

o

ba
 : bA

respe
tively.

Proof: the proof is a straightforward generalization of the proof given for proposition 3.

We pro
eed by indu
tion on the derivation of the judgment. Here are the interesting

ases:

� For value a

ess in a pair: the original derivation is

.

.

.

E `

s

a : 9T

a

: A

a

E `

s

a:snd : A

a

fT

a

 a:Fstg

so a 2 P and E binds all free variables of a, in
luding its �rst free variable. Hen
e,

bE
 introdu
es v

a

with the type bA

a

. By indu
tion, we get a proof of bE
 `

o

ba
 :

9T

a

:bA

a

, from whi
h we
an extra
t a proof of `

o

bE
 env. Hen
e, bE
 `

o

v

a

: bA

a

,

whi
h is the expe
ted result, sin
e ba:snd
 = v

a

and obviously,

bA

a

fT

a

 a:Fstg
 = bA

a

� For �-abstra
tion:

.

.

.

E `

s

A type

.

.

.

E `

s

B type

.

.

.

E; x :A `

s

b : B

E `

s

�x :A: b : A! B

Let a

1

; : : : ; a

n

be F(x). For all i, sin
e a

i

is a subterm of b and sin
e there are no

type variables free in a

i

, the derivation of E; x :A `

s

b : B
ontains a derivation of

E

a

i

`

s

a

i

: 9T

a

i

: A

a

i

for some environment E

a

i

. So, by indu
tion, we get proofs of

bE
 `

o

bA
 type

24

bE
 `

o

bB
 type

�

n

`

o

bb
 : bB

bE

a

i

 `

o

ba

i

 : 9T

a

i

: bA

a

i

where �

j

= bE
; x :bA
; T

a

1

; v

a

1

:bA

a

1

; : : : ; T

a

j

; v

a

j

:bA

a

j

 for all 0 � j � n.

As a

i

is a subexpression of b, it is easy to see that �

n

and bE

a

i

 bind the free variables

of a

i

to the same types. Furthermore, as F(x) is enumerated in topologi
al order,

for all j � i, the terms a

j

:Fst and a

j

:snd do not appear in a

i

, therefore T

a

j

and v

a

j

are not free in ba

i

. Hen
e, �

i�1

and bE

a

i

 bind the free variables of a

i

to the same

types. So, from the derivation of

bE

a

i

 `

o

ba

i

 : 9T

a

i

: bA

a

i

we
an build a proof of

�

i�1

`

o

ba

i

 : 9T

a

i

: bA

a

i

Sin
e �

i

is an extension of bE
, from the proof of bE
 `

o

bB
 type, we get a proof

of �

i

`

o

bB
 type. Hen
e the desired result:

�

n

`

o

bb
 : bB

�

n�1

`

o

bB
 type

�

n�1

`

o

ba

n

 : 9T

a

n

: bA

a

n

�

n�1

`

o

open ba

n

 as hT

a

n

; v

a

n

:bA

a

n

i in bb
 : bB

�

n�2

`

o

bB
 type

�

n�2

`

o

ba

n�1

 : 9T

a

n�1

: bA

a

n�1

.

.

.

bE
; x :bA
 `

o

open ba

1

 as hT

a

1

; v

a

1

:bA

a

1

i in : : : bb
 : bB

bE
 `

o

bA
 type

bE
 `

o

b�x :A: b
 : bA! B

� For the introdu
tion of a value variable in an environment:

E `

s

A type x =2 Dom(A)

`

s

E; x :A env

Let a

1

; : : : ; a

n

be F(x). If n = 0, we get by indu
tion a proof of bE
 `

o

bA
 type,

hen
e the desired result `

o

bE
; x :bA
 env.

25

Otherwise, by the same reasoning as in the
ase of �-abstra
tion, we have a proof

of:

bE
; x :bA
; T

a

1

; v

a

1

:bA

a

1

; : : : ; T

a

n�1

; v

a

n�1

:bA

a

n�1

 `

o

ba

n

 : 9T

a

n

: bA

a

n

from whi
h we
an extra
t a derivation of:

bE
; x :bA
; T

a

1

; v

a

1

:bA

a

1

; : : : ; T

a

n�1

; v

a

n�1

:bA

a

n�1

 `

o

9T

a

n

: bA

a

n

 type

whose penultimate step is:

bE
; x :bA
; T

a

1

; v

a

1

:bA

a

1

; : : : ; T

a

n�1

; v

a

n�1

:bA

a

n�1

; T

a

n

`

o

bA

a

n

 type

Hen
e the desired result:

`

o

bE
; x :bA
; T

a

1

; v

a

1

:bA

a

1

; : : : ; T

a

n

; v

a

n

:bA

a

n

 env

The remaining
ases are easy. 2

4.3.3 Preservation of semanti
s

As in the previous se
tion, this translation does not modify the meaning of the program:

Proposition 8 For all subterms a of a

0

,

Erase

o

(ba
)fv

b

 Erase

o

(bb
) for all b 2 Pg = Erase

s

(a):

Hen
e Erase

o

(ba

0

) = Erase

s

(a

0

).

Proof: Same proof as for proposition 4. 2

As a
onsequen
e of propositions 7 and 8, no
losed term for whi
h
ondition (C) holds

an evaluate to wrong. Indeed, this is true even if
ondition (C) does not hold, sin
e the

type system of the generalized dot notation is sound, as
an be proved dire
tly along the

lines of se
tion 2.3. However, it is not
lear whether the generalized dot notation ensures

as strong an abstra
tion as the original open
onstru
t. Informally, we may fear that it

is not the
ase, sin
e, for instan
e, implementations of abstra
tions
an be fully visible in

types:

hX=Int; 0:Xi:snd : hX=Int; 0:Xi:Fst

thus publi
izing that X = Int.

26

4.4 Type equivalen
e modulo redu
tion

As mentioned previously, we may add the following rule:

E `

s

a : A A$ B

E `

s

a : B (1)

where the equivalen
e relation$ is the
ongruen
e generated by the axioms:

hX=A; b :Bi:Fst $ A

hX=A; b :Bi:snd $ bfX Ag

(�x :A: b)(a) $ bfx ag

Even if rule 1 uses only equivalen
e between types, we need to de�ne also equivalen
e

between terms, be
ause a:Fst is equivalent to b:Fst if a is equivalent to b.

This rule leads to a weaker notion of abstra
tion, where su

(hX = Int; 0 :Xi:snd)

type
he
ks, for instan
e. Ma
Queen [9℄ argues that this additional
exibility is desirable

for a programming language, in order to be able to express
omplex dependen
ies between

modules. However, the DL language he proposes is strati�ed, and this is not by
han
e,

sin
e an unstrati�ed system like ours equipped with rule 1 is in
onsistent, as it is possible

to en
ode a
al
ulus with a type of all types in it [12℄.

Even if we add some strati�
ation, allowing redu
tion during type
he
king, as above,

does not seem to modify drasti
ally the previous results. Admittedly, the
ounterexample

we gave to show that some terms have no equivalent in the open
al
ulus,

hX=A; hY =X; a :Y i:snd :hY =X; a :Y i:Fsti;

now fails, sin
e it redu
es to hX = A; a : Xi. But we
an work out more
ompli
ated

examples, without any redex, that exhibit the same pathology, for instan
e:

�f : (9X: A)! (9Y: B):

hZ=A; (fhX=Z; a :Xi):snd :BfY (fhX=Z; a :Xi):Fstgi

where a : A, sin
e the open hX =Z; a :Xi as : : : must take pla
e inside the hZ=A; : : : :

: : :i, hen
e violating the s
oping rule for open.

Moreover, the translation above
an still be applied to terms in normal form satisfying

ondition (C), and, in that
ase, still leads to well-typed terms of the open
al
ulus, sin
e

for terms in normal form, type equivalen
e is again synta
ti
 equality.

5 Con
lusion

We have des
ribed two notations for type abstra
tion, one
oming from logi
, the other

from programming, and investigated their relationships. This work
ontributes to the

27

formal foundation of the notion of abstra
tion found in programming. It also suggests

some interesting extensions, as we shall see now.

The grammar of a
al
ulus with the dot notation may ensure that
ondition (C)

always holds. Let p range over the
lass of terms allowed to appear before a :Fst or a

:snd
onstru
t:

a ::= : : : j p:snd j : : :

A ::= : : : j p:Fst j : : :

If p
annot
ontain any type variable at all, then
ondition (C) will
ertainly hold. This

is the
ase, of
ourse, for the simple dot
al
ulus of se
tion 2 (p ::= x).

This is also the
ase for the extension to \paths" mentioned at the beginning of the

previous se
tion (p ::= x j p:snd). This notion of paths gives a
onvenient way to deal with

nested abstra
tions, whi
h is mu
h more natural than, for instan
e, the nested modules of

Modula-2 [16℄. Su
h a multi-level strati�
ation (as opposed to the usual \
at" stru
ture of

programs
onsidered as a set of modules) seems ne
essary for very large software systems.

Condition (C) even suggests other extensions, for instan
e:

p; p

0

::= x j p:snd j p(p

0

)

This would be
onvenient for dealing with parameterized abstra
tions. For example,

assuming we extend the system with �rst-order dependent types 8(x : A)B, we
ould

write:

type Dis
(
px :Complex) =

9X: make :
px :Fst! Real! X; : : :

val dis
 : 8(
px :Complex)Dis
(
px) =

�
px :Complex :

h X =
px :Fst� Real

make = �orig :Complex : �radius :Real: (orig; radius)

: : : i

Here, dis
(
px) would be a pa
kage implementing abstra
t dis
s of given origin and

radius, depending on a given implementation
px of Complex . For example, dis
(polar-

omplex) and dis
(
artesian
omplex) would provide di�erent implementations of the

parametri
 dis
 abstra
tion. Two instan
es of dis
(polar
omplex) would be re
ognized

to refer to the same abstra
tion, a

ording to the translation based on
ondition (C), and

ould hen
e intera
t freely.

In
on
lusion, we
an de�ne more and more expressive
al
uli based on the dot nota-

tion. The most expressive ones, only sket
hed in this se
tion, should be able to deal with

omplex dependen
ies between �rst-
lass parametri
 abstra
tions. Our
al
uli are
loser

28

to a
tual programming languages than are
al
uli based on logi
al notation, but enjoy all

the same interesting properties.

A
knowledgements

We are indebted to Mart��n Abadi, for having pointed out several
aws in earlier proofs

of propositions 3, 5, and 7.

29

30

Referen
es

[1℄ H. P. Barendregt. The Lambda Cal
ulus, its Syntax and Semanti
s. North-Holland,

1981.

[2℄ Lu
a Cardelli. Typeful Programming. Resear
h Report 45, DEC Systems Resear
h

Center, 130 Lytton Avenue, Palo Alto CA 94301. To appear in Pro
. IFIP State of

the Art Seminar on Formal Des
ription of Programming Con
epts, Rio de Janeiro,

April 1989.

[3℄ Lu
a Cardelli, Peter Wegner. \On Understanding Types, Data Abstra
tion, and

Polymorphism." Computing Surveys, 17(4), De
ember 1985.

[4℄ John V. Guttag, James J. Horning, Jeannette M. Wing. \The Lar
h Family of Spe
-

i�
ation Languages." IEEE Software, September 1985.

[5℄ W. A. Howard. \The formul�-as-types notion of
onstru
tion." In J. P. Seldin and J.

R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logi
, Lambda Cal
ulus

and Formalism, pp. 479{490, A
ademi
 Press, 1980.

[6℄ Barbara Liskov, John Guttag.Abstra
tion and Spe
i�
ation in Program Development.

The MIT Press, 1986.

[7℄ P. Martin-L�of. \Constru
tive mathemati
s and
omputer programming." 6th Int.

Congress for Logi
, Methodology, and Philosophy of S
ien
e, pp. 153{175, North-

Holland, 1982.

[8℄ D. B. Ma
Queen. \Modules for Standard ML." ACM Symp. on Lisp and Fun
tional

Programming, 1984.

[9℄ David Ma
Queen. \Using Dependent Types to Express Modular Stru
ture." 13th

Ann. ACM Symp. on Prin
iples of Programming Languages, 1986.

[10℄ David Ma
Queen, Gordon Plotkin, Ravi Sethi. \An Ideal Model for Re
ursive Poly-

morphi
 Types." Information and Control 71, pp. 95{130, 1986.

[11℄ John C. Mit
hell. \Representation independen
e and data abstra
tion (preliminary

version)." 13th Ann. ACM Symp. on Prin
iples of Programming Languages, 1986.

[12℄ John C. Mit
hell, Robert Harper. \The Essen
e of ML." 15th Ann. ACM Symp. on

Prin
iples of Programming Languages, 1988.

[13℄ John C. Mit
hell, Gordon D. Plotkin. \Abstra
t types have existential type." 11th

Ann. ACM Symp. on Prin
iples of Programming Languages, 1984.

31

[14℄ D. L. Parnas. \On the
riteria to be used in de
omposing systems into modules."

Communi
ations of the ACM, Vol. 15, No. 12, pp. 1053{1058, De
ember 1972.

[15℄ J. C. Reynolds. \Towards a theory of type stru
ture." Colloquium sur la program-

mation, Le
ture Notes in Computer S
ien
e Vol. 19, pp. 408-425, Springer-Verlag,

1974.

[16℄ N. Wirth. Programming in Modula-2. Springer-Verlag, 1983.

32

