
Abstrat types and the dot notation

Lua Cardelli Xavier Leroy

Researh report 56

Digital Equipment Corporation, Systems Researh Center

Marh 10, 1990

Authors' abstrat

We investigate the use of the dot notation in the ontext of abstrat types. The dot

notation|that is, a:f referring to the operation f provided by the abstration a|is

used by programming languages suh as Modula-2 and CLU. We ompare this notation

with the Mithell-Plotkin approah, whih draws a parallel between type abstration and

(weak) existential quanti�ation in onstrutive logi. The basi operations on existentials

oming from logi give new insights about the meaning of type abstration, but di�er

ompletely from the more familiar dot notation. In this paper, we formalize simple aluli

equipped with the dot notation, and relate them to a more lassial alulus �a la Mithell

and Plotkin. This work provides some theoretial foundations for the dot notation, and

suggests some useful extensions.

Publiation history

This report is based on a paper presented at the IFIP TC2 working onferene on Pro-

gramming Conepts and Methods, Tiberias, Israel, april 1990. (Proeedings published by

North-Holland in 1990.)

Contents

1 Introdution 1

2 A simple alulus with abstrat types 5

2.1 Syntax : 5

2.2 Typeheking : 6

2.3 Evaluation : 8

3 A alulus with the dot notation 10

3.1 Syntax : 10

3.2 Typeheking : 11

3.3 Evaluation : 12

3.4 Enoding the dot alulus in the open alulus : : : : : : : : : : : : : : : : 12

3.4.1 Formal de�nition of the translation : : : : : : : : : : : : : : : : : : 13

3.4.2 Preservation of typing : 14

3.4.3 Preservation of semantis : 18

3.5 Enoding the open alulus in the dot alulus : : : : : : : : : : : : : : : : 19

4 A more powerful alulus with dot 20

4.1 Typing : 21

4.2 Evaluation : 21

4.3 Relation to the open alulus : 22

4.3.1 A translation funtion : 22

4.3.2 Preservation of typing : 24

4.3.3 Preservation of semantis : 26

4.4 Type equivalene modulo redution : 27

5 Conlusion 27

Referenes 31

1 Introdution

Type abstration has emerged as one of the most important tehniques for speifying and

building large software systems [6, 4℄, sine it provides fundamental typing support for

modularization [14℄.

Abstrat types (sometimes alled opaque types) are therefore one of the neessary

features of modern programming languages. However, for a long time their standing

has been rather mysterious, and their type rules have been explained in ad-ho and

operational ways, making formal reasoning about abstrat types diÆult. For example,

it is still ommonly said that an opaque type is \di�erent from any other type in the

system when seen from outside the abstration", or that a new abstrat type is \reated"

whenever its desription is evaluated. Suh statements are both informal and arbitrary;

learly, a formal bakground is needed to de�ne preisely what type abstration means,

derive sensible typeheking rules, and reason about programs using abstrat types.

In an attempt to �ll this need, Mithell and Plotkin [13℄ made an important onnetion

between type abstration and the seond-order existential quanti�ers of logi. They pro-

posed that an abstration|that is, an abstrat type A, together with operations f; g; : : :

whose types F;G; : : : normally involve A|should be viewed as an \existential" statement.

That is, there should exist a onrete type representation of A and an implementation

of the operations f; g; : : : suh that f; g; : : : have the types F;G; : : :, respetively

1

. For

instane, a pakage implementing omplex numbers ould be spei�ed by the existential

type shown in �gure 1; two di�erent implementations meeting this spei�ation are shown

in �gure 2. An abstration is therefore an assertion that adequate implementations exist;

it provides a partial spei�ation of suh implementations. These existential statements

might be false, in whih ase the spei�ation of the abstrat type should be seen as

inonsistent.

The approah of Mithell and Plotkin showed for the �rst time that the type rules

for abstrat types ould be desribed non-operationally, by looking at the well-known

rules of onstrutive logi from the standpoint of programming. It also provided the

neessary formal framework for proving fundamental properties of abstrat types, suh as

representation independene [15, 11℄.

The onnetion between this approah to type abstration and the notion of type

abstration found in several modern programming languages is however not omplete.

These languages use a dot notation, suh as a:f , to refer to an operation f provided

by an abstration a, or in other words, to the �eld named f of module a. The type

theory approah provides an elimination onstrut that looks totally di�erent, for the

same purpose . We set out in this paper to investigate this di�erene in notation, explore

1

This type-theoretial notion of \abstrat types", should not be onfused with the many-sorted algebra

approah. It is both weaker, sine it does not involve equations (whih an however be added in a type-

theoretial logi), and also stronger, beause of higher-order funtions.

1

type Complex =

9C: make : Real! Real! C

re : C ! Real

im : C ! Real

mul : C ! C ! C : : :

Figure 1: A spei�ation of a omplex arithmeti pakage

val artesian omplex : Complex =

h C = Real� Real

make = �x :Real: �y :Real: (x; y)

re = �x :C: first(x)

im = �x :C: seond(x)

mul = �x :C: �y :C: (first(x): first(y)� seond(x): seond(y);

first(x): seond(y) + seond(x): first(y)) i

val polar omplex : Complex =

h C = Real� Real

make = �x :Real: �y :Real: (

p

x

2

+ y

2

; atan2(y; x))

re = �x :C: first(x): os(seond(x))

im = �x :C: first(x): sin(seond(x))

mul = �x :C: �y :C: (first(x): first(y); seond(x) + seond(y)) i

Figure 2: Two implementations of the omplex arithmeti pakage

2

�omplex :Complex :

open omplex as hC;mk ; re; im;muli in

let square = �x :C:mul x x in re(square(mk 2 3))

Figure 3: Using a pakage with the open notation

�omplex :Complex :

let square = �x :omplex :C: (omplex :mul x x) in

omplex :re(square(omplex :make 2 3))

Figure 4: Using a pakage with the dot notation

also whether there is a di�erene in expressive power, and try to relate both notations, in

the hope of �lling one of the remaining gaps between the theory and the pratie of type

abstration.

The \logial" notation for abstration uses a onstrut, whih we all open here,

orresponding to the logial rule for existential elimination. Namely, given a pakage p

implementing an abstration A; f; g; : : :, we an open the pakage p, bind its omponents

to variables A

0

; f

0

; g

0

; : : :, and use suh variables in a usage sope (following in):

p : 9A: f; g; : : :

open p as A

0

; f

0

; g

0

; : : : in : : : A

0

: : : f

0

: : : g

0

: : :

The result of this expression is the result of the subexpression following in. Figure 3 shows

how the omplex arithmeti pakage above an be used with this notation. Additional

examples using this notation an be found in Cardelli and Wegner [3℄.

It is easy to see why abstration is enfored. Although A may be implemented in

p as, say, Int, A

0

is a formal variable and annot math any type exept itself. This

orresponds to the informal idea that abstrat types are \di�erent from any other type".

There is also a ruial restrition that the type variable A

0

should not esape its sope: it

must not appear free in the type of the result of open or in the types of global variables.

Existential types provide a fully satisfatory theoretial solution to the problem of

modelling abstrat types. However, the open notation is very lumsy for programming

purposes; if a pakage is opened twie, the two abstrat type variables thus introdued

will not math. Hene one must �nd a suÆiently large usage sope around whih to

plae the open onstrut without violating the typing rules; MaQueen [9℄ points out that

the required usage sope may be so large that most bene�ts of abstration are lost.

This diÆulty motivated MaQueen to take a di�erent approah to abstration, using

dependent types and general sums [9℄. His approah is adequate for modules (when they

are not �rst-lass values, as in Standard ML [8℄), but not for abstrat types, sine pakages

3

must now neessarily stop being �rst-lass values to preserve typing deidability [12℄. In

addition, general sums do not ensure abstration by themselves; hene, Standard ML

provides a separate abstration onstrut.

Independently, programming languages providing failities for type abstration were

developed, and most of them use a di�erent notation. This programming notation uses a

dot operator to selet the omponents of a pakage, inluding seleting the abstrat type

when it is in a type ontext:

p : 9A: f; g; : : :

: : : p:A : : : p:f : : : p:g : : :

See �gure 4 for a reformulation of the example above using this notation.

This dot notation has proved very onvenient for atual programming, espeially for

programming in the large. However, it does not lend itself to formalization as readily as

the open notation.

One diÆulty with the dot notation is that the name A is bound and an be renamed:

9A:B = 9A

0

:BfA A

0

g. Hene what does p:A really mean? Similarly, how are the names

f; g; : : : handled? Programming languages seem to avoid this problem by rejeting �-

onversion of existential variables. Here we irumvent the problem by using positions

instead of names: p:Fst refers to the type omponent of an abstration, and p:snd to the

operation-set omponent.

Apart from this diÆulty, the main problem is that we no longer have a preise notion

of the usage sope of a pakage. If p:A always mathes (another ourrene of) p:A, why

should it not math Int, or some other type?

Moreover, p:A (or p:Fst) is now a type; hene we have introdued value expressions as

subexpressions of type expressions. Should p:A math p

0

:A only if p = p

0

? Or if p and p

0

have the same normal form? Clearly some restrition should be imposed here to preserve

typing deidability.

Finally, are pakages �rst-lass values? In Modula-2 for instane, modules are not �rst-

lass values. In this paper, we wish to avoid this additional strati�ation, and assume

that the p in p:A is a �rst-lass value, so we an handle general abstrat types and not

just modules. Alternatively, we are assuming that our modules are �rst-lass values and

that multiple implementations of an interfae an oexist [2℄. But should we require p in

p:A to be a simple identi�er x, as in most programming languages, or a sequene x:y:z : : :

? Or an we allow p to be an arbitrarily omplex expression, provided that it has no

side-e�et, and that equality of two suh expressions is deidable?

If we had a translation between some avor of dot notation and the open notation, we

ould avoid answering diretly all suh hard questions about the dot notation. We should

not be afraid of losing expressiveness in the translation, sine we believe existential types

haraterize the orret notion of abstration.

4

The main question then that this paper addresses is under whih irumstanes is the

dot notation equivalent to the open notation?

First, in setion 2, we introdue a simple alulus with the open notation, intended

to serve as a referene point. We give typeheking rules, denotational semantis, and

show the soundness of the type system. In setion 3, the open elimination onstrut is

replaed by a simpli�ed dot notation, onsisting of two projetions, :Fst and :snd, that

are syntatially restrited to apply to simple variables only. Then we prove that the

alulus thus obtained is equivalent to the former one by translating one alulus into

the other. The translations are reasonably faithful, sine they preserve both typing and

semantis. Finally, in setion 4, we lift the restrition on :Fst and :snd, and allow them

to operate on any term; it seems that not all terms of this alulus with generalized dot

notation have equivalents in the original alulus with open; however, we haraterize a

large lass of terms that an be enoded in the open notation, while retaining typing and

semantis.

2 A simple alulus with abstrat types

The alulus in this setion is based upon the usual simply typed �-alulus, extended with

onstants and primitive operations as needed (suh as integers, booleans and pairs, though

we shall axiomatize only integers for simpliity.) To model type abstration, we add

existential quanti�ation on types, and two term onstrutors: seond-order dependent

pairs and the open onstrut. These term onstrutors orrespond to the introdution

and elimination rules for existential quanti�ation in onstrutive logi.

2.1 Syntax

In the following, X and Y range over a given ountable set of type variable identi�ers, A

and B range over the lass of types, similarly, x and y range over the set of term variable

identi�ers, and a, b, range over the lass of terms.

A ::= X j A! B j 9X: A

a ::= x j �x :A: b j b(a) j hX=A; b :Bi j open a as hX; y :Bi in b

The onstrut hX=A; b :Bi builds a seond-order dependent pair. This is basially a

pair of a type A and a term b of type B; however, b and B may depend on the binding

X = A; that is, X may appear in b or in B, and is onsidered to be bound to A there.

This binding is not visible outside of the pair; in partiular, the type of the pair is simply

9X: B, without any mention of A.

5

The elimination onstrut open a as hX; y :Bi in b evaluates a to a pair, binds X to

its internal type and y to its value, and returns the value of b in this new environment.

The variable X gets bound in B and b; y is bound in b.

For some purposes, we also onsider the alulus above extended with integer on-

stants:

A ::= : : : j Int

a ::= : : : j 0 j su(a) j ase a of 0: b; su(x):

The pattern-mathing onstrut ase a of 0: b; su(x): subsumes test for zero, the

predeessor funtion, and the usual if : : : then : : : else onstrut; x is onsidered bound

(to the predeessor of a) in .

As usual, expressions are identi�ed up to a renaming of bound variables.

2.2 Typeheking

We speify the typing of terms of this alulus by a system of inferene rules. The rules

de�ne the judgment \term a has type A under the assumptions E", written E `

o

a : A.

The assumptions are either \variable x has type A" or \identi�er X is a valid type

variable", hene the syntax of typing environments E is as follows:

E ::= ; j E;X j E; x :A:

We write Dom(E) for the set of variables introdued in E, that is:

Dom(;) = ; Dom(E;X) = Dom(E) [fXg Dom(E; x :A) = Dom(E) [fxg

However, we must put additional onstraints on the environments, to ensure that type

variables are introdued in the environment before being used in types. So we have to

de�ne two more judgments: \typing environment E is well-formed", written `

o

E env;

and \type A is valid in environment E", written E `

o

A type, as follows.

`

o

; env

`

o

E env X =2 Dom(E)

`

o

E;X env

E `

o

A type x =2 Dom(E)

`

o

E; x :A env

`

o

E env

E `

o

Int type

`

o

E;X;E

0

env

E;X;E

0

`

o

X type

6

E `

o

A type E `

o

B type

E `

o

A! B type

E;X `

o

A type

E `

o

9X: A type

We an now give the typeheking rules for terms. The �rst rules are exatly those of

the simply typed �-alulus:

`

o

E; x :A;E

0

env

E; x :A;E

0

`

o

x : A

E `

o

A type E; x :A `

o

b : B

E `

o

�x :A: b : A! B

E `

o

b : A! B E `

o

a : A

E `

o

b(a) : B

Typing rules for integers are straightforward:

`

o

E env

E `

o

0 : Int

E `

o

a : Int

E `

o

su(a) : Int

E `

o

a : Int E `

o

b : A E; x :Int `

o

 : A

E `

o

ase a of 0: b; su(x): : A

A pair hX =A; b :Bi has type 9X: B if the laim b : B holds when onsidering the

binding X = A in b and B. The type A does not appear in the type of the pair; it is

therefore hidden outside of the pair.

E `

o

A type E `

o

bfX Ag : BfX Ag

E `

o

hX=A; b :Bi : 9X: B

If a has an existential type 9X: B, then an open a as hX; y :Bi in onstrution has

the same type as . The term is onsidered in an environment where the type variable

X is de�ned and the term variable y has type B. Inside , the type X is a formal variable,

whih annot math any type exept itself. To ensure that X does not esape the sope

of the open expression, we require that X is not free in the type C of the body . This is

ensured by requiring that C is a valid type in the original environment E, in whih X is

unbound.

E `

o

a : 9X: B E `

o

C type E;X; y :B `

o

 : C

E `

o

open a as hX; y :Bi in : C

7

It is easy to see that E `

o

a : A implies E `

o

A type, whih implies `

o

E env in turn.

This fat is used impliitly in the rules above.

2.3 Evaluation

The usual approah to evaluation would be to de�ne redution rules on the typed terms;

following Mithell and Plotkin [13℄, we ould take, for instane:

(�x :A: b)(a) ! bfx ag

open hX=A; b :Bi as hX; y :Bi in ! fy bgfX Ag

plus some rules for onstants. However, these rules do not identify terms that intuitively

have exatly the same meaning, for instane

open x as hY; z :Inti in su(z)

and

su(open x as hY; z :Inti in z):

Though the open a as : : : onstrut performs very little omputation, it is not allowed to

disappear until a is redued to an expliit pair, whih may never our. This prevents a

number of desirable redutions: (open x as hY; z :Y i in �u :Int: u)(0) is in normal form,

while the orresponding untyped term (�z: �u: u)(x)(0) may be redued. This turns out

to be a major problem when trying to relate other aluli with this one, as we shall do

later on, sine the various typed redutions do not math, while the untyped redutions

are the same.

We ould add other redution rules to perform the desired identi�ations, but it is

unlear whether the Churh-Rosser and strong normalization properties would still hold.

Instead, we hoose to redue the underlying untyped �-terms, obtained by erasing all

type annotations. Pairs of a type and a term are identi�ed with the term itself, hene

the pairing operation simply disappears, and open beomes a simple binding of a term

to a variable, similar to the let onstrut of ML. For simpliity, we express it by mere

substitution of the variable by the term.

Erase

o

(x) = x

Erase

o

(�x :A: b) = �x: Erase

o

(b)

Erase

o

(b(a)) = Erase

o

(b)(Erase

o

(a))

Erase

o

(hX=A; b :Bi) = Erase

o

(b)

Erase

o

(open a as hX; y :Ai in b) = Erase

o

(b)fy Erase

o

(a)g

Erase

o

(0) = 0

8

Erase

o

(su(a)) = su(Erase

o

(a))

Erase

o

(ase a of 0: b; su(x):) = ase Erase

o

(a) of 0:Erase

o

(b);

su(x):Erase

o

()

After the erasing is performed, the untyped �-term thus obtained is redued in the

usual way [1℄. However, when we add onstants to this alulus, there is a possibility of

a run-time type error during redution; for instane, an integer ould be applied as if it

were a funtion. It remains to show that this annot our if the initial term is well-typed.

To be more preise, we shall use a denotational semantis for the untyped �-alulus.

Following MaQueen, Plotkin and Sethi [10℄, we hoose a domain V isomorphi to N

?

+

(V ! V) + fwrongg

?

. Then to eah untyped term m, onsidered in an environment �,

we assoiate a meaning that is a value [[m℄℄

�

of the \universe" V; meaningless terms, that

is terms whose evaluation leads to a type error, are mapped to wrong. The environment

� is a partial mapping from term variables to values of V.

[[x℄℄

�

= �(x) if de�ned, wrong otherwise

[[�x:m℄℄

�

= v 7! [[m℄℄

�[x v℄

[[m(n)℄℄

�

= if [[m℄℄

�

is in V! V then ([[m℄℄

�

)([[n℄℄

�

) else wrong

[[0℄℄

�

= 0

[[su(m)℄℄

�

= if [[m℄℄

�

2 N

?

then [[m℄℄

�

+ 1 else wrong

[[ase m of 0:n; su(x): p℄℄

�

= if [[m℄℄

�

= 0 then [[n℄℄

�

if [[m℄℄

�

= i + 1 then [[p℄℄

�[x i℄

else wrong

We an now state the soundness of the typing rules:

Proposition 1 For all terms a and types A, if ; `

o

a : A, then Erase

o

(a) does not denote

wrong, that is [[Erase

o

(a)℄℄

;

6= wrong.

To prove this proposition, we shall �rst give a meaning to type expressions as well.

Following the ideal model of types [10℄, we interpret type expressions as ideals of V, as

follows:

[[Int℄℄

�

= N

?

[[X℄℄

�

= �(X) if de�ned, ; otherwise

[[A! B℄℄

�

= ff 2 V! V j 8v 2 [[A℄℄

�

; f(v) 2 [[B℄℄

�

g

[[9X: A℄℄

�

=

G

W ideal

wrong=2W

[[A℄℄

�[X W ℄

where in addition � maps type variables to ideals of V. Notie that if wrong is not in

�(X) for any X, then wrong =2 [[A℄℄

�

for all types A. The soundness of typing then follows

easily from the following laim, whih is proved in [10℄:

9

Proposition 2 Assume E `

o

a : A. Let � be a mapping ompatible with E; that is, for

all type variables X 2 Dom(E), the ideal �(X) does not ontain wrong, and for all term

variables x 2 Dom(E), the denotation �(x) belongs to [[E(x)℄℄

�

. Then [[Erase

o

(a)℄℄

�

2 [[A℄℄

�

.

Apart from on�rming that the type rules are sensible, this soundness result is a

lue that indeed data abstration is ensured in this alulus. Data abstration is usually

haraterized by representation independene properties. These properties formalize the

intuition that two \equivalent" implementations of an abstrat type are not distinguish-

able; that is, the observed behavior of a program using one or the other is the same.

Soundness of typing is a (weak) representation independene property, where two terms

are equivalent when they have the same type, and observed behavior is the absene of

run-time type errors. Stronger representation independene properties hold for this al-

ulus; for instane, Mithell [11℄ shows (for a superset of the alulus in this setion) that

if two implementations of an abstration are related by a logial relation, then one an

be substituted for the other in any losed term without modifying its meaning.

3 A alulus with the dot notation

We now formalize a alulus based on the dot notation. This is a �-alulus with seond-

order dependent produts, di�ering from the one in the previous setion only in the way

of splitting existentials: instead of a single open onstrut, it provides two onstruts:

one for aessing the value part of the pair, written x:snd; and one to get a witness of the

abstrated type, written x:Fst. As this is intended to model the \quali�ed identi�ers" of

Modula-2 [16℄ and the \abstrat tuples" of Quest [2℄, we shall in this setion restrit :Fst

and :snd to operate on term variables only.

3.1 Syntax

We keep the same notational onventions: X and Y are type variables, A and B are types,

x and y are term variables, and a and b are terms.

A ::= X j A! B j 9X: A j x:Fst

a ::= x j �x :A: b j b(a) j hX=A; b :Bi j x:snd

As previously, we an extend this dot alulus with integer onstants:

A ::= : : : j Int

a ::= : : : j 0 j su(a) j ase a of 0: b; su(x):

10

3.2 Typeheking

As in the previous setion, we have to de�ne the judgment E `

d

a : A, as well as two

auxiliary judgments `

d

E env and E `

d

A type.

Type environments have exatly the same struture, and are well-formed under the

same onditions :

`

d

; env

`

d

E env X =2 Dom(E)

`

d

E;X env

E `

d

A type x =2 Dom(E)

`

d

E; x :A env

For type validity, we have to add one rule for the new onstrution x:Fst, stating that

it is a valid type whenever x is shown to have an existential type.

`

d

E;X;E

0

env

E;X;E

0

`

d

X type

E;X `

d

A type

E `

d

9X: A type

E `

d

A type E `

d

B type

E `

d

A! B type

E `

d

x : 9X: A

E `

d

x:Fst type

For typeheking of terms, we drop the open rule and keep the other four rules. As

term variables may now appear in a type expression, they must be prevented from esaping

their sope. Hene, the rule for funtions �x :A: b states that x is not free in the type B

of the body b. As in setion 2.2, this is ensured by requiring that B is a valid type in the

original environment E, whih does not de�ne x.

`

d

E; x :A;E

0

env

E; x :A;E

0

`

d

x : A

E `

d

A type E `

d

B type E; x :A `

d

b : B

E `

d

�x :A: b : A! B

E `

d

b : A! B E `

d

a : A

E `

d

b(a) : B

E `

d

A type E `

d

bfX Ag : BfX Ag

E `

d

hX=A; b :Bi : 9X: B

11

The new onstrut x:snd is well-typed provided that x has an existential type 9X: A;

its type is A, where the abstrated type X is substituted by its witness x:Fst.

E `

d

x : 9X: A

E `

d

x:snd : AfX x:Fstg

3.3 Evaluation

As in setion 2.3, we do not redue typed terms diretly, but rather strip all type informa-

tion �rst and then evaluate the untyped �-term thus obtained. This stripping is de�ned

on terms with dot in the same vein as in setion 2.3, with the additional ase:

Erase

d

(x:snd) = x

Instead of diretly investigating this alulus | proving the soundness of the type

system, for instane | we shall �rst try to relate it to the open alulus. Indeed, we

are going to provide translations from terms of one alulus into the other alulus. The

translations are reasonably faithful in that they preserve typing and semantis. Most

interesting properties of the open alulus an then be e�ortlessly shown to hold in the

dot alulus as well.

3.4 Enoding the dot alulus in the open alulus

The idea behind both translations is that, in the body of an open x as hY; z : Ai in b

expression, Y and z seem to have the same meaning as x:Fst and x:snd, respetively.

This remark suggests the following strategy to transform a program with dot into one

with open: insert some open x as hY; z :Ai in : : : for eah variable x used in a x:Fst or

x:snd onstrut, and use Y and z instead of x:Fst and x:snd. In other words:

b[x:Fst; x:snd℄ 7�! open x as hY; z :Ai in b[Y; z℄

For instane, this would allow the following translation:

�x :9X: X �X ! Int: (seond(x:snd))(first(x:snd)) 7�!

�x :9X: X �X ! Int: (open x as hY; z :Y � Y ! Inti in seond(z))

(open x as hY; z :Y � Y ! Inti in first(z))

and this is obviously wrong, sine the soping onstraint of open is not respeted. (Y

appears free in the types of the results.) So, this sheme must be restrited to the ases

where x:Fst does not appear in the type of b[x:Fst; x:snd℄. Presumably, this may be

ahieved by taking a subexpression b large enough to enlose all uses of x:Fst and x:snd;

12

ComplexWRT (X) abbreviates

(Real! Real! X)� (X ! Real)� (X ! Real)� (X ! X ! X)

In the dot alulus:

�x :9X: ComplexWRT (X):

seond(x:snd)

�

(�z :x:Fst: fourth(x:snd)(z)(z))(first(x:snd)(3)(2))

�

In the open alulus:

�x :9X: ComplexWRT (X):

open x as hX; y :ComplexWRT(X)i in

seond(y)

�

(�z :X: fourth(y)(z)(z))(first(y)(3)(2))

�

Figure 5: Translation from the dot alulus to the open alulus

indeed, the body of the �-abstration binding x will do, sine the typing rule for � prevents

x (and, hene, x:Fst) from being free in the type of the body.

Therefore, the following translation sheme seems sensible:

�x :9X: A: b 7�! �x :9X: A: open x as hX; y :Ai in bfx:Fst Xgfx:snd yg

For instane, if we express the omplex arithmeti example (�gures 3 and 4) in the open

alulus and in the dot alulus (see �gure 5), the translation outlined above atually

transforms the �rst program into the seond one. This sheme works for losed terms,

but we shall soon desribe a translation for open terms as well.

Now, we would like to show that a well-typed term translates to a well-typed term.

To allow for easy indution on derivations, we need to translate not only terms, but also

whole judgments. Hene, we �rst reformulate the translation in a more general (and more

ontrolled) way.

3.4.1 Formal de�nition of the translation

Let a

0

be a losed, well-typed term of the dot alulus. To avoid name lashes, we rename

the identi�ers appearing in a

0

so that none gets bound more than one.

Let P be the set of term variables x suh that x:Fst or x:snd appear in a

0

. Given

the typeheking rules for projetions, eah x 2 P has an existential type; we write it as

9T

x

: A

x

, after renaming if neessary

2

.

2

Due to the typing rule for pairs, this type may di�er from the type delared for x by the abstration

binding it, as in hX = 9Y: Int; �x :X: x:snd :X ! Inti. The type 9T

x

: A

x

we assoiate with x is the

\true" type of x; that is, the type given to it in the derivation of a

0

: A

0

(this derivation is unique, given

the typing rules), or alternatively the type delared for x, where all bindings suh as X = 9Y: Int above

have been performed.

13

To eah x 2 P, we assoiate a term variable v

x

that does not appear in a

0

.

For eah subterm a of a

0

, we de�ne its translation ba as follows:

bx = x

bx:snd = v

x

b�x :A: b = �x :bA: open x as hT

x

; v

x

:bA

x

i in bb if x 2 P

b�x :A: b = �x :bA: bb if x =2 P

bb(a) = bb(ba)

bhX=A; b :Bi = hX=bA; bb :bBi

This is basially the transformation outlined above, with substitutions delayed, and per-

formed only when neessary: we insert an open x as : : : only when x 2 P; that is, when

x:Fst or x:snd are atually used.

In the same vein, types translate as follows:

bX = X

bx:Fst = T

x

bA! B = bA ! bB

b9X: A = 9X: bA

To translate environments, the only ase that needs speial treatment is the intro-

dution of a variable x belonging to P. In the derivation, this ase orresponds to the

typeheking of the body b of a funtion �x :A: b. After translation, b will be preeded

by an open x as hT

x

; v

x

: bA

x

i in : : :, so we must typehek the translation of b in an

environment where T

x

and v

x

are de�ned. Hene the translation of E; x :A introdues T

x

and v

x

:bA

x

 in addition to x :bA.

b; = ;

bE;X = bE; X

bE; x :A = bE; x :bA; T

x

; v

x

:bA

x

 if x 2 P

bE; x :A = bE; x :bA if x =2 P

3.4.2 Preservation of typing

We are now able to translate any judgment omponentwise, and in partiular ; `

d

a

0

: A

0

.

To prove that the translation preserves typing, it remains to show that its translation

; `

o

ba

0

 : bA

0

 an be derived in the open alulus.

Proposition 3 Let a

0

be a losed, well-typed term of the dot alulus. Let b be the

assoiated translation funtion. Let D be the derivation of ; `

o

a

0

: A

0

.

14

� If `

d

E env is proved in D, then `

o

bE env.

� If E `

d

A type is proved in D, then bE `

o

bA type.

� If E `

d

a : A is proved in D, then bE `

o

ba : bA.

Proof: By indution on the three derivations, starting with the one of E `

d

a : A.

� For value variables: we have the following derivation

.

.

.

`

d

E

1

; x :A;E

2

env

E

1

; x :A;E

2

`

d

x : A

By indution, we have a derivation of `

o

bE

1

; x : A;E

2

 env. By de�nition of the

translation, bE

1

; x : A;E

2

 has learly the form E

0

1

; x : bA; E

0

2

. Hene the desired

result bE

1

; x :A;E

2

 `

o

x : bA follows.

� For value aess in a pair: from the original derivation

.

.

.

`

d

E

1

; x :9T

x

: A

x

; E

2

env

E

1

; x :9T

x

: A

x

; E

2

`

d

x : 9T

x

: A

x

E

1

; x :9T

x

: A

x

; E

2

`

d

x:snd : A

x

fT

x

 x:Fstg

we get by indution a derivation of `

o

bE

1

; x : 9T

x

: A

x

; E

2

 env. As x:snd appears

in the derivation above, x belongs to P. Therefore, bE

1

; x :9T

x

: A

x

; E

2

 introdues

the variable v

x

with type bA

x

. Hene bE `

o

v

x

: bA

x

, whih implies the expeted

result

bE `

o

bx:snd : bAfX x:Fstg

sine, as bx:Fst = T

x

,

bAfT

x

 x:Fstg = bA

� For abstration:

.

.

.

E `

d

A type

.

.

.

E `

d

B type

.

.

.

E; x :A `

d

b : B

E `

d

�x :A: b : A! B

15

If x =2 P, by indution we have proofs of

bE `

o

bA type

bE; x :A `

o

bb : bB

that is

bE; x :bA `

o

bb : bB

hene

bE `

o

�x :bA: bb : bA ! bB

whih is the desired result.

If x 2 P, then A = 9T

x

: A

x

, and the same steps lead to:

bE `

o

9T

x

: bA

x

 type

bE `

o

bB type

bE; x :9T

x

: bA

x

; T

x

; v

x

:bA

x

 `

o

bb : bB

so we have the following derivation:

bE; x :9T

x

: bA

x

 `

o

x : 9T

x

: bA

x

bE `

o

bB type

bE; x :9T

x

: bA

x

; T

x

; v

x

:bA

x

 `

o

bb : bB

bE; x :9T

x

: bA

x

 `

o

open x as hT

x

; v

x

:bA

x

i in bb : bB

bE `

o

9T

x

: bA

x

 type

bE `

o

�x :9T

x

: bA

x

: open x as hT

x

; v

x

:bA

x

i in bb : 9T

x

: bA

x

 ! bB

that leads to the desired result:

bE `

o

b�x :A: b : bA! B

� For appliation: obvious by indution hypothesis.

� For pair onstrution: from

E `

d

A type E `

d

bfX Ag : BfX Ag

E `

d

hX=A; b :Bi : 9X: B

we get by indution hypothesis proofs of

bE `

o

bA type bE `

o

bbfX Ag : bBfX Ag

16

To onlude that bE `

o

hX=bA; bb :bBi : 9X: bB, it suÆes to show that

bbfX Ag = bbfX bAg

bBfX Ag = bBfX bAg

The proof is by indution on b and B. We give the non-trivial ase: b = �x :C: d

with x 2 P.

bbfX Ag = �x :bCfX Ag: open x as hT

x

; v

x

:bA

x

i in bdfX Ag

= �x :bCfX bAg: open x as hT

x

; v

x

:bA

x

i in bdfX bAg

by indution hypothesis. The type variableX is not free in A

x

(indeed, by de�nition

of T

x

and A

x

, the type 9T

x

:A

x

is C where some type variables have been substituted,

and espeially X has been substituted by A). Therefore X is not free in bA

x

 either.

Hene the desired result:

bbfX Ag = (�x :bC: open x as hT

x

; v

x

:bA

x

i in bd)fX bAg

= bbfX bAg

We turn now to the E `

d

A type judgment. All ases are straightforward, exept

maybe the one for x:Fst; but then the original derivation is:

.

.

.

`

d

E

1

; x :9T

x

: A

x

; E

2

env

E

1

; x :9T

x

: A

x

; E

2

`

d

x : 9T

x

: A

x

E

1

; x :9T

x

: A

x

; E

2

`

d

x:Fst type

The translation of E

1

; x : 9T

x

: A

x

; E

2

introdues the type variable T

x

, and it is a well-

formed environment, so bE

1

; x :9T

x

: A

x

; E

2

 `

o

T

x

type holds, whih is the desired result

sine bx:Fst = T

x

.

Similarly, for the `

d

E env judgment, the only interesting ase is the introdution of

an x belonging to P. By de�nition of T

x

and A

x

, the type given to x must be 9T

x

: A

x

.

.

.

.

E; T

x

`

d

A

x

type

E `

d

9T

x

: A

x

type x =2 Dom(E)

`

d

E; x :9T

x

: A

x

env

17

By indution, we have a proof of bE; T

x

`

o

bA

x

 type, hene the following derivation:

bE; T

x

`

o

bA

x

 type

bE `

o

9T

x

: bA

x

 type x =2 Dom(bE)

`

o

bE; x :9T

x

: bA

x

 env T

x

=2 Dom(bE; x :9T

x

: bA

x

)

`

o

bE; x :9T

x

: bA

x

; T

x

env

We an substitute this for the proof of `

o

bE; T

x

env in the derivation of bE; T

x

`

o

bA

x

 type, thereby obtaining a proof of bE; x :9T

x

: bA

x

; T

x

`

o

bA

x

 type. Hene:

bE; x :9T

x

: bA

x

; T

x

`

o

bA

x

 type v

x

=2 Dom(bE; x :9T

x

: bA

x

; T

x

)

`

o

bE; x :9T

x

: bA

x

; T

x

; v

x

:bA

x

 env

2

3.4.3 Preservation of semantis

As the translation respets the struture of funtions and appliations, a losed term of

the dot alulus and its translation in the open alulus have exatly the same underlying

untyped terms. More preisely, we have:

Proposition 4 For all subterms a of a

0

,

Erase

o

(ba)fv

x

 x for all x 2 Pg = Erase

d

(a):

Hene Erase

o

(ba

0

) = Erase

d

(a

0

).

Proof: By indution on a. We give the main ases:

� if a = x:snd, Erase

d

(a) = x and Erase

o

(ba) = v

x

.

� if a = �x :A: b and x 2 P, then

Erase

o

(ba) = Erase

o

(�x :bA: open x as hT

x

; v

x

:bA

x

i in bb)

= �x: (Erase

o

(bb)fv

x

 xg)

hene, by indution hypothesis,

Erase

o

(ba)fv

y

 y for all y 2 Pg =

�x: (Erase

o

(bb)fv

x

 xgfv

y

 y for all y 2 P n fxgg) =

�x: Erase

d

(bb)

whih is the expeted result.

18

The remaining ases are obvious. 2

Using the last two propositions, we an show the soundness of the type system of

the dot alulus, extended with integer onstants as mentioned in setion 3.1. (The

translation funtion is extended to the integer onstruts in the trivial way, by translating

their omponents reursively; it is easy to see that propositions 3 and 4 still hold.)

Corollary 1 If ; `

d

a

0

: A

0

, then Erase

d

(a

0

) does not denote wrong.

Proof: The translation ba

0

 is a well-typed losed term of the open alulus. Hene, by

proposition 1, [[Erase

o

(ba

0

)℄℄

;

6= wrong, whih is the desired result, sine Erase

o

(ba

0

) =

Erase

d

(a

0

). 2

3.5 Enoding the open alulus in the dot alulus

The reverse translation is muh less informative, but would on�rm the intuition that the

dot alulus is no less powerful than the open alulus, so we shall sketh it quikly.

The basi idea is to replae every open a as hX; y :Ai in b by

(�z :9X: A: bfX z:Fst; y z:sndg)(a)

for some unused term variable z. In ontrast with the previous translation, any type

of the open alulus is also a type of the dot alulus, and this also holds for well-

formed environments. Hene we just have to provide a translation for terms, whih is

straightforward:

dxe = x

d�x :A: be = �x :A: dbe

db(a)e = dbe(dae)

dhX=A; b :Bie = hX=A; dbe :Bi

dopen a as hX; y :Ai in be = (�z : (9X: A): dbefX z:Fst; y z:sndg)(dae)

where z is not free in open a as hX; y :Ai in b

We must hek that, in the last rule, the substitution of y by z:snd an be performed,

sine in x:Fst or x:snd, x annot be substituted by any term but another variable without

produing a syntatially inorret term suh as a(b):Fst. Happily, by de�nition of the

translation, if y:Fst or y:snd appears in dbe, then y is bound by a �, and hene will not

have to be substituted.

As b , the funtion d e preserves typing and semantis:

19

Proposition 5 If E `

o

a : A, then E `

d

dae : A.

Proof: by indution on the original derivation. The only interesting ase is the trans-

lation of an open onstrut:

E `

o

a : 9X: A E `

o

B type E;X; y :A `

o

b : B

E `

o

open a as hX; y :Ai in b : B

By indution, it follows that E `

d

dae : 9X: A and E;X; y :A `

d

dbe : B. By indution on

the proof of the latter, we get a derivation of

E; z :9X: A `

d

dbefX z:Fst; y z:sndg : BfX z:Fstg

As X is not free in B, we have BfX z:Fstg = B. Finally, from the proof of E `

d

dae :

9X: A, we an prove that E `

d

9X: A type. Putting all together, we get:

E `

d

9X: A type

E `

d

B type

E; z :9X: A `

d

dbefX z:Fst; y z:sndg : B

E `

d

�z :9X: A: dbefX z:Fst; y z:sndg : 9X: A! B E `

d

dae : 9X: A

E `

d

(�z :9X: A: dbefX z:Fst; y z:sndg)(dae) : B

This is the expeted result. 2

Proposition 6 For any term a of the open alulus, Erase

d

(dae) �-redues to Erase

o

(a).

Proof: similar to the proof of proposition 4. 2

4 A more powerful alulus with dot

In this setion, we simply lift the restrition that only a value variable may be the argument

of a :Fst or :snd onstrution, and allow instead any term, provided it has an existential

type.

Regarding the formalism, this is a very natural generalization of the previous dot

alulus, reminisent of the seond-order general sums (also alled strong sums) of type

theory [7, 5℄.

From the point of view of programming languages, this extension, in its full generality,

does not seem to model any real situation, espeially sine :Fst now embeds the whole

20

lass of values into the lass of types; this means that the dividing line between types and

values begins to blur dangerously.

However, we may feel the need for a alulus less restritive than the dot alulus of

the previous setion. For instane, to deal with nested modules, it seems natural to have

not only one-level aess in modules, suh as module.Type, but also aess through paths

of arbitrary length, suh as module.submodule.data. To formalize this, the argument of

a :Fst or :snd must be allowed to be a path, where a path is a term variable followed by

an arbitrary number of :snd.

We ould study this �rst extension of the dot alulus in the same way as for the

dot alulus, by �nding a translation to the open alulus and proving that it is faithful.

However, other similar extensions may ome to mind, and the same work would have to

be done for eah. Therefore, it seems easier to study the most general extension of all,

where any term an appear to the left of a :Fst or :snd onstrut.

4.1 Typing

The typing rules are exatly those of the simple dot alulus, with the obvious general-

ization for the projetions:

E `

s

a : 9X: A

E `

s

a:Fst type

E `

s

a : 9X: A

E `

s

a:snd : AfX a:Fstg

It may be tempting to identify ertain type expressions of this alulus, for instane

hX = A; b : Bi:Fst and A, and to use this notion of type equivalene for typeheking,

instead of for strit equality. This amounts to adding the following rule:

E `

s

a : A A$ B

E `

s

a : B

At �rst, we hoose to disallow the latter rule and require syntati equality for two types

to be ompatible; we shall ome bak to this issue later on.

4.2 Evaluation

As usual, we strip all type information before reduing. The :snd operation beomes

identity on �-terms:

Erase

s

(a:snd) = Erase

s

(a)

As for the simple alulus with dot, we shall not investigate this alulus diretly, but

try to relate it to the open alulus �rst.

21

4.3 Relation to the open alulus

When we try to enode this alulus into the open alulus, we �nd terms whih apparently

have no equivalents in the open alulus. For instane, assume a : A and onsider the

following term:

hX=A; hY =X; a :Y i:snd :hY =X; a :Y i:Fsti

To express it in the open alulus, we have to insert an open hY =X; a :Y i as : : : at some

point, and sine X is free in the pair, the only literal translation is:

hX=A; open hY =X; a :Y i as hZ; z :Zi in z :Zi

but then Z esapes the sope of the open onstrut. (See later for a similar term but with

no trivial redexes.)

To try to �nd an equivalent term in the open alulus, the general strategy is the same

as in setion 3.4: replae subterms suh as b[a:Fst; a:snd℄ by open a ashX; y :Aiin b[X; y℄,

with the additional onstraints that a:Fst should not appear in the type of b[a:Fst; a:snd℄,

and that b must not bind any of the free variables of a. However, the previous example

shows that sometimes both onstraints annot be satis�ed, espeially when type variables

are free in a.

If a has no free type variables, the transformation might work: let b be the body of the

smallest abstration �x :A: b enlosing all uses of a:Fst and a:snd. Either a:Fst does not

appear in the type B of b, in whih ase it is possible to insert an open a as : : : there, or

a:Fst is part of B. But in the latter ase, x =2 FV (B), hene x is not free in a. Therefore,

we an \lift" a out of b, onsider the next enlosing �, and iterate.

We are now going to formalize this argument in the same way as in the previous setion

by providing translations for terms, types, and environments.

4.3.1 A translation funtion

Let a

0

be a losed, well-typed term, renamed so that eah variable gets bound one at

most, and let D be the derivation of ; `

s

a

0

: A

0

. We write P for the set of subterms a of

a

0

suh that a:Fst or a:snd appears in D.

From now on, we shall suppose that the following ondition holds:

(C) For all a 2 P, there are no type variables free in a.

For instane, it was not the ase in the previous example, where P = fhY =X; a :Y ig.

For eah a 2 P, the term a has no free type variables, therefore D derives a type

for a

3

; this type is an existential type (given the typeheking rules for .Fst and .snd),

3

Hypothesis (C) is ruial here, sine in general, it is not true that any subterm of a

0

is given a type

in D, beause of the typing rule for pairs hX=A; b :Bi, whih requires that bfX Ag has a type, but not

neessarily b itself. For instane, �x :X: su(x) has no type by itself, though hX=Int; �x :X: su(x) :

X ! Inti is well-typed.

22

and we write 9T

a

: A

a

for it (after renaming of variables if neessary). Furthermore, we

assoiate with a a value variable v

a

unused in a

0

.

Now we have to deide, for all a 2 P, where to insert an open a as : : : Let a 2 P.

We onsider the smallest subexpression b of a

0

binding all free variables of a. Sine no

variables are bound twie, suh a b exists, and it ontains all ourenes of a:Fst and

a:snd. If a is losed, it is a

0

. Otherwise, as there are no type variables free in a, it is

the body of a �-abstration �x : A: b. We shall onsider only the latter ase, sine we

an assume without loss of generality that a

0

itself is a �-abstration. We say that the

variable x bound by this abstration is the �rst free variable of a.

For all term variables x, we write F(x) for the sequene of all a 2 P suh that x is the

�rst free variable of a. The translation of terms onsists mainly in inserting, before the

body b of any funtion �x :A: b, an open ba as hT

a

; v

a

: bA

a

i in : : : for eah a 2 F(x).

However, we must take are of the order of insertion, to avoid using a T

a

or v

a

before

it is de�ned. More preisely, if a and a

0

belong to F(x) and a is a subexpression of a

0

,

then open a as : : : must preede open a

0

as : : : Therefore, we enumerate the sequene

F(x) = a

1

; : : : ; a

n

in topologial order, that is if a

i

is a subexpression of a

j

, then i � j.

bx = x

ba:snd = v

a

b�x :A: b = �x :bA: open ba

1

 as hT

a

1

; v

a

1

:bA

a

1

i in : : :

open ba

n

 as hT

a

n

; v

a

n

:bA

a

n

i in bb

if F(x) = a

1

; : : : ; a

n

bb(a) = bb(ba)

bhX=A; b :Bi = hX=bA; bb :bBi

Notie that the third rule remains valid if F(x) = ;, and means b�x :A: b = �x :bA: bb

in this ase. The translation of types is the same as for the original dot alulus:

bX = X

ba:Fst = T

a

bA! B = bA ! bB

b9X: A = 9X: bA

As for the original dot alulus, we must synhronize the translation of environments with

the translation of terms. Adding x :A to E means that we are about to typehek the

body b of �x :A: b. After translation, b will be preeded by open a as hT

a

; v

a

:bA

a

iin : : :

for eah a 2 F(x). So, the translation of E; x :A must de�ne T

a

and v

a

: bA

a

 for eah

a 2 F(x).

b; = ;

23

bE;X = bE; X

bE; x :A = bE; x :bA; T

a

1

; v

a

1

:bA

a

1

; : : : ; T

a

n

; v

a

n

:bA

a

n

if F(x) = a

1

; : : : ; a

n

Condition (C) ensures that all a 2 P are translated, and that no T

a

or v

a

is free in

ba

0

, sine the open a as hT

a

; v

a

:bA

a

i in : : : enloses all uses of T

a

and v

a

.

4.3.2 Preservation of typing

Proposition 7 If one of the judgments `

s

E env, E `

s

A type, or E `

s

a : A is a step

of the derivation D, then we an prove `

o

bE env, bE `

o

bA type, or bE `

o

ba : bA

respetively.

Proof: the proof is a straightforward generalization of the proof given for proposition 3.

We proeed by indution on the derivation of the judgment. Here are the interesting

ases:

� For value aess in a pair: the original derivation is

.

.

.

E `

s

a : 9T

a

: A

a

E `

s

a:snd : A

a

fT

a

 a:Fstg

so a 2 P and E binds all free variables of a, inluding its �rst free variable. Hene,

bE introdues v

a

with the type bA

a

. By indution, we get a proof of bE `

o

ba :

9T

a

:bA

a

, from whih we an extrat a proof of `

o

bE env. Hene, bE `

o

v

a

: bA

a

,

whih is the expeted result, sine ba:snd = v

a

and obviously,

bA

a

fT

a

 a:Fstg = bA

a

� For �-abstration:

.

.

.

E `

s

A type

.

.

.

E `

s

B type

.

.

.

E; x :A `

s

b : B

E `

s

�x :A: b : A! B

Let a

1

; : : : ; a

n

be F(x). For all i, sine a

i

is a subterm of b and sine there are no

type variables free in a

i

, the derivation of E; x :A `

s

b : B ontains a derivation of

E

a

i

`

s

a

i

: 9T

a

i

: A

a

i

for some environment E

a

i

. So, by indution, we get proofs of

bE `

o

bA type

24

bE `

o

bB type

�

n

`

o

bb : bB

bE

a

i

 `

o

ba

i

 : 9T

a

i

: bA

a

i

where �

j

= bE; x :bA; T

a

1

; v

a

1

:bA

a

1

; : : : ; T

a

j

; v

a

j

:bA

a

j

 for all 0 � j � n.

As a

i

is a subexpression of b, it is easy to see that �

n

and bE

a

i

 bind the free variables

of a

i

to the same types. Furthermore, as F(x) is enumerated in topologial order,

for all j � i, the terms a

j

:Fst and a

j

:snd do not appear in a

i

, therefore T

a

j

and v

a

j

are not free in ba

i

. Hene, �

i�1

and bE

a

i

 bind the free variables of a

i

to the same

types. So, from the derivation of

bE

a

i

 `

o

ba

i

 : 9T

a

i

: bA

a

i

we an build a proof of

�

i�1

`

o

ba

i

 : 9T

a

i

: bA

a

i

Sine �

i

is an extension of bE, from the proof of bE `

o

bB type, we get a proof

of �

i

`

o

bB type. Hene the desired result:

�

n

`

o

bb : bB

�

n�1

`

o

bB type

�

n�1

`

o

ba

n

 : 9T

a

n

: bA

a

n

�

n�1

`

o

open ba

n

 as hT

a

n

; v

a

n

:bA

a

n

i in bb : bB

�

n�2

`

o

bB type

�

n�2

`

o

ba

n�1

 : 9T

a

n�1

: bA

a

n�1

.

.

.

bE; x :bA `

o

open ba

1

 as hT

a

1

; v

a

1

:bA

a

1

i in : : : bb : bB

bE `

o

bA type

bE `

o

b�x :A: b : bA! B

� For the introdution of a value variable in an environment:

E `

s

A type x =2 Dom(A)

`

s

E; x :A env

Let a

1

; : : : ; a

n

be F(x). If n = 0, we get by indution a proof of bE `

o

bA type,

hene the desired result `

o

bE; x :bA env.

25

Otherwise, by the same reasoning as in the ase of �-abstration, we have a proof

of:

bE; x :bA; T

a

1

; v

a

1

:bA

a

1

; : : : ; T

a

n�1

; v

a

n�1

:bA

a

n�1

 `

o

ba

n

 : 9T

a

n

: bA

a

n

from whih we an extrat a derivation of:

bE; x :bA; T

a

1

; v

a

1

:bA

a

1

; : : : ; T

a

n�1

; v

a

n�1

:bA

a

n�1

 `

o

9T

a

n

: bA

a

n

 type

whose penultimate step is:

bE; x :bA; T

a

1

; v

a

1

:bA

a

1

; : : : ; T

a

n�1

; v

a

n�1

:bA

a

n�1

; T

a

n

`

o

bA

a

n

 type

Hene the desired result:

`

o

bE; x :bA; T

a

1

; v

a

1

:bA

a

1

; : : : ; T

a

n

; v

a

n

:bA

a

n

 env

The remaining ases are easy. 2

4.3.3 Preservation of semantis

As in the previous setion, this translation does not modify the meaning of the program:

Proposition 8 For all subterms a of a

0

,

Erase

o

(ba)fv

b

 Erase

o

(bb) for all b 2 Pg = Erase

s

(a):

Hene Erase

o

(ba

0

) = Erase

s

(a

0

).

Proof: Same proof as for proposition 4. 2

As a onsequene of propositions 7 and 8, no losed term for whih ondition (C) holds

an evaluate to wrong. Indeed, this is true even if ondition (C) does not hold, sine the

type system of the generalized dot notation is sound, as an be proved diretly along the

lines of setion 2.3. However, it is not lear whether the generalized dot notation ensures

as strong an abstration as the original open onstrut. Informally, we may fear that it

is not the ase, sine, for instane, implementations of abstrations an be fully visible in

types:

hX=Int; 0:Xi:snd : hX=Int; 0:Xi:Fst

thus publiizing that X = Int.

26

4.4 Type equivalene modulo redution

As mentioned previously, we may add the following rule:

E `

s

a : A A$ B

E `

s

a : B (1)

where the equivalene relation$ is the ongruene generated by the axioms:

hX=A; b :Bi:Fst $ A

hX=A; b :Bi:snd $ bfX Ag

(�x :A: b)(a) $ bfx ag

Even if rule 1 uses only equivalene between types, we need to de�ne also equivalene

between terms, beause a:Fst is equivalent to b:Fst if a is equivalent to b.

This rule leads to a weaker notion of abstration, where su(hX = Int; 0 :Xi:snd)

typeheks, for instane. MaQueen [9℄ argues that this additional exibility is desirable

for a programming language, in order to be able to express omplex dependenies between

modules. However, the DL language he proposes is strati�ed, and this is not by hane,

sine an unstrati�ed system like ours equipped with rule 1 is inonsistent, as it is possible

to enode a alulus with a type of all types in it [12℄.

Even if we add some strati�ation, allowing redution during typeheking, as above,

does not seem to modify drastially the previous results. Admittedly, the ounterexample

we gave to show that some terms have no equivalent in the open alulus,

hX=A; hY =X; a :Y i:snd :hY =X; a :Y i:Fsti;

now fails, sine it redues to hX = A; a : Xi. But we an work out more ompliated

examples, without any redex, that exhibit the same pathology, for instane:

�f : (9X: A)! (9Y: B):

hZ=A; (fhX=Z; a :Xi):snd :BfY (fhX=Z; a :Xi):Fstgi

where a : A, sine the open hX =Z; a :Xi as : : : must take plae inside the hZ=A; : : : :

: : :i, hene violating the soping rule for open.

Moreover, the translation above an still be applied to terms in normal form satisfying

ondition (C), and, in that ase, still leads to well-typed terms of the open alulus, sine

for terms in normal form, type equivalene is again syntati equality.

5 Conlusion

We have desribed two notations for type abstration, one oming from logi, the other

from programming, and investigated their relationships. This work ontributes to the

27

formal foundation of the notion of abstration found in programming. It also suggests

some interesting extensions, as we shall see now.

The grammar of a alulus with the dot notation may ensure that ondition (C)

always holds. Let p range over the lass of terms allowed to appear before a :Fst or a

:snd onstrut:

a ::= : : : j p:snd j : : :

A ::= : : : j p:Fst j : : :

If p annot ontain any type variable at all, then ondition (C) will ertainly hold. This

is the ase, of ourse, for the simple dot alulus of setion 2 (p ::= x).

This is also the ase for the extension to \paths" mentioned at the beginning of the

previous setion (p ::= x j p:snd). This notion of paths gives a onvenient way to deal with

nested abstrations, whih is muh more natural than, for instane, the nested modules of

Modula-2 [16℄. Suh a multi-level strati�ation (as opposed to the usual \at" struture of

programs onsidered as a set of modules) seems neessary for very large software systems.

Condition (C) even suggests other extensions, for instane:

p; p

0

::= x j p:snd j p(p

0

)

This would be onvenient for dealing with parameterized abstrations. For example,

assuming we extend the system with �rst-order dependent types 8(x : A)B, we ould

write:

type Dis(px :Complex) =

9X: make :px :Fst! Real! X; : : :

val dis : 8(px :Complex)Dis(px) =

�px :Complex :

h X = px :Fst� Real

make = �orig :Complex : �radius :Real: (orig; radius)

: : : i

Here, dis(px) would be a pakage implementing abstrat diss of given origin and

radius, depending on a given implementation px of Complex . For example, dis(polar-

omplex) and dis(artesian omplex) would provide di�erent implementations of the

parametri dis abstration. Two instanes of dis(polar omplex) would be reognized

to refer to the same abstration, aording to the translation based on ondition (C), and

ould hene interat freely.

In onlusion, we an de�ne more and more expressive aluli based on the dot nota-

tion. The most expressive ones, only skethed in this setion, should be able to deal with

omplex dependenies between �rst-lass parametri abstrations. Our aluli are loser

28

to atual programming languages than are aluli based on logial notation, but enjoy all

the same interesting properties.

Aknowledgements

We are indebted to Mart��n Abadi, for having pointed out several aws in earlier proofs

of propositions 3, 5, and 7.

29

30

Referenes

[1℄ H. P. Barendregt. The Lambda Calulus, its Syntax and Semantis. North-Holland,

1981.

[2℄ Lua Cardelli. Typeful Programming. Researh Report 45, DEC Systems Researh

Center, 130 Lytton Avenue, Palo Alto CA 94301. To appear in Pro. IFIP State of

the Art Seminar on Formal Desription of Programming Conepts, Rio de Janeiro,

April 1989.

[3℄ Lua Cardelli, Peter Wegner. \On Understanding Types, Data Abstration, and

Polymorphism." Computing Surveys, 17(4), Deember 1985.

[4℄ John V. Guttag, James J. Horning, Jeannette M. Wing. \The Larh Family of Spe-

i�ation Languages." IEEE Software, September 1985.

[5℄ W. A. Howard. \The formul�-as-types notion of onstrution." In J. P. Seldin and J.

R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logi, Lambda Calulus

and Formalism, pp. 479{490, Aademi Press, 1980.

[6℄ Barbara Liskov, John Guttag.Abstration and Spei�ation in Program Development.

The MIT Press, 1986.

[7℄ P. Martin-L�of. \Construtive mathematis and omputer programming." 6th Int.

Congress for Logi, Methodology, and Philosophy of Siene, pp. 153{175, North-

Holland, 1982.

[8℄ D. B. MaQueen. \Modules for Standard ML." ACM Symp. on Lisp and Funtional

Programming, 1984.

[9℄ David MaQueen. \Using Dependent Types to Express Modular Struture." 13th

Ann. ACM Symp. on Priniples of Programming Languages, 1986.

[10℄ David MaQueen, Gordon Plotkin, Ravi Sethi. \An Ideal Model for Reursive Poly-

morphi Types." Information and Control 71, pp. 95{130, 1986.

[11℄ John C. Mithell. \Representation independene and data abstration (preliminary

version)." 13th Ann. ACM Symp. on Priniples of Programming Languages, 1986.

[12℄ John C. Mithell, Robert Harper. \The Essene of ML." 15th Ann. ACM Symp. on

Priniples of Programming Languages, 1988.

[13℄ John C. Mithell, Gordon D. Plotkin. \Abstrat types have existential type." 11th

Ann. ACM Symp. on Priniples of Programming Languages, 1984.

31

[14℄ D. L. Parnas. \On the riteria to be used in deomposing systems into modules."

Communiations of the ACM, Vol. 15, No. 12, pp. 1053{1058, Deember 1972.

[15℄ J. C. Reynolds. \Towards a theory of type struture." Colloquium sur la program-

mation, Leture Notes in Computer Siene Vol. 19, pp. 408-425, Springer-Verlag,

1974.

[16℄ N. Wirth. Programming in Modula-2. Springer-Verlag, 1983.

32

