
Implementing Typed Intermediate Languages*

Zhong Shao Christopher League Stefan Monnier
Dept. of Computer Science

Yale University
New Haven, CT 06520

{shao,league,monnier}@cs . Yale. edu.

Abstract

Recent advances in compiler technology have demonstrated
the benefits of using strongly typed intermediate languages
to compile richly typed source languages (e.g., ML). A type-
preserving compiler can use types to guide advanced opti-
mizations and to help generate provably secure mobile code.
Types, unfortunately, are very hard to represent and manip-
ulate efficiently; a naive implementation can easily add expo-
nential overhead to the compilation and execution of a pro-
gram. This paper describes our experience with implement-
ing the FLINT typed intermediate language in the SML/NJ
production compiler. We observe that a type-preserving
compiler will not scale to handle large types unless all of
its type-preserving stages preserve the asymptotic time and
space usage in representing and manipulating types. We
present a series of novel techniques for achieving this prop-
erty and give empirical evidence of their effectiveness.

1 Introduction

Compilers for richly typed languages (e.g., ML [21]) have
long used variants of the untyped X-calculus [2, lo] as their
intermediate languages. An untyped compiler first type-
checks the source program, and then translates the program
to the intermediate language, discarding all the type infor-
mation. Types are used to ensure that the program will not
“go wrong” at run time, but they do not affect the rest of
compilation and execution in any way.

Recent advances in compiler technology have demon-
strated many distinct advantages of using strongly typed
intermediate languages to compile richly typed source lan-

*This research was sponsored in part by the Defense Advanced
Research Projects Agency IT0 under the title “Software Evolution
using HOT Language Technology,” DARPA Order No. D888, issued
under Contract No. F30602-96-2-0232, and in part by au NSF CA-
REER Award CCR-9501624, and NSF Grant CCR-9633390. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

guages. A type-preserving compiler type-checks the source
program, but then translates both the program and the
(inferred) type information into the intermediate language.
The rest of the compiler can use type8 to guide advanced op-
timisations [28, 16, 22, 34, 6] and to help generate provably
secure mobile code [13, 26, 19, 23, 171. The compiler can
also propagate the type information into the target code to
support sophisticated run-time type dispatches and garbage
collection (14, 22, 34, 431.

Unfortunately, type information is very hard to repre-
sent and manipulate efficiently, especially when the under-
lying type system involves ML-like polymorphic types
module types [21]. A naive implementation can easily
exponential overhead to the compilation and execution
program. For example, in the following ML program:

fun f x = x
fun toy0 s

let fun g y = ((((f f) f) fl . . . fl y
in g 3

end

and
add
of a

the identity function f has polymorphic type trcU.cr + CY.
Suppose we apply f to itself n times as shown. According
to the ML type inference algorithm [5], the rightmost f has
type 2’1 = (Y + CY, while the leftmost f gets instantiated
to T,, = T,-1 + T,,-1. Clearly, representing T,, as a tree-
like structure would require 0(2”) space, 80 a sufficiently
small n (e.g., 30) would wreck the efficiency of the compiler.
To avoid such exponential blowup, we must represent and
manipulate T,, as a linear-sized dag:

In fact, we must ensure that all type-related operations in
the compiler (including those at run time if we pass types
there) would handle such large type8 in the same way. For
instance, in the let body above, when g is specialized to
int+int, we need to apply a substitution (from cr to int)
to all instance8 of Ti; clearly, we must traverse the dag in
linear time and preserve its shape.

Although the preceding example is a bit contrived,’ large

‘It is well known that ML type inference can take exponential time
and space on certain kinds of ML programs [20]; the toy function
defined here, however, does not belong to this category. An untyped
compiler could compile the toy function without any problem.

313

Ratio CM eXene
of tree size number average percentage number average percentage

over dag size of types tree size of total size of types tree size of total size
l-3 12,210 42 16.39% 32,376 58 1.91%

4-15 1,304 469 19.22% 7,547 998 7.57%
16-63 102 9,224 29.54% 2,889 8,866 25.73%

64-255 47 21,704 32.03% 818 75,153 61.74%
256-1023 2 45,518 2.86% 8 379,315 3.05%

For each type built during the compilation, we calculate the size of its tree representation
and dag representation (in number of nodes). The ratio of these two shows the amount
of savings of the dag representations. We then use the range of this ratio (2’ to 2’+’ - 1,
where i = 0 ,. . . ,4) to classify all the types; for each category, we list the number of its
members, the average size of the tree representations, and the percentage of its total size
over that of all categories.

types are ubiquitous in real-world ML applications. For ex-
ample, a 200-line ML program cm. sml in the SML/NJ com-
pilation manager (CM) [4] contains more than 36 functor
applications and more than 80 structure references; each of
these modules may contain a dag of sub-structures or func-
tors. Figure 1 gives a profile of types built while compiling
two large ML applications in our type-preserving compiler
(see later sections for details about the compiler). Here, CM
is the compilation manager [4] and eXene is an ML-based X
window system tool-kit [31]. If we use tree representations,
a single type can contain more than 45,518 nodes for CM
and 379,315 nodes for eXene. These large types can be dra-
matically reduced in size if we use dag representations. For
example, under CM, 32.03% of the space occupied by types
can be improved by a factor of at least 64 when we use dag
representations. For eXene, the savings are even more dra-
matic. Of course, no real compiler will use the dumb tree
representations all the time, but the profile does show that
any loss of sharing in type representations could potentially
incur huge costs to the compilation time and space usage.

This paper describes our experience with implementing
the FLINT typed intermediate language [36] in the SML/NJ
production compiler [39, 31. FLINT is based on a pred-
icative variant of the polymorphic X-calculus F, [12, 32,
151, extended with a rich set of primitive types and func-
tions. FLINT supports both polymorphic types and higher-
order type constructors, so the type language itself is a full-
scale X-calculus. To support various type-directed optimiza-
tions [14, 341, we perform a large number of type-related op-
erations during compilation. The main challenge is to repre-
sent complex FLINT types (which can be arbitrary lambda
terms) as compact dags so that common type-related oper-
ations (e.g., lambda reductions, equality) can always work
efficiently and yet still preserve sharing.

More generally, we believe that a type-preserving com-
piler will not scale to handle large types unless all of its
type-preserving stages can preserve the asymptotic time and
space usage in representing and manipulating types. To
achieve this property, we present a novel and efficient rep-
resentation scheme for the FLINT type calculus. Our main
idea is to combine hash-consing, memoization, and advanced
lambda encoding [24, 1, 9] to ensure that (1) types are al-
ways represented as dags; (2) type reductions are done on a
by-need basis; and (3) the cost of handling types is propor-
tional to the size of the dag representations. In a companion

Figure 1: A profile of compile-time type information.

paper [33], we have presented a new optimal type-lifting al-
gorithm that lifts all run-time type constructions to the top
level; in fact, we can guarantee that the number of types
built at run time is a compile-time constant; furthermore,
all of them are represented as efficiently as their compile-
time counterparts.

The main contributions of this paper are:

l As far as we know, our work is the first comprehen-
sive study on how to build scalable implementations of
type-preserving production compilers. Several existing
compilers [41, 27, 421 have also used typed intermedi-
ate languages, but none of them have attempted to
scale their implementations to handle large types; in
fact, all these compilers have reported extremely slow
compilation times as a result of keeping types during
compilation.2

l We combine hash-consing, memoization, and advanced
lambda encoding [24,1,9] to support efficient type rep-
resentation and manipulation. Although each of these
techniques has been researched and implemented be-
fore, nobody has ever tried to combine them to repre-
sent compiler type information. Combining these tech-
niques is crucial yet non-trivial, as we will demonstrate
in Section 5 and Section 7.

l We describe several different ways of representing type
variables bound in the term languages and then com-
pare their performance. Representing type variables as
de Bruijn indices is faster but it also makes type ma-
nipulation harder. We show that using explicit names
to represent type variables might be a more desirable
alternative.

l All techniques discussed in this paper have been imple-
mented and incorporated into the SML/NJ production
compiler since version 109.24 (January 1997). The re-
sulting compiler has been used and tested world-wide
on a large number of ML applications for more than 14
months. We have not received any complaints about
the compilation time after we switched to the type-
preserving implementation. We are not aware of any

‘Although GHC makes little ueo of its type information in the back
end, it still rune out of memory when compiling the toy benchmark.

314

other type-preserving ML compilers that can handle
large applications such as CM and eXene.

l To verify the effectiveness of these techniques, we
have measured and compared several versions of the
SML/NJ compiler on a variety of benchmark pro-
grams. The combination of these techniques can re-
duce the total compilation time by up to 72% on large
applications (a reduction of 93% in the type-preserving
phases).

l We also present a detailed comparison between our
scheme and the lettype scheme used in the TIL/ML
compiler (also informally described in Tarditi’s the-
sis [40]).

2 Related Work

Typed intermediate languages have received much attention
lately, especially in the HOT (higher-order and typed) lan-
guage community. However, recent work [14, 22, 36, 30, 8,
29, 23) has mostly focused on the theoretical foundations or
other language design issues. This paper complements pre-
vious work by showing that typed intermediate languages
can indeed have pmctical and scalable implementations, but
only if extreme care is taken. In fact, most of the tech-
niques described in this paper have been incorporated into
the SML/NJ production compiler since version 109.24 (Jan-
uary 1997). Many results reported here are inspired by feed-
back from the SML/NJ user community.

Several existing compilers such as TIL [41], GHC [27],
and ML-Kit [42] have also used an F,-like calculus as their
typed intermediate languages. However, none of them has
seriously addressed the problem of how to handle large types,
nor do they support efficient run-time type passing.

The suspension-based lambda encoding used in our im-
plementation is directly borrowed from Nadathur’s recent
work on efficient lambda representations [25, 241. In addi-
tion to doing an in-depth theoretical study of the underlying
encoding calculus, Nadathur [24] has also used his encoding
to implement the X-Prolog system. The main contribution
of our work is to combine Nadathur’s encoding with hash-
consing and memoization, and then apply it to the context of
typed intermediate languages. Combining these techniques
is non-trivial because of the presence of higher-order types
and the need to memoize intermediate reduction results.

Explicit substitutions [9, l] is another related lambda
encoding scheme. Cardelli’s Quest compiler [l] contains an
implementation of this encoding; however, he did not com-
bine it with other techniques we used. Nor was he working
in the context of type-preserving compilers.

Shao and Appel [39] used hash-consing to enforce dag
representations for types; however, their intermediate lan-
guage is only monomorphically typed, so it is much easier
to support than FLINT-like languages. Tarditi [40] used the
lettype constructs (in both the constructor calculus and
the term language) to A-normalize [lo] all types in order to
express sharing explicitly. But he relies on a separate com-
mon sub-expression elimination phase to identify the sharing
information. This amounts to hash-consing with the disad-
vantage that it comes too late (huge redundant types have
already been built) and it does not guarantee that further
redundancies will not be introduced later in the compila-
tion process. So it is not clear that the lettype scheme will

(kind) K ::= n (IE1 -+ /c2
(tycon) p ::= t I Int) p1 --+p2 I At::&+ I p1[p2]

(type) u ::= T(p) (u1 -+ CT2 1 vt :: Ic.cr
(term) e ::= i 1 22 1 Xz :u.e 1 Qzlz2

I At::~.e]c[~]]letz=eiinez

Figure 2: Syntax of the Core-FLINT calculus.

address issues such as compilation time in the face of real-
world applications. Finally, lettype has poorly understood
theoretical foundations; we do not know of any notion of nor-
mal form 3 in the context of lettype, for example. A more
detailed comparison between our scheme and the lettype
scheme is given in Section 8.

3 An Overview of FLINT

The core language of FLINT is based on a predicative vari-
ant of the Girard-Reynolds polymorphic X-calculus F, [12,
321, with the term language written in A-normal form [lo].
It contains the following four syntactic classes: kinds (K),
type constructors (CL), types (a), terms (e), as shown in
Figure 2. Here, kinds classify type constructors, and types
classify terms. Constructors of kind s2 name monotypes.
The monotypes are generated from variables, from Int, and
through the --t constructor. As in Fy, the application and
abstraction constructors (i.e., pi[pz] and At ::)E.P) corre-
spond to the function kind /cl + ICY. Types in Core-FLINT
include the monotypes, and are closed under function spaces
and polymorphic quantification. We use T(p) to denote the
type corresponding to the constructor p when p is of kind R.
As in F,, the term language is an explicitly typed polymor-
phic X-calculus (but written in A-normal form); both type
abstraction and type application are explicit.

The actual FLINT language contains other familiar con-
structs such as record, recursive datatype, and a rich set
of primitive types and operators. Large types mainly come
from ML-style modules (which are represented as FLINT
records [37]) and recursive datatypes, but the challenge of
implementing FLINT still lies on how we handle three forms
of type abstractions, i.e., constructor function (At ::)E.P),
polymorphic type (Vt :: K..(T), and polymorphic function (At ::
/c.e). We present our solutions in Sections 5 and 6.

The structure of our type-preserving compiler is very
similar to that of conventional untyped compilers. Programs
written in the source languages (e.g., ML) are first fed into a
language-specific front end which does parsing, elaboration,
type-checking, and pattern-match compilation; the source
program is then translated into the FLINT typed intermedi-
ate format. The middle end does conventional dataflow op-
timizations, type specializations, and X-calculus-based con-
tractions and reductions, producing an optimized version of
the FLINT code. The back end compiles FLINT into ma-
chine code through the usual phases such as representation
analysis [34], safe-for-space closure conversion [38], register
allocation, instruction scheduling, and machine-code gener-
ation [ll].

30f course, we could always expand out the lottype definitions to
get to a normal form, but this eliminates the benefit of using lettype
and is equivalent to using tree representations.

315

signature LTYEXTERN = sig
(* abstract types *)

type tkind (* n *I

type tyc (* jL *I
type 1tY (* Q *I

(* constructors *)
val tee-int : tyc (* Int *)
val tee-var : tvar -> tyc (* t *I
val tee-arrow : tyc * tyc -> tyc (* p --f p *I
val tee-in : tkind l tyc -> tyc (* An+ *)
val tee-app : tyc + tyc -> tyc (* &I *)

(* selectors *)
val ted-var : tyc -> tvar
val ted-arrow : tyc -> tyc * tyc
val ted-in : tyc -> tkind * tyc
val ted-app : tyc -> tyc l tyc

(* predicates *)
val tcp-int : tyc -> boo1
val tcp-var : tyc -> boo1
val tcp-arrow : tyc -> boo1
val tcp-fn : tyc -> boo1
val tcp-app : tyc -> boo1

(* utility functions *)
val tc,eqv : tyc * tyc -> boo1
val tc,print : tyc -> string
. . .

end (* LTYEXTERN *)

Figure 3: Interface to the FLINT constructor language (p).
Some constructor forms are omitted. Similar interfaces exist
for FLINT types (u) and kinds (a).

4 Implementation Criteria

In this section, we list the goals that guided the implemen-
tation of the FLINT type language, and we describe its
interface. We present the implementation details in Sec-
tion 5. The following criteria are, in our experience, impor-
tant for an efficient implementation of a typed intermediate
language.

Compact space usage. As demonstrated in Section 1,
large types are ubiquitous in real-world ML applications.
For this reason, it is imperative that we represent these types
efficiently. Fortunately, large types are also highly redun-
dant, so a well-constructed dag representation can be quite
compact. The representation should, however, come with
either a guarantee that all such redundancy is exploited, or
empirical evidence showing that, in practice, types remain
compact even as they are manipulated and transformed.

Linear-time traversal of types. Compact representations
are not enough to ensure efficiency in a type-preserving com-
piler. Many operations on types (e.g., substitution and re-
duction) require traversing the graph. If we are not careful,
these operations might traverse isomorphic subgraphs mul-
tiple times, even though they share the same representation.
In order to maintain reasonable compilation time, such op-
erations must traverse the representation linearly.

Fast equality. Checking the equivalence of two types can
be non-trivial, because there are many ways to represent
the same type. Equality checking is often used by type-
directed optimizations. For example, representation analy-
sis [34] uses equality to determine where wrapping is neces-
sary. Moreover, two compelling operations made possible by
type-preserving compilation perform equality tests repeat-

edly: type-checking intermediate phases and certifying ob-
ject code [26, 231. Thus, the implementation should support
efficient equality tests.

Simple Interface. The software engineering benefits of
hiding implementation details from clients are widely recog-
nized. Besides concealing the tricks used to meet the other
criteria, we would like clients to treat each type as its inten-
sion; different representations of a single type should all look
the same. There are two ways to achieve such an interface.
Either all types passed across the interface are in normal
form (corresponding to eager reduction), or the top node of
a type is the same as for the normalized version (ureak head
normal form), and the rest is normalized on demand.

Our implementation meets all of these goals. We guaran-
tee sharing by hash-consing and storing each type in a global
table. Isomorphic types always share their representation,
regardless where they appear or how they were constructed.
All reductions and substitutions are guaranteed to traverse
the representation linearly (because these important oper-
ations are specifically supported by the implementation).
For clients implementing other transformations, we provide
a memoizing fold function that is guaranteed to traverse the
representation linearly.

For equality testing, thanks to our guarantee that iso-
morphic types share the same representation, types in nor-
mal form can be compared very quickly using pointer equal-
ity. If the types are not in normal form and pointer equality
fails, then we reduce the types to weak head normal form,
check if the heads have the same shape, and continue recur-
sively on the sub-terms. In practice, this leads to very cheap
equality tests. Complete type-checking of the intermediate
code after every phase does not incur noticeable overhead.

Figure 3 gives part of the FLINT type language interface.
All operations on FLINT types (/.J) are done through a set
of basic primitives: constructor functions create types from
their components; predicates test for particular constructs;
selectors project the components, assuming an appropriate
construct is given. Additionally, the interface contains func-
tions for equivalence testing, pretty-printing, etc.

The interface behaves as if all types are kept in normal
(fully reduced) form, even though the underlying implemen-
tation uses lazy reduction. For example, suppose we create
a type t by applying the identity function to Int. Then,
tcp-app(t) will return false, whereas tcp-int(t) will re-
turn true.

5 Representing Types

Now we turn to a detailed explanation of our implementa-
tion techniques. We show how to represent complex FLINT
types as compact dags and make the costs of all type-related
operations (e.g., substitution, equality) proportional to the
dag size. We will focus our discussion on the FLINT con-
structors (cl) only, though these techniques apply to the
FLINT types (u) and kinds (a) as well. In fact, the issues in-
volved in implementing polymorphic types (Vt :: K.(T) are pre-
cisely same as those for higher-order constructors (At ::K+).

5.1 Suspension-based lambda encoding

The first challenge in representing FLINT constructors is
to choose an appropriate encoding for efficient manipula-

6

(t-1) (X~.pl)[pz] a Env(p1, (l,O, (p2,O) ::nil))
(r2) Envb, (O,O, nil)) =s P
(r3) Env(p, (i,j, env)) a ~1 if p is closed, i.e., it has no free type variables)
(~4) Env(#n,(i,j,env)) =+ #(n-i -tj) if n > i
(f-5) Env(#n, (i,j,env)) a #(j - j’) ‘f 1 n < 2 and the n-th element of enu is j’ _
(‘6) Env(#n, (i,j, env)) =+ Env(p, (0,j - j’, nil)) if n < i and the n-th element of en2r is (j’,~) _
[ri Env(Int,p) a Int

Envbl + ~2, P) * Env(w, P) -+ Env(w, P)
(h Env(~lb21,p) * (Env(cLl,p))[Env(~2,P)l
(r10) Env(X/c.p,(i,j,env)) a Xn.Env(p,(i + 1,j + 1,j::env))
(rll) Env(Env(p,(i,j,env)),(O,j’,nil)) a Env(p,(i,j +j’,env))

Figure 4: Type reductions under suspension-based lambda encoding.

tion. Under the syntax in Figure 2, testing the equality
of a-convertible constructors such as ~11 = At1 :: $21 -+ tl
and ~2 = At2 :: R.t2 + t2 is non-trivial. We use de Bruijn
indices [7] to represent type variables, so that a-equivalent
constructors always have the same representation. For ex-
ample, both ~1 and ~2 are represented as M.(#l + #l).
The X no longer binds any named type variables (though
the kind is still retained). Instead, we use a positive integer
#n to denote the variable bound by the nth surrounding
X-binder.

Another important requirement is that type reduction
should be done lazily. To achieve this, we enrich the con-
structor calculus to support a new suspension term [25, 241
of the form Env(p,p). Intuitively, a suspension represents
an unevaluated type “p(p)“; it corresponds to the interme-
diate result of some unevaluated type applications. The
substitutions involved (p) are also known as explicit sub-
stitutions [l, 91:

(constructor) p ::= #n 1 Int (~1 -+ Liz
I %.J 1 PI[WI 1 Envh p)

(substitution) p ::= (i, j, env)
(environment) env ::= nil 1 j::env 1 (j,p)::env

Following Nadathur [24, 251, we represent each such substi-
tution as a triple (i, j, env) where the first index i indicates
the current embedding level of bound type variables, the
second index j indicates its new embedding level, and the
environment env contains the actual bindings of all i bound
variables. Each entry in the environment is represented as
a pair (j’,$) or as an integer j’ (which has same meaning
as (j’, #O)); in either case, j’ denotes the definitional depth
of type CL’. Figure 5 shows the relationship among these
components for a type Env(p, (i, j, enw)), assuming all envi-
ronment entries of form j’ are represented as (j’,#O), and
the environment enu is equal to (ji,t(i)::...::(ji,pi) ::nil.

For example, the standard ,&contraction (XK./.Q)[~~] re-
sults in a constructor of the form Env(pi,pe) where po =
(1, 0, (0, ~2) :: nil). This represents the following fact: the
constructor ~1, which was originally in the scope of 1 ab-
straction, is now to be thought of as being in the scope of
none; ~2, originally in the scope of 0 abstractions, is to be
substituted for the first free variable in ~1.

Figure 4 gives the set of type reductions used in our X en-
coding. Here, Rule (rl) turns a type application into the sus-
pension form. Rules (r2) and (r3) are two straightforward
optimizations, capturing the fact that applying an empty
substitution to a type or applying a substitution to a closed

Figure 5: Illustration of a suspension type

type should have zero effect. Because we memoize the set of
free variables in our type representations (see Section 5.2),
it is very easy to check whether a type is closed. Rules (r4)
to (r6) show how we adjust and substitute each de Bruijn
index-based type variable: for variables that are bound out-
side the current binding level (i), the new de Bruijn index
would be (n - i) + j; for variables bound in the current envi-
ronment, we find out its corresponding mapping and adjust
the result from its definitional level j’ to the new embedding
level j. Rules (r7) to (r10) push the substitution recursively
into the subterm of each type; for type functions (X6+), we
need to add a new entry into the current environment (see
Rule (r10)). Rule (rll) is a simple optimization to merge
two nested substitutions. Notice that because all intermedi-
ate results are expressible in our calculus, the reduction rules
do not involve any external substitution machinery. More
details about the suspension-based calculus can be found in
Nadathur’s excellent paper [24].

5.2 Hash-consing and memoization

After we choose the appropriate encoding scheme, we hash-
cons all FLINT kinds, type constructors (including substi-
tutions), and types into three separate hash tables. Under
hash-consing, all FLINT types built during the compilation
are guaranteed to use the most compact dag representation.
Because we are using de Bruijn notation, type variables are
represented as integers and all o-convertible types have iden-
tical representations, which allow them to be collapsed via
hash-consing.

For each hash entry, we use weak pointers so that if an
element in the hash table is no longer used anywhere else,
it will be garbage collected. Internally, each constructor

317

p is now accessed indirectly via an updateable hash ce11,4
denoted as $:

(hash-cell)
(constructor) ;’

::= Ref (hashcode, p, auzinfo)

::I fy lI~t~*lL& l-4

1 E%$,P~! 1 &Cci,b)

Here, a hash cell is a mutable record containing the follow-
ing three fields: an integer hash code (hashcode), a term
(cl), and a set of auxiliary information (auzinfo). The auz-
info maintains two attributes: a flag that shows whether ~1
is already in normal form5 and if so, the set of free type
variables in p (in de Bruijn indices,’ of course). Building a
new constructor under this representation takes two steps:
(1) calculate the hash code, and (2) if the constructor is not
already in the hash table, calculate the avzinfo and insert
the new cell.

The most interesting aspect of our representation scheme
is that we can also memoize the result of every sequence of
type reductions (e.g., those in Figure 4). Given a constructor
pS = Ref (hashcode, ~1, auzinfo), suppose p can be reduced
to ~1; then, we can do an in-place update, changing the
second field of ~1’ to a memoization node Ind(p, &):

We keep the original /.J in the new memoization node so
that all future creations of /J (which will always have the
same hash code) will be directly hash-consed to this new
memoization node. The hashing procedure might require
checking syntactic equality against ~1 because of potential
hashing conflicts.

Note that the update is always safe, because it is only
done to constructors that are not in normal form, so we do
not have to recalculate the free variables, etc.

Memoization of reduction results has very interesting
consequences: if we do not garbage-collect any of these mem-
oization nodes (we may since they are weak pointers), then
any redex of form ~1 can reuse the memoized result, & This
leads to a very practical implementation that approximates
optimal lambda reductions [18], with the caveat of using
hash-consing, of course.

The combination of these techniques has proven to be
very effective. With hash-consing and memoization, com-
mon operations such as equality tests, testing if a type is in
normal form, and finding out the set of free variables, can
all be done in constant time. With the use of suspension
terms, type application is always done on a by-need basis,

4Hash-consed substitutions (p”) and kinds (K’) are represented
in the same way. Actually, because substitutions are simply finite
mapping from de Bruijn indices to constructors, they share the same
hash table with type constructors (we could simply encode them as a
record constructor).

‘By normal form, we mean those constructors that do not con-
tain any redexes, i.e., no sub-term matches the left-hand side of the
reduction rules in Figure 4.

‘If we use named variables to represent the type abstraction in
the term language (see Section 6), we would need to maintain two
separate lists of free variables, one using de-Bruijn indices, another
using named variables.

and once it is done, the result will be memoized for future
use. Our measurements have shown that these techniques
reduce the compile time of large applications by an average
of 45% (see Section 7.2).

6 Manipulating Types

Although we use hash-consing, memoization, and the sus-
pension-based lambda encoding to support efficient type
handling, none of these implementation details are exposed
to the clients of the type interface (see Figure 3). In fact, ma-
nipulating types under our type interface is still much like
manipulating simple datatype-based representations. The
only thing we have lost is the pattern matching capability.

Our interface also treats each type as its intension, that
is, clients never need to think whether or not a type should
be represented in normal form (or weak-head normal form).
All operations in the type interface can apply to types of
any form. Type reductions are completely hidden inside the
underlying implementation and they are always done lazily.

Because of the various memoizations we do, our type in-
terface also provides unusually fast implementations of sev-
eral common operations. For example, we can check if a
type is in normal form in constant time; we can also find
the set of free variables in a type in constant time as well.

The only remaining issue is on how to represent type
variables bound by polymorphic functions in the term lan-
guage (i.e., At :: K.e). For a long time (including our most
recent release), we have used the same de Bruijn indices to
represent these type variables. This strategy requires no
changes to the existing interface, but it has the unfortunate
effect that the representation of a type annotation with free
variables is now dependent on its lexical depth (the number
of type abstractions under which it appears). The implica-
tion is that the client must adjust the representation when
moving types from one depth to another.

Although we provide several utility functions to support
this operation, having de Bruijn indices exposed does com-
plicate certain optimization phases. Inlining, for example,
requires adjusting types if the definition and call site are at
different lexical depths. Specialization requires particularly
drastic (yet subtle) adjustments to the types, since type ab-
stractions themselves are being inlined and even eliminated.

We have experimented with an alternate design which
hides the de Bruijn indices by supporting two different rep-
resentations. Inside the type language, the type function
(X) and the polymorphic quantifier (V) still bind de Bruijn-
indexed type variables. In the term language, however, type
abstraction (A) binds named variables. This way, type an-
notations can be moved freely across depths because all free
type variables are guaranteed to be named.

Naturally, this simplicity has a price. First, in order to
reconstruct the type of a A term, we must traverse the types,
converting the named variables into de Bruijn indices before
placing the quantifier in front. Second, to memoize the set
of free variables in each type representation, we now need
to maintain two separate lists of type variables, one using
de-Bruijn indices, another using named variables. Third,
a-equivalent named types will not share the same represen-
tation. Our intuition, however, is that the additional cost
for A-bound type variables will be acceptable, because these
represent a very small portion of the total type size. In Sec-

318

Benchmark Source Program 11 Code Size 1 Tree Size I Dag Size

simple
vliw
sml-nj
CM
cm1
eXene
ml-lex

toy
toYP

Lines
918

3,682
89,432

7,703
5,966

35,662
1,232

7
8

DescAption (bytes)
A spherical fluid-dynamics program 114,944
A VLIW instruction scheduler 273,836
SML/NJ compiler v109.32 6,779,308
SML/NJ Compilation Manager by Blume 487,048
Concurrent ML by Reppy 366,684
An X-window system by Reppy & Gansner 2,291,628
A lexical-analyzer generator 103,604
Identity function applied 18 times 22,148
Similar, with curried application 30,016

(nodes)
34,118

646,215
20,749,395

3,186,279
1,203,391

99,567,031
112,091

30,409,149
183,463,919

(nodes)
’ 1,9;3

t-

5,682
125,044
27,968
17,106
78,671

3,122
14

743

Figure 6: Description of benchmarks used. The tree size expresses the number of nodes in the type forest, if types were
represented as trees (with no sharing of any kind). The dag size is the number of nodes actually created to represent the types
in the compiler. The comparison between tree size and dag size is only intended to demonstrate the amount of redundancy
in the types.

tion 7.3, we give preliminary measurements indicating that
the additional costs are indeed acceptable. We conclude that
this simpler design (using named variables) is quite feasible
and will most likely be used in future versions of the com-
piler

7 Experimental Results

This section gives empirical evidence demonstrating the ef-
fectiveness of the techniques presented in Sections 5 and 6.
All techniques have been implemented in the FLINT/ML
compiler [35] and in the SML/NJ production compiler since
version 109.24 (January 9, 1997). All tests were performed
on a Pentium Pro 200 Linux workstation with 64M physical
RAM.

Figure 6 shows the set of benchmarks we used along with
a summary of their salient features, including the size of the
types. The dag size is the number of nodes when maximal
sharing is realized, meaning that even a-equivalent types
share the same representation. The ratio of tree size to dag
size is intended to demonstrate the amount of redundancy
in the types; it is not meant as a comparison of our repre-
sentation to the completely naive one.

7.1 Hash-consing results

This redundancy is examined for several benchmarks in Fig-
ure 7. Here, the y-axis represents some proportion of the
type forest, while the x-axis shows the minimum reduction
factor realized on that proportion of the forest thanks to
hash-consing with de Bruijn indices.

The results for VLIW are particularly interesting. VLIW
is written in an algorithmic style, making little use of higher-
order functions, functors, or polymorphism. Nevertheless,
we still get considerable reduction of the types used in the in-
termediate representation. This shows that hash-consing is
not only beneficial for heavily functorized applications such
as eXene and CM.

In order to get an idea of the cost of hash-consing, we
measured the performance of our hash table. The table is
an array containing 2,048 lists; collisions are handled by
prepending new entries onto the list. Subscripting the array

-a-CM -m- sml-nj
--c exene - ml-h
+ vliw

0
1 2 4 8 16 32 64 128 256 512

Ratio of tree size to deg size

Figure 7: Amount of redundancy in types. The x-axis repre-
sents the minimum reduction factor realizable on some pro-
portion of the type forest. For instance, with ml-lex, 80% of
the type forest can be cut at least in half, and 25% can be
reduced by a factor of 8.

is very fast, so we need only be concerned with the cost of
traversing the lists. Figure 8 shows the dynamic distribution
of the lengths of list traversals. Most queries are satisfied
after looking at only one or two list entries. One of the
reasons is locality; we place new entries at the head of the
list, so subsequent accesses are immediate. Furthermore,
the table never gets very big; the maximum length of a list
is 12. It seems clear that we should not be concerned about
the performance of the hash table.

7.2 Memoization results

Figure 9 summarizes the results of doing various combina-
tions of memoizations. The y-axis represents the compila-
tion time of each benchmark, relative to the CPU time with-
out any memoizations (the absolute time is printed above
each set of bars). The memoizations performed are a normal-
form indicator (NF), the set of free variables (FV), interme-
diate reduction results (RD), and combinations of these.

319

9.35 34.88 924.44 58.96 52.36 723.43 80.65 174.5

0.6
NF
N
RD
NF+FV
NF+RD
N+RD
All

simple vliw sml-nj CM cm1 eXene toy toYP

Figure 9: Memoization results. This shows the compilation times for each benchmark using various combinations of memo-
izations, relative to the time without memoizations. The striped part of each bar represents the type-preserving phases of the
compilation. The results for ml-lex are very similar to those for vliw; they were omitted due to space constraints.

16:

Length of list traversal

Figure 8: Hash table performance. This shows the dynamic
number of hash table lookups (y-axis) that must search a
bucket of particular length (z-axis). Most queries are satis-
fied after looking at only one or two list entries.

The striped part of each bar represents the type-pre-
serving phases of the compilation, where our memoizations
should have the most effect. Variation in the rest of the
compilation time (represented by the solid bars) can be at-
tributed to measurement error and secondary effects. Notice
that, without memoizations, the type-preserving phases rep-
resent a significant portion of the compilation time, even on
Simple and VLIW (18 and 27%, respectively).

The eXene benchmark is a large, heavily-functorized ap-

plication on which our techniques are particularly effective.
They reduce the total compilation time of eXene by 72% (a
reduction of 93% in the type-preserving phases). Without
memoizations, the type-preserving phases represent a dom-
inant 78% of the compilation time; with them, these phases
are a manageable 25%. Taking the average over the large
benchmarks (sml-nj, CM, cml, and eXene), our techniques
reduce the total compilation time by 45%.

In most benchmarks, memoizing NF+FV+RD does not
seem to win much over just NF+FV. Also, in most cases,
FV+RD achieves results somewhat similar to just FV. One
might be tempted to assume that the other memoizations
effectively subsume memoizing reduction results. However,
there are extreme cases (toy and toyp, for example) where
RD does improve compilation time when combined with
other memoizations. These programs contain huge poly-
morphic types that are later specialized because they are
only applied to integers. Without memoization of reduction
results, specialization blows up.

7.3 Named variable results

Finally, we give preliminary measurements of the cost of
using named type variables in the term language. As dis-
cussed in Section 6, the phases of the current compiler that
are most inconvenienced by de Bruijn indices are inlining
and specialization.

We added support in our type interface for named vari-
ables, and changed the FLINT representation to use them
behind type abstractions. Next, we modified all compiler
phases through specialization to use the named variables.
The modifications were fairly painless; deleting the most

320

Benchmark

simple
vliw
sml-nj
CM
cm1
eXene
ml-lex
toy
toYP

-lr Compilation Time
(seconds) \

deBruijn
8.53

28.78
566.96

57.83
105.17
188.46

8.19
0.10
0.21

namedvar
8.44

28.37
565.91
63.63

108.54
188.55

8.33
0.11
0.21

Ratio

0.99
0.99
1.00
1.10
1.03
1.00
1.02
1.10
1.00

Figure 10: Named variable results. This shows compilation
times for each benchmark using de Bruijn indices through-
out, and then using named variables in the term language
(and converting to de Bruijn indices after specialization).
The last column gives the ratio of the second version over
the first.

subtle parts of the specialization code was downright enjoy-
able. We have not yet modified the later phases. Instead, we
temporarily inserted a phase after specialization to convert
all remaining named type variables into de Bruijn indices.
The cost incurred by this extra phase is included in the mea-
surements given in Figure 10.

The compilation times of most benchmarks are not no-
ticeably affected by the change. CM, the primary excep-
tion, suffered a 10% increase in compilation time due to the
use of named variables. These results are preliminary be-
cause we have yet to modify the later phases of the compiler
to use the new mixed representation (which would obviate
the need for the extra conversion phase). We suspect that
the remaining modifications will have no serious impact on
performance, and with additional profiling and tuning, we
may even be able to reduce the current overhead. We con-
clude that the simplified interface (made possible by using
de Bruijn-indexed type variables internally and named vari-
ables externally) is quite feasible and will most likely be used
in future versions of the compiler.

8 Comparison

Returning to our implementation criteria, we can certainly
say that our scheme is very effective at representing types in
a concise manner and provides us with a fast type equality
test. Type manipulations are also made efficient by system-
atic use of memoization. Our experience with the interface
is very positive since all the machinery is well hidden within
a few core modules which export simple and intuitive type
operations. There are nonetheless a few weaknesses:

l The interface hides the actual implementation behind
functions which prevent the use of the pattern match-
ing facilities of ML. This could be circumvented if re-
ally necessary, but it turned out to be a non-issue.
Furthermore, the functional interface gives us a lot of
flexibility.

l The de Bruijn indices make some manipulations more
subtle than we would like. By using a mix of named

variables and de Bruijn indices, we are able to simplify
such manipulations outside the core modules and still
achieve acceptable performance.

l In order to make sure type traversals are efficient, we
have to use a fold function on types which encapsulates
the memoization. Here also, our experience has shown
that it is not a serious issue.

Our choice of techniques to provide efficient type ma-
nipulation should be contrasted with the lettype scheme
used in the TIL compiler 1401. It should be noted here that
very little has been published about the lettype scheme, so
this comparison is based on our own understanding of what
lettype could look like under the ideal scenario rather than
any existing implementation such as the one in the TIL com-
piler.

The basic approach is to extend the notion of A-normal
form to types by providing lettype (in both the term and
the type languages). For example, the identity function on
integer pairs would look like:

lettype ti = Int * Int
in lettype t2 = tl + tl

in (Xz : t1.z) : t2

This has the advantage of making the sharing explicit since
all types are referenced through names bound in the type
environment. The explicit sharing basically eliminates the
risk of accidentally traversing the type tree in an inefficient
way. In other words, type traversals get memoized for free.
But lettype suffers from many problems:

l There is no known way to define a compact normal
form for such type representations. This implies that
type equality tests become much more expensive. All
existing theoretical framework treats lettype t = ~1
in /.~e as if it is a P-reduction of form (At :: ~+z)bi].
This would clearly expand into a normal form, but on
the other hand, this reduction is precisely one that
is banned by the lettype scheme, as otherwise, type
expressions would degenerate into inefficient tree rep-
resentations.

l Similarly it is unclear how one could provide a clean
interface that allows its clients to be oblivious to nor-
malization issues while still ensuring efficient execu-
tion, since memoizing the normalization steps would
require adding types to the environment which in turn
would force the rewrite of the whole term.

l Expressing sharing is not enough: we still first need
to find that sharing. We might be able to get some
sharing information straight from the type-inference
phase, but this will require careful coding. Also we
might not get as much sharing as we would want.
TIL’s solution is to go through a common sub-expres-
sion elimination phase. This would indeed allow us
to merge all the common types, but requires precisely
the same machinery as hash-consing and is done after
the fact, whereas we are careful to eliminate common
sub-expressions as soon as they appear. Furthermore,
many more common sub-expressions will appear dur-
ing the compilation process which will require addi-
tional passes through the CSE phase while our scheme
takes advantage of the hash-consing all along the com-
pilation process to guarantee that sharing is constantly
maintained.

321

l Another subtle difference is that lettype traverses its
types most naturally in a bottom-up fashion which
precludes (or rather reduces the effectiveness of) op-
timizations that cut-off the traversal of types. More
specifically, lettype would not let us make as good a
use of information such as free-variables or a normal-
form bit.

To summarize, lettype seems to provide a clean way to
represent types efficiently, but it ends up having to pay the
cost of hash-consing anyway without reaping all the benefits
of our more straightforward scheme. Also it is yet to be seen
how lettype scales to real world situations such as eXene,
which our scheme handles easily.

Our approach manages to hide most if not all the com-
plexity of type manipulation, providing programmers with a
simple and intuitive interface. It ensures that maintenance
of type information is non-intrusive, which is greatly ap-
preciated for optimization phases that do not rely on type
information. lettype on the other hand would most likely
force every phase to maintain at the very least a type envi-
ronment .

Finally, our implementation is straightforward since it
relies on well understood techniques and it does not suffer
from hidden costs since all the hash-consing and memoizing
is done once and for all.

9 Conclusions

Implementing typed intermediate languages is not a trivial
task. In this paper, we have presented a series of novel
techniques that make type-preserving compilers practical
and scalable. We argue that a type-preserving compiler
will not scale to handle large types unless all of its type-
preserving stages preserve the asymptotic time and space
usage in representing and manipulating types. We believe
what we learned from our implementation will be valuable
to future implementations of other emerging typed interme-
diate languages.

Availability

The implementation discussed in this paper is now released
with the Standard ML of New Jersey @ML/NJ) compiler
and the FLINT/ML compiler [35]. SML/NJ is a joint work
by Lucent, Princeton, Yale and AT&T. FLINT is a modern
compiler infrastructure developed at Yale University. Both
FLINT and SML/NJ are available from the following web
site:

http://flint.cs.yale.edu

Acknowledgement

We would like to thank Valery Trifonov, Bratin Saha, and
the anonymous referees for their comments and suggestions
on an early version of this paper. Valery Trifonov helped
implement the FLINT type-checker and also participated in
numerous discussions on topics covered by this paper.

PI

PI

[31

[41

PI

161

[71

181

191

PO1

WI

[I31

1141

WI

WI

P71

WI

PI

M. Abadi, L. Cardelli, P. Curien, and J. Levy. Explicit sub-
stitutions. In Seventeenth Annual ACM Symp. on Principles
of Prog. Languages, pages 31-46, New York, Jan 1990. ACM
Press.

A. W. Appel. Compiling with Continuations. Cambridge
University Press, 1992.

A. W. Appel and D. B. MacQueen. Standard ML of New
Jersey. In M. Wirsing, editor, Third Intl Symp. on Prog.
Lang. Implementation and Logic Programming, pages l-13,
New York, August 1991. Springer-Verlag.

M. Blume. A compilation manager for SML/NJ. as part of
SML/NJ User’s Guide, 1995.

L. Damas and It. Milner. Principal type-schemes for func-
tional programs. In Ninth Annual ACM Symp. on Principles
of Prog. Languages, pages 207-212, New York, Jan 1982.
ACM Press.

0. Danvy. Type-directed partial evaluation. In Proc. 23rd
Annual ACM SIGPLAN-SIGACT Symp. on Principles of
Progmmming Languages, pages 242-257. ACM Press, 1996.

N. de Bruijn. A survey of the project AUTOMATH. In To H.
B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pages 579-606. Edited by J. P. Seldin and
J. R. Hinclley, Academic Press, 1980.

A. Dimosk, R. Muller, F. Turbak, and J. B. Wells. Strongly
typed flow-directed representation transformations. In Proc.
1997 ACM SIGPLAN International Conference on fine-
tional Progmmming (ICFP’97), pages 11-24. ACM Press,
June 1997.

J. Field. On laziness and optimality in lambda interpreters:
Tools for specification and analysis. In Seventeenth Annual
ACM Symp. on Principles of Prog. Languages, pages 1-15,
New York, Jan 1990. ACM Press.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The
essence of compiling with continuations. In Proc. ACM SIG-
PLAN ‘93 Conf. on Prog. Lang. Design and Implementa-
tion, pages 237-247, New York, June 1993. ACM Press.

L. George, F. Guillaume, and 3. Reppy. A portable and opti-
mizing backend for the SML/NJ compiler. In Proceedinas of
the 1994 International Conjerence on Compiler Con&uc~
tion, pages 83-97. Springer-Verlag, April 1994.

J. Y. Girard. Interpretation Fonctionnelle et Elimination
dee Coupures dons 1’Arithmetique d’Ordre Superieur. PhD
thesis, University of Paris VII, 1972.

J. Gosling, B. Joy, and G. Steele. The Java Language Spec-
ification. Addison-Wesley, 1996.

R. Harper and G. Morrisett. Compiling polymorphism using
intensional type analysis. In Twenty-second Annual ACM
Symp. on Principles of Pmg. Languages, pages 130-141,
New York, Jan 1995. ACM Press.

G. Huet. Logical Foundations of Functional Programming.
Addison-Wesley, 1990.

X. Leroy. Unboxed objects and polymornbic twinn. In
Nineteenth Annual ACM Symp. on* Phncipiee of Frog: Lan-
guages, pages 177-188, New York, Jan 1992. ACM Press.
Longer version available as INRIA ‘Tech Report.

X. Leroy and F. Rouaix. Security properties of typed applets.
Jn Twenty-fifth Annual ACM Symp. on Principles of Prog.
Languages, page (to appear), New York, Jan 1998. ACM
Press.

J.-J. Levy. Optimal reductions in the lambda calculus. In
To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism. Edited by J. P. Seldin and J. R.
Hindley, Academic Press, 1980.

T. Lindholm and F. Yellin. The Java Virtual Machine Spec-
ification. Addison-Wesley, 1997.

322

PO1

WI

P21

P31

P41

P51

WI

1271

PI

WI

i3f-v

[311

I321

[331

[341

I351

[361

I371

[331

H. G. Mairson. Deciding ML typability is complete for de-
terminsitic exponential time. In Proc. 17th Annual ACM
SIGPLAN-SIGACT Symp. on Principles of Progmmming
Languages, pages 382-401. ACM Press, 1990.

R. Mihrer, M. Tofte, Ft. Harper, and D. MacQueen. The Def-
inition of Standard ML (Revised). MIT Press, Cambridge,
Massachusetts, 1997.

G. Morrisett. Compiling with Z’ypes. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh,
PA, December 1995. Tech Report CMU-CS-95-226.

G. Morrisett, D. Walker, K. Crary, and N. Glew. From sys-
tem F to typed assembly language. In Proc. 25rd Annual
ACM SIGPLAN-SIGACT Symp. on Principles of Progmm-
ming Languages, page (to appear). ACM Press, 1998.

G. Nadathur. A notation for lambda terms II: Refinements
and applications. Technical Report CS-1994-01, Duke Uni-
versity, Durham, NC, January 1994.

G. Nadathur and D. S. Wilson. A representation of lambda
terms suitable for operations on their intensions. In 1990
ACM Conference on Lisp and Functional Programming,
pages 341-348, New York, June 1990. ACM Press.

G. Necula. Proof-carrying code. In Twenty-Fourth Annual
ACM Symp. on Principles of Prog. Languages, New York,
Jan 1997. ACM Press.

S. Peyton Jones. Implementing lazy functional languages on
stock hardware: the Spineless Tagless G-machine. Journal
of Functional Progmmming, 2(2):127-202, April 1992.

S. Peyton Jones and J. Launchbury. Unboxed values as first
class citizens in a non-strict functional language. In The
Fifth International Conference on Functional Progmmming
Languages and Computer Architecture, pages 636-666, New
York, August 1991. ACM Press.

S. Peyton Jones, J. Launchburv. M. Shields, and A. Tol-
ma& Bridging the gulf: a common intermediate language
for ML and Haskell. In Proc. 25rd Annual ACM SIGPLAN-
SIGACT Symp. on Principles of Progmmming Languages,
page (to appear). ACM Press, 1998.

S. Peyton Jones and E. Meijer. Henk: a typed intermedi-
ate language. In Proc. 1997 ACM SIGPLAN Workshop on
Types in Compilation, June 1997.

J. H. Reppy and E. R. Gansner. The eXene library manual.
Cornell Univ. Dept. of Computer Science, March 1991.

J. C. Reynolds. Towards a theory of type structure. In
Proceedings, Colloque sur la Programmation, Lecture Notes
in Computer Science, volume 19, pages 408-425. Springer-
Verlag, Berlin, 1974.

B. Saha and Z. Shao. Optimal type lifting. In Proc. 1998
International Workshop on Types in Compilation, March
1998.

2. Shao. Flexible representation analysis. In Proc. 1997
ACM SIGPLAN International Conference on Functional
Progmmming (ICFP’g7), pages 85-98. ACM Press, June
1997.

2. Shao. An overview of the FLINT/ML compiler. In Proc.
1997 ACM SIGPLAN Workshop on Qpes in Compilation,
June 1997.

Z. Shao. Typed common intermediate format. In Proc. 1997
USENIX Conference on Domain Specific Languages, pages
89-102, October 1997.

Z. Shao. Typed cross-module compilation. In Proc. 1998
A CM SIGPLA N International Conference on Functional
Programming (ICFP’98). ACM Press, September 1998.

Z. Shao and A. W. Appel. Space-efficient closure represen-
tations. In 1994 ACM Conference on Lisp and Functional
Programming, pages 150-161, New York, June 1994. ACM
Press.

1391

[401

[411

[421

[431

Z. Shao and A. W. Appel. A type-based compiler for Stan-
dard ML. In Proc. ACM SIGPLAN ‘95 Conf. on Prog. Lang.
Design and Implementation, pages 116-129. ACM Press,
1995.

D. Tarditi. Design and Implementation of Code Optimita-
tions for a Type-Directed Compiler for Standard ML. PhD
thesis, School of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, PA, December 1996. Tech Report CMU-
CS-97-108.

D. ‘B&it& G. Morrisett, P. Cheng, C. Stone, R. Harper, and
P. Lee. TIL: A type-directed optimizing compiler for ML. In
Pruc. ACM SIGPLAN ‘96 Conf. on Prog. Lang. Design and
Implementation, pages 181-192. ACM Press, 1996.

M. Tofte. Region-based memory management (invited talk).
In Pmt. 1998 International Workshop on Types in Compi-
lation, March 1998.

A. Tolmach. Tag-free garbage collection using explicit type
parameters. In Proc. 1994 ACM Conf. on Lisp and Func-
tional Programming, pages l-11, New York, June 1994.
ACM Press.

323

