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{
   data: {query: "SELECT * FROM comments;"},
   layout: {
     x: {field: "created_utc", extent: [1356998400, 1425167999]},
     y: {field: "body_len",  extent: [10000, 0]},
     z: {field: "score", order: "desc"}
   },
   marks: {
       cluster: {
           mode: "circle",
           config: {circleMinSize: 50, circleMaxSize: 80}
       },
       hover: {
           rankList: {
               mode: "custom",
               custom: redditCommentRenderer,
               topk: 3
           },
           boundary: "bbox"
       }
   },
   config: {axis: true}
};

Figure 1. A scalable scatterplot visualization created by Kyrix-S and its specification in Kyrix-S’s declarative grammar. One billion
comments made by users on Reddit.com from Jan 2013 to Feb 2015 are visualized on 15 zoom levels. On every level, X and Y axes
are respectively the posting time and length of the comments. Each circle represents a cluster of comments. The number inside each
circle is the size of the cluster and also encodes the radius of the circle. As can be seen, the distribution of comments is roughly
uniform over time but rather skewed in length. Through a pan or zoom interaction, the user can navigate this multi-scale data space to
get either an overview (left) or inspect an area of interest (middle). One can hover over a circle to see three highest-scored comments
in the cluster, as well as a bounding box showing the boundary of the cluster.

Abstract—Due to limited screen resolution, static scatterplots suffer from the overdraw problem on big skewed datasets where object
overlap causes undesirable visual clutter. The use of zooming can help alleviate this problem. With multiple zoom levels, more screen
real estate is available, allowing objects to be placed in a way that avoids overcrowded displays. Visual aggregates such as contours or
pie charts can be used to represent groups of objects. We call this type of visualization scalable scatterplot visualizations, or SSV for
short. Despite the potential of SSVs, existing systems and toolkits fall short in supporting the authoring of SSVs due to three limitations.
First, many systems have limited scalability, assuming that data fits in the memory of one computer in order to support interactivity.
Second, too much manual effort is required. The developer often needs to write custom code to generate mark layouts or render
objects. Third, many systems have low expressivity, focusing on a small subset of the SSV design space (e.g. supporting a specific
type of visual marks). To this end, we have developed Kyrix-S, a system for easy authoring of SSVs at scale, which we present in this
paper. We store data in a multi-node database and use multi-node spatial indexes to achieve interactive browsing of large SSVs. To
enable rapid authoring, Kyrix-S contributes a declarative grammar that enables specification of a variety of SSVs in a few tens of lines
of code. The declarative grammar is supported by an efficient layout algorithm which automatically places visual marks onto zoom
levels. Extensive experiments show that 1) Kyrix-S enables interactive browsing of SSVs of billions of objects, with response times
under 500ms and 2) Kyrix-S achieves 4X-9X reduction in specification compared to a state-of-the-art authoring system.

Index Terms—pan/zoom visualization, declarative grammar, scalability, performance optimization

1 INTRODUCTION

Scatterplots are an important type of visualization used extensively
in data science and visual analytic systems. Objects in a dataset are
visualized on a 2D Cartesian plane, with the dimensions being two
quantitative attributes from the objects. Each object can be represented
as a point, polygon or other mark. Aggregation-based marks (e.g. pie
chart, heatmap) can also be used to represent groups of objects. The
user of a scatterplot can perform a variety of tasks to provide insights
into the underlying data, such as discovering global trends, inspecting
individual objects or characterizing distributions [44].

Despite the usefulness of static scatterplots, they suffer from signifi-
cant overdraw problem on big skewed datasets [35, 41]. Here, we focus
on scatterplots with millions to billions of objects, where significant
overlap of marks is unavoidable, leading to visual clutter that makes
the visualization ineffective. To address this issue in scatterplots, there
has been substantial research [22, 23, 31, 34] on devising aggregation-
based scatterplots using visual aggregates such as contours or hexagon
bins. While avoiding visual clutter, the resulting visualization lacks
the functionality to inspect individual objects, which is a fundamen-
tal scatterplot task [44]. Prior works also used transparency [20, 28],
animation [10] and displacements of objects [26, 48, 49] to ease the

Table 1. Comparison of existing systems for authoring SSVs.

High Scalability
(scale well to

billions of points)

Concise Authoring
(10s of lines

of code)

Diverse SSV
Designs (arbitrary
marks, bounded

density, etc)
Kyrix-S X X X

General pan/zoom
systems (e.g. Kyrix,
Pad, Jazz, ZVTM)

X

Specialized SSV
systems (e.g. [21],

[9], [30], [1])
X

overdraw problem. However, due to limited screen resolution, these
methods have scalability limits.

On the other hand, the use of zooming in scatterplots has the potential
to effectively mitigate visual clutter. By expanding the 2D Cartesian
plane into a series of zoom levels with different scales, more screen
resolution becomes available, allowing objects to be placed in a way
that possibly avoids occlusion and excessive density. Interacting with
large amounts of individual objects thus becomes feasible. Aggregation-
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based marks such as circles or heatmaps can still be used to visualize
groups of objects. Figure 1 shows such a visualization created by the
system we introduce in this paper, which shows one billion comments
made by users on Reddit.com from January 2013 to February 2015,
where X is the posting time and Y is the number of characters in the
comments. Additional examples are in Figure 2. For simplicity, we
term such visualizations scalable scatterplot visualizations, or SSV.

There has been significant work on building systems/toolkits to aid
the creation of SSVs (e.g. [3, 13, 21, 47]). Table 1 shows a comparison
of existing systems for authoring SSVs. Specifically, prior systems can
be classified into two categories: general pan/zoom systems (next to last
row) and specialized SSV systems (last row). General pan/zoom systems
are typically expressive, supporting not only SSVs, but also pan/zoom
visualizations of other types of data (e.g. hierarchical and temporal
data) or that connect multiple 2D semantic spaces1. Specialized SSV
systems (e.g. [9, 21]), on the other hand, generally have a narrow focus
on SSVs.

While these systems have been shown to be effective, they can
suffer from some drawbacks that limit their ability to support gen-
eral SSV authoring at scale. In particular, limited scalability is a
common drawback of both types of systems. As often as not, im-
plementations assume all objects reside in the main memory of a
computer [3, 9, 21, 30, 31, 35, 36, 43].

General pan/zoom systems, while being flexible, generally incur too
much manual effort due to their low-level nature. When authoring
an SSV, the developer needs to manually generate the layout of visual
marks on zoom levels. In very large datasets, there will be many levels
(e.g. Google Maps has 20). Individually specifying the layout of a
set of levels is tedious and error-prone. In particular, skewed data can
make it challenging for the developer to specify a layout that avoids
occlusion and excessive density in the visualization.

Another drawback of specialized SSV systems is low flexibility.
Oftentimes systems are hardcoded for specific scenarios (e.g., sup-
porting specific types of visual marks such as heatmaps [31, 41] or
points [9, 13], enforcing a density budget but not removing overlap,
etc.) and are not extensible to general use cases. The developer cannot
make free design choices when using these systems, and is forced to
constantly switch tools for different application requirements.

In this paper, we describe Kyrix-S2, a system for SSV authoring at
scale which addresses all issues of existing systems. Specifically, we
store objects in a multi-node parallel database using multi-node spatial
indexing. As we show in Section 8, this allows us to respond to any
pan/zoom action in under 500ms on datasets with billions of objects.

We present a declarative grammar for SSVs, which Kyrix-S imple-
ments. To enable rapid authoring, we abstract away low-level details
such as rendering of visual marks. The developer can author a com-
plex SSV in a few tens of lines of JSON. We show that compared to
a state-of-the-art system, this is 4X–9X reduction in specification on
several examples. In addition, we build a gallery of SSVs to show that
our grammar is expressive and that the developer can easily extend it to
add his/her own visual marks.

This grammar for SSVs is supported by an algorithm that automat-
ically chooses the layout of visual marks on all zoom levels, thereby
freeing the developer from writing custom code. As experiments show,
this algorithm scales well to billions of objects.

To summarize, we make the following contributions:

1A 2D semantic space consists of zoom levels sharing the same coordinate
system and visualizing the same type of objects. An SSV has only one semantic
space. General pan/zoom systems typically allow “semantic jumping” from one
semantic space to another [43, 47] (e.g. from a space of Reddit comments to a
space of Reddit forums).

2The birth of Kyrix-S is driven by the limitations we see when we use
Kyrix [47], a general pan/zoom system we have developed, to build real-world
SSV-based applications. The name Kyrix-S here suggests that we implement
Kyrix-S as an extension of Kyrix for SSVs, rather than a replacement. S may
suggest scale, scatterplots, skew or spatial partitioning. More detailed discussion
on the relationship between the two systems can be found in Sections 2 and 7.

• An integrated system called Kyrix-S for declarative authoring and
rendering of SSVs at scale.

• A concise and expressive declarative grammar for describing
SSVs (Section 4).

• A framework for offline database indexing and online serving that
enables interactive browsing of large SSVs (Sections 5 and 6).

2 RELATED WORKS

2.1 General Pan/zoom Systems

A number of systems have been developed to aid the creation of general
pan/zoom visualizations [3, 4, 43, 47]. These systems are expressive
and capable of producing not only SSVs, but also pan/zoom visualiza-
tions of other types of data (e.g. hierarchical, temporal, relational, etc)
or with multiple semantic spaces connected by semantic zooms [43].
However, as mentioned in the introduction, these systems fall short
in supporting SSVs due to limited scalability3 and too much manual
effort. Note that despite not having these drawbacks, Kyrix-S has a
narrow focus on SSVs and is not intended to completely replace gen-
eral pan/zoom systems. As we will discuss more in Section 7, we
implement Kyrix-S as an extension to Kyrix [47], a general pan/zoom
system we have developed.

2.2 Specialized SSV Systems

There has been considerable effort made to develop specialized SSV
systems, which mainly suffer from two limitations: low flexibility and
limited scalability.

Many systems focus on a small subset of the SSV design space,
and are not designed/coded to be easily extensible. For exam-
ple, many focus on specific visual marks such as small-sized
dots (e.g. [9, 13, 25]), heatmaps (e.g. [31, 32, 36, 39, 41]), text [42],
aggregation-based glyphs [5, 30] and contours [35]. Some works main-
tain a visual density budget [13, 21, 41], while some focus on overlap
removal [5, 9, 15]. In contrast to these systems, Kyrix-S aims at a much
larger design space. We provide a diverse library of visualization
templates that are suitable for a variety of scatterplot tasks. For high ex-
tensibility, Kyrix-S’s declarative grammar is designed with extensible
components for authoring custom visual marks.

In addition to the limited focus, most specialized SSV systems can-
not scale to large datasets with billions of objects due to an in-memory
assumption [1, 9, 14, 17, 21, 29, 35, 38]. We are only aware of the work
by Perrot et al. [41] which renders large heatmap visualizations using a
distributed computing framework. However, that work only focuses on
heatmaps.

Specialized SSV systems generally come with a layout generation
module which computes the layout of visual marks on each zoom
level. The design of Kyrix-S’s layout generation is inspired by many
of them and bears similarities in some aspects. For example, favoring
placements of important objects on top zoom levels is adopted by many
works [13, 21, 42]. The idea of enforcing a minimum distance between
visual marks comes from blue-noise sampling strategies [9, 21, 41].

However, the key differentiating factor of Kyrix-S comes from its
broader design space and the higher scalability requirement, which pose
new algorithmic challenges. For instance, Sarma et al. [13] uses integer
programming to generate the layout without considering overlaps of
objects. To enable overlap removal, one needs to add O(n2) pairwise
non-overlap constraints into the integer program, making it hard to
solve in reasonable time. As another example, Guo et al. [21] and Chen
et al. [9] do not support visual marks that show a group of objects with
useful aggregated information. This requires a bottom-up aggregation
process which breaks their top-down algorithmic flow. In order to
scale to billions of objects, Kyrix-S cannot rely on existing algorithms
and instead needs to compute visual mark layouts in parallel using a
distributed algorithm as described in Section 6.

3Kyrix [47] does not assume data fits in memory, but it only works with a
single-node database, which cannot scale to billions of objects.
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2.3 Static Scatterplot Designs
Alleviating the overdraw problem of static scatterplot visualizations
has been a popular research topic for a long time. Many meth-
ods have been proposed, including binned aggregation [23, 34, 37],
appearance optimization [10, 20, 28], data jittering [26, 48, 49] and
sampling [11, 16]. We refer interested readers to existing surveys on
scatterplot tasks and designs [44], binned aggregation [22] and visual
clutter reduction [18, 19]. Kyrix-S’s design follows many guidelines in
these works, which we elaborate in Section 3.

2.4 Declarative Visualization Grammars
Numerous declarative grammars have been proposed for authoring
visualizations at different levels of abstractions. The first of these is
Wilkinson’s grammar of graphics (GoG) [51], which forms the basis
of subsequent works. For example, ggplot2 [50] is the direct imple-
mentation of GoG in R and is widely used. D3 [8] and Protovis [7] are
low-level libraries that provide useful primitives for authoring basic
visualizations. Vega is the first grammar that concerns specifications of
interactions. Built on top of Vega, Vega-lite [45] offers a more succinct
grammar for authoring interactive graphics. Recently, more specialized
grammars have emerged for density maps [23], unit visualizations [40],
and pan/zoom visualizations [47].

Despite the diversity of this literature, not many grammars support
SSVs well. Some low-level grammars such as D3 [8], Vega [46] and
Kyrix [47] can express SSVs, but the specification is often verbose
due to their low-level and general-purpose nature. Also, they do not
help the developer manage the layout of visual marks. Kyrix-S, on the
contrary, uses a high-level grammar that abstracts away unimportant
low-level details and is designed with several components that help the
developer control the layout, density and occlusion.

3 DESIGN GOALS

Limitations of prior art, existing guidelines and our experience with
SSV users drive the design of Kyrix-S. Here, we present a few goals
we set out to achieve.
G1. Rapid authoring. Our declarative grammar should enable spec-
ification of SSVs in a few tens of lines of code. This goal is inspired
by the design rationale of several high-level declarative languages (e.g.
Vega-lite [45] and Atom [40]), and driven by the limitations we see in
using Kyrix [47] to author SSVs.
G2. Visual expressivity. Kyrix-S should enable exploration of a broad
SSV design space and not limit itself to specific visual representations.
Moreover, it is crucial to allow inspection of individual objects in
addition to showing aggregation information. As outlined by Sarikaya
et al. [44], there are four common object-centric scatterplot tasks:
identify object, locate object, verify object and object comparison. A
recent study [29] also highlights the importance of browsing objects in
multi-scale visualizations.
G3. Usable SSVs. The SSVs authored with Kyrix-S should be usable,
e.g. free of visual clutter, using simple visual aggregates, etc. We
identify usability guidance from a range of surveys and SSV systems
(e.g. [13, 19, 21]), which we formally describe in Section 6.
G4. Scalability. Kyrix-S should be able to handle large datasets with
billions of objects and potentially skewed spatial distribution. This goal
has the following two subgoals:

• G4-a. Scalable offline indexing. Offline indexing should finish
in reasonable time on big skewed data, and scale well as the data
size grows.

• G4-b. Interactive online serving. The end-to-end response time
to any user interaction (pan or zoom) should be under 500ms, an
empirical upper bound that ensures fluid interactions [33].

In the rest of the paper, we justify the design choices we make by
referencing the above goals when appropriate.

4 DECLARATIVE GRAMMAR

In this section, we present Kyrix-S’s declarative grammar. We start with
showing a gallery of example SSVs authored with Kyrix-S (Section

4.1), which we then use to illustrate the design of the grammar in
Section 4.2.

4.1 Example SSVs
Figure 2 shows a gallery of SSVs and their specifications.
Taxi. In Figure 2a, a multi-scale heatmap shows the distribution of
178.5M taxi trips in Chicago since 2013, where X is trip length (in
seconds) and Y is trip total (in dollars). In the overview (upper), the
long thin “heat” region suggests that most trips have a similar total-
length ratio. In a zoomed-in view (lower), we see vertical “heat” regions
around entire minutes. In fact, more than 70% of the trips have a length
of entire minutes, indicating the possible prevalent use of minute-
precision timers. Figure 2b is the same representation of this dataset in
contour lines.
FIFA. The SSV in Figure 2c visualizes 18,207 soccer players in the
video game FIFA 19. X and Y are respectively the shooting and defen-
sive rating of players. Players with the highest wages are shown at top
levels. Lesser-paid players are revealed as one zooms in. Figure 2f is a
radar-based SSV with the same X and Y . Each radar chart shows the
averages of eight ratings (e.g. passing, power) of a cluster of players.
When hovering over a radar, three players from that cluster with the
highest wages are shown.
Liquor. Figure 2d is an SSV of 17.3M liquor purchases by retailers in
Iowa since 2012. X and Y axes are the unit price (dollars) and quantity
(# of bottles) of the purchases. Each pie shows a cluster of purchases
grouped by day of the week. One can hover over a pie to see a tabular
visualization of the three most recent purchases, as well as a convex
hull showing the boundary of the cluster.
Reddit. Figure 2e is another representation of the one-billion Reddit
comments dataset. Different from Figure 1, comments are directly
visualized as non-overlapping texts. The number above each com-
ment represents how many comments are nearby, giving the user an
understanding of the data distribution hidden underneath.

4.2 Grammar Design
The primary goal of Kyrix-S’s declarative grammar is to help the de-
veloper quickly navigate a large SSV design space (G1 and G2). To
this end, we design the high-level structure of the grammar following a
survey of scatterplots designs and tasks by Sarikaya et al. [44], which
identified four common design variables of scatterplot visualizations:
point encoding (i.e. visual representation of one object), point grouping
(i.e. visual representation of a group of objects), point position (e.g.
subsampling, zooming) and graph amenities (e.g. axes, annotations).

Figure 3 shows the declarative grammar of Kyrix-S in the BNF
notation [27]. The highest-level components are Marks, Layout, Data
and Config (Rule 1). We elaborate the design of them in the following
subsections.

4.2.1 Marks: Templates + Extensible Components
The Marks component (Rules 2-14) defines the visual representation of
one or more objects, and covers both point encoding and point grouping
in [44].

Visual marks of a single or a cluster of objects span a huge space
of possible visualizations. To keep our grammar high-level (G1), we
adopt a templates+extensible components methodology, where we pro-
vide a diverse library of template mark designs, and offer extensible
components for authoring custom marks.

We divide the Marks component into two subcomponents: Cluster
(Rule 3) and Hover (Rule 4).
Cluster: cluster marks are static marks rendering one or a group of
objects. Currently, Kyrix-S has five built-in Cluster marks including
CIRCLE (Figure 1), CONTOUR (Figure 2b), HEATMAP (Figure 2a),
RADAR (Figure 2f) and PIE (Figure 2d). The developer can choose one
of these marks by specifying just a name (G1). These built-in Cluster
marks are carefully chosen to cover a range of aggregate-level SSV
tasks [44]. For example, heatmaps and contour plots enable the user to
characterize distribution and identify correlation between the two axes.
The user can perform numerosity comparison and identify anomalies
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{
  ...
  layout: {
    x: {field: "unit_price"},
    y: {field: "quantity"},
    z: {field: "purchase_date", order: "desc"}
   },
  marks: {
     cluster: {
         mode: "pie",
         aggregate: {
             measures: [{
                 field: ["*"],
                 function: "count"
             }],
             dimensions: [{
               field: "day",
               domain: ["1", "2", "3", "4", "5", "6", "7"]
             }]
         },
     },
     hover: {
         rankList: {
             mode: "tabular",
             fields: ["store", "item", "total"]
             topk: 3,
         },
         boundary: "convexhull"
   }
  },
  config: {
    legendTitle: "On Which Day of the Week Do 
     Retailers Buy Liquor in Iowa?",
    legendDomain: ["Sun", "Mon", "Tue", "Wed",
     "Thu", "Fri", "Sat"]
  }
}

{
  ...
  layout: {
    x: {field: "trip_length"},
    y: {field: "trip_total"},
   },
  marks: {
     cluster: {
         mode: "heatmap",
         config: {
        heatmapRadius: 68,
        heatmapOpacity: 0.8
         }
     }
   },
  ...
}

{
  ...
  layout: {
    x: {field: "shooting"},
    y: {field: "defending"},
    z: {field: "wage", order: "desc"}
   },
  marks: {
     cluster: {
         mode: "radar",
         aggregate: {
             measures: {
                 fields: [ "defending",  "general", 
              "mental", "passing", "mobility",
                    "power",  "rating",  "shooting"],
                 function: "avg",
                 extent: [0, 100]
             }
         },
     },
     hover: {
         rankList: {
             mode: "custom",
             custom: playerRenderer,
             topk: 3,
             orientation: "horizontal",
         }
    }
   }
  ...
}

{
   ...
  layout: {
    x: {field: "shooting"},
    y: {field: "defending"},
    z: {field: "wage"},
    theta: 0.5
   },
  marks: {
     cluster: {
         mode: "custom",
         custom: playerRenderer,
         config: {bboxW: 180, 
        bboxH: 240}
     }
   },
  ...
}

{
   ...
  layout: {
    x: {field: "created_utc"},
    y: {field: "body_len"},
    z: {field: "score", order: "desc"},
   },  
  marks: {
     cluster: {
         mode: "custom",
         custom: redditCommentBodyRenderer,
         config: {bboxW: 300, bboxH: 65}
     }
   },
  ...
}

{
  ...
  layout: {
    x: {field: "trip_length"},
    y: {field: "trip_total"},
   },
  marks: {
     cluster: {
         mode: "contour",
         config: {contourColorScheme: 
        "interpolateBlues",   
            contourBandwidth: 20}
     }
   },
  ...
}

(b)

(c)

(d)

(e) (f)

(a)

Figure 2. A gallery of SSVs authored with Kyrix-S and their specifications. (a): a heatmap of 178.3 million taxi trips in Chicago since 2013, X : trip
length (seconds), Y : trip total (dollars); (b): the same dataset/axes as (a) in contour plots; (c): an SSV of 18,207 soccer players in the video game
FIFA19, X : shooting rating, Y : defense rating, Z: wage (i.e. highly-paid players appear on top zoom levels); (d): a pie-based SSV of 17.3 million
liquor purchases by retailers in Iowa, X : unit price (dollars), Y : quantity (# of bottles), Z: purchase date; (e): a text visualization of the dataset of one
billion Reddit comments in Figure 1 with the same axes; (f): the same dataset/axes as (c) in a radar-chart.

with circle-based SSVs. Radar-based and pie-based SSVs allow for
exploring object properties within a neighborhood. For fast authoring,
Kyrix-S sets reasonable default values for many parameters (G1), e.g.,
inner/outer radius of a pie and bandwidth of heatmaps. The developer
can also make customizations (G2-b) using a Config component (Rules
3 and 24).

With the Custom component (Rules 5 and 9), the developer can
specify custom visual marks easily. For example, player profiles in
Figure 2c are specified as a custom visual mark. Kyrix-S currently
supports arbitrary Javascript-based renderers (e.g. D3 [8] or Vega-lite-
js [2]). For increased expressivity, a custom mark renderer is passed
all useful information about a cluster of objects, including aggregation
information in both Aggregate and Hover. As an example, the custom
renderer in Figure 2e displays both an example comment and the size
of the cluster. More importantly, Custom also facilitates rapid future
extension of Kyrix-S, allowing easy addition of built-in mark types.

The Aggregate component (Rule 6) informs Kyrix-S details of ag-
gregations statistics shown by a Cluster mark. This component is
composed of Dimensions (Rule 10) and Measures (Rule 11). A Dimen-
sion is a categorical field of the objects that indicates how objects are

grouped (e.g. by day of the week in Figure 2d). A Measure defines an
aggregation statistic (e.g. average of a rating in Figure 2f). Currently
Kyrix-S supports six aggregation functions: count, average, min, max,
sum and square sum (Rule 14).

Hover: Hover marks add more expressivity into the grammar by show-
ing additional marks when the user hovers over a Cluster mark. For
example, in Figure 1 three example comments are shown upon hovering
a circle. The motivation for adding this component is two-fold.

First, as outlined in G2, we want to enable tasks that require inspec-
tion of individual objects in addition to showing visual aggregates with
Cluster marks. To this end, we design a Ranklist component which
visualizes objects with top-k importance (Rule 7). The importance of
objects is defined in the layout component as a field from the objects.
We offer a default tabular visualization template (e.g. Figure 2d), and
allow custom marks via Custom (e.g. player profiles in Figure 2f).

Secondly, multi-scale visualizations often suffer from the “desert
fog” problem [24], where the user is lost in the multi-scale zooming
space and not sure what is hidden underneath the current zoom level.
Boundary is designed to aid the user in the navigation process (G3) by
showing the boundaries of a cluster of objects (Rule 8), using either the

4



Online Submission ID: 1015

hSSVi ::= hMarksihLayoutihDataihConfigi (1)
; marks

hMarksi ::= hClusterihHoveri (2)
hClusteri ::= hModeihAggregateihConfigi (3)
hHoveri ::= hRanklistihBoundaryihConfigi (4)
hModei ::= Circle | Contour | heatmap |

Radar | Pie | hCustomi (5)
hAggregatei ::= hDimensioni ⇤ hMeasurei+ (6)
hRanklisti ::= hTopki(Tabular | hCustomi) (7)

hBoundaryi ::= Convex Hull | BBox (8)
hCustomi ::= Custom JS mark renderer (9)

hDimensioni ::= hFieldihDomaini (10)
hMeasurei ::= hFieldihFunctionihExtenti (11)

hTopki ::= A positive integer (12)
hDomaini ::= A list of string values (13)
hFunctioni ::= Count | Sum | Avg | Min |

Max | Sqrsum (14)
; layout

hLayouti ::= hXihYihZihThetai (15)
hXi ::= hFieldihExtenti (16)
hYi ::= hFieldihExtenti (17)
hZi ::= hFieldihOrderi (18)

hThetai ::= A number between 0 and 1 (19)
hFieldi ::= A database column name (20)

hExtenti ::= A pair of float numbers (21)
hOrderi ::= Ascending | Descending (22)

; data
hDatai ::= a database query (23)

; config
hConfigi ::= Key value pairs (24)

Figure 3. Kyrix-S’s declarative grammar in the BNF notation. Inside
hi is a component. Every rule (1-24) defines what the left-hand side
component is composed of. On the right hand side of a rule, | means
OR, * means zero or more and + means one or more.

convex hull (Figure 2d) or the bounding box (Figure 1). By hinting that
there is more to see by zooming in, more interpretability is added to
the Cluster marks [19].

4.2.2 Layout: Configuring All Zoom Levels at Once

The Layout component (Rules 15-22) controls the placement of visual
marks4 on zoom levels, which corresponds to the point position design
variable in [44]. We aim to assist the developer in specifying the layout
for all zoom levels together rather than independently, motivated by the
limitation of general pan/zoom systems [3, 4, 47] that mark placements
are manually configured for every zoom level.

X and Y (Rules 16 and 17) define the two spatial dimensions. The
only specifications required are two raw data columns that map to the
two dimensions (e.g. trip length and total in Figures 2a and 2b). An
optional Extent component (Rule 21) can be used to indicate the visible
range of raw data values.

The Z component (Rule 18) controls how visual marks are distributed
across zoom levels. Drawn from prior works [13, 21, 42], we use a
usability heuristic that makes objects with higher importance more
visible on top zoom levels. The importance is defined by a field of
the objects. For example, in Figure 2e, highest-scored comments are
displayed on top zoom levels.

4For KDE-based SSVs (e.g. heatmaps and contours), a visual mark here
refers to the kernel density estimates generated by a weighted object.
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Figure 4. Kyrix-S optimization framework.

Optionally, Theta is a number between 0 and 1 indicating the amount
of overlap allowed between Cluster marks (Rule 19), with 0 being
arbitrary overlap is allowed and 1 being overlap is not allowed. For
instance, Theta is 0.5 in Figure 2c, making the player profiles overlap
to a certain degree.

The above layout-related parameters serve as inputs to the layout
generator, which we detail in Section 6.

4.2.3 Data and Config
We assume that the raw spatial data exists in the database, and can be
specified as a SQL query (Rule 23).

The highest-level Config component corresponds to the design vari-
able graph amenities in [44]. The developer can use it to specify global
rendering parameters such as the size of the top zoom level, number
of zoom levels, as well as annotations such as axes, grid lines and
legends.

5 OPTIMIZATION FRAMEWORK

Figure 4 illustrates the optimization framework adopted by Kyrix-S
to scale to large datasets(G4). There are two main phases: offline
indexing and online serving. Specifically, given an SSV specification,
the layout generator computes offline the placement of visual marks on
zoom levels using several usability considerations (G3), e.g., bounded
visual density, free of clutter, etc. Along the way, useful aggregation
information (e.g. statistics and cluster boundaries) is also collected.
The computed layout information is stored in a multi-node database
with multi-node spatial indexes. Online, the data fetcher communicates
with the frontend and fetches data in user’s viewport from the multi-
node database with sub-500ms response times (G4-b). In the next
section, we describe these two components in greater detail.

6 LAYOUT GENERATION AND DATA FETCHING

Here, we first describe how we model the layout generation problem
(Section 6.1). We then describe a single-node layout algorithm (Section
6.2), which is the basis of a distributed algorithm detailed in Section
6.3. Lastly, Section 6.4 describes the design of the data fetcher.

6.1 Layout Generation: Problem Definition
We assume that there is a discrete set of zoom levels numbered 1, 2,
3. . . from top to bottom with a constant zoom factor between adjacent
levels (e.g. 2 as in many web maps). The layout generation problem
concerns how to, in a scalable manner, place visual marks onto these
zoom levels in a general way that works for any SSV that Kyrix-S’s
declarative grammar can express (G2).

To aid the formulation of the layout generation problem, we collect
a set of existing layout-related usability considerations from prior SSV
systems and surveys [5, 9, 13, 19, 21, 30], and list them as subgoals of
G3: Usable SSVs.
G3-a. Non/partial overlap. Cluster visual marks (Rule 3) should not
overlap or only overlap to a certain degree (if specified by Theta in Rule
19). For simplicity, we assume that Cluster marks have a fixed-size
bounding box, which is either decided by Kyrix-S or specified by the
developer (see Figure 2e for an example). We then only check the
overlap of bounding boxes.
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Figure 5. Marks P and Q with an ncd of q . Inner boxes (dashed) are the
bounding boxes of the marks. Outer boxes (solid) are bounding boxes
scaled by a factor of q . Scaled boxes do not overlap and touch on one
side. In general, for any two marks that have ncd greater than q , their
bounding boxes do not overlap after being scaled by a factor of q .

G3-b. Bounded visual density. Mark density in any viewing region
should not exceed an upper bound. Excessive density stresses the user
and slows down both the client and the server. Kyrix-S sets a default
upper bound K on how many marks should exist in any viewport-sized
region based on empirical estimates of the processing capability of
the database and the frontend. We should also avoid very low visual
density, which often leads to too many zoom levels and thus increased
navigation complexity. We therefore try to maximize spatial fullness
without violating the overlap constraint and the density upper bound.
G3-c. Zoom consistency. If one object is visible on zoom level i,
either through a custom Cluster mark or a Ranklist mark (Rule 7), it
should stay visible on all levels j > i. This principle is adopted by
many SSV systems that support inspection of individual objects (e.g.
[9, 13, 21]). The rationale is to aid object-centric tasks where keeping

track of locations of objects is important.
G3-d. Data abstraction quality. Data abstraction characterized by vi-
sual marks should be interpretable and not misinform the user. For Clus-
ter marks, it is important to reduce within-cluster variation [12, 19, 52],
which can be characterized by average distance of objects to the visual
mark that represent them [12]. We also adopt an importance policy,
where objects with high importance (Rule 18) should be more likely to
be visible on top zoom levels than objects with low importance. This
is a commonly adopted principle to help the user see representative
objects early on in the navigation process [13, 21].
Discussion. Despite that subgoals G3-a⇠d are all from existing works,
we are not aware of any prior system that addresses all of them. As
mentioned in Section 2, a key distinction of Kyrix-S’s layout generation
is the broad design requirements of building a general and scalable
SSV authoring system. Due to this broad focus, finding an “optimal
layout” with the objectives and constraints in G3-a⇠d is hard. In fact,
one prior work [13] proves that with only a subset of G3-a⇠d, finding
the optimal layout is NP-hard (for an objective function they define).
Therefore, we do not attempt to define a formal constraint solving
problem. Instead we keep our goals qualitative and look for heuristic
solutions.

6.2 A Single-node Layout Algorithm
Here, we describe a single-node layout algorithm which assumes that
data fits in the memory of one computer.

We assume that the X /Y placement of a Cluster mark comes from
an object it represents. It is our future work to consider inexact place-
ment of the marks (e.g. “median location” or binned aggregation).
Additionally, the X /Y placement of a Hover mark is the same as the
corresponding Cluster mark. So in the rest of Section 6, any mention
of mark refers to a Cluster mark if not explicitly stated.
Enforcing a minimum distance between marks. For density and
overlap constraints, we make use of the normalized chessboard distance
(ncd) between two marks P and Q:

ncd(P,Q) = max(
|Px �Qx|

WB
,
|Py �Qy|

HB
)

where Px(Py) is the x(y) coordinate of the centroid of P in the pixel
space and WB(HB) is the width (height) of the bounding box of a mark
(note that bounding boxes of marks are of the same size).
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Figure 6. An illustration of the hierarchical clustering. There are 9 objects
A-I, in decreasing order of importance. Each octagon is a cluster, with
the representative object inside it. (a): Three zoom levels constructed.
A dashed ellipse indicates the merging of the lighter cluster into the
darker one. (b): A tree representation of the hierarchical clusters. The
number next to a cluster is the number of objects this cluster represents.
These numbers, along with other possible aggregation information, are
computed when clusters merge.

ncd helps us reason about non/partial overlap constraints. If
ncd(P,Q) � 1, P and Q do not overlap because they are at least one
bounding box width/height away on X or Y . Even if ncd is smaller than
one, the degree of overlap is bounded. For example, if ncd(P,Q) = 0.5,
the centroids of P and Q remain visible despite the potential overlap.

To this end, we set a lower bound q on the ncd between any two
visual marks, which is specified through the Theta component (e.g.
Figure 2c) or built-in with Cluster marks.

We also use q to enforce the visual density upper bound K (G3-
b). Intuitively, the smaller q is, the closer marks are, and thus the
denser the visualization is. We search for the smallest q (for maximum
spatial fullness, G3-b) that does not allow more than K marks in any
viewport-sized region (WV ⇥HV ). To find this q value, we show in
Figure 5 another perspective on how q controls the placement of marks:
enforcing that any ncd � q is equivalent to scaling the bounding boxes
of marks by a factor of q , and then enforcing that none of these scaled
bounding boxes overlap. So we are left with a simple bin-packing
problem. For a given q , the maximum number of marks that can be
packed into a viewport is:

P(q) =
⇠

WV
WB ·q

⇡
·
⇠

HV
HB ·q

⇡

With this, we can find the smallest q such that P(q)  K using a
binary search on q .

We take the larger q calculated/specified for the overlap and density
constraints. By imposing this lower bound on ncd, these two constraints
are strictly satisfied.
Hierarchical clustering. The key part of the algorithm is a bottom-up
hierarchical clustering process. Suppose there are h zoom levels. We
start with a fake bottom level h + 1 where every object is in its own
cluster. Each cluster’s aggregation information (e.g. aggregated stats
and cluster boundaries) is initialized using the only object in it, which
we call the “representative object” of a cluster in the following.

Then we build the clusters level by level. For each zoom level
i 2 [1,h ], we construct a new set of clusters by merging the clusters
on level i+1. Specifically, we iterate over all clusters on level i+1 in
the order of the importance of their representative objects. For each
cluster a on level i+1, we search for a cluster b on the current level
i with the closest ncd. If this ncd is smaller than q , we merge a into
b ; otherwise we add a to level i. Figure 6 shows an example with 9
objects and 3 zoom levels.

Zoom consistency (G3-c) is guaranteed by this algorithm because
each zoom level merges clusters from the one level down. By mathe-
matical induction, we can show that if an object is visible on level i, it is
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visible on any level j > i. By merging a cluster into its nearest neighbor
(measured in ncd), within-cluster variances can be reduced (G3-d).
Merging the clusters in the order of importance of their representative
objects is a greedy strategy to make important objects more visible on
top levels (G3-d).
Optimizations and complexity analysis. Let n be the total number
of objects. When constructing clusters for level i, sorting the clusters
on level i+1 takes O(n logn). We maintain a spatial search tree (e.g.
R-tree) of the clusters on level i so that nearest neighbor searches can
be done in O(logn). Inserting a new cluster into the tree also takes
O(logn). Therefore, the overall time complexity of this algorithm is
O(n logn) if we see the number of zoom levels as a constant.

6.3 A Multi-node Distributed Layout Algorithm
The algorithm presented in Section 6.2 only works on a single machine
which has limited memory. Here, we extend it to work with a multi-
node database system.5

Given the sequential nature of the single-node algorithm, one major
challenge here is how to utilize the parallelism offered by the multi-
node database. Our idea is to spatially partition a zoom level, perform
clustering in each partition independently in parallel and then merge the
partitions. Figure 7 shows an illustration of the three steps. We detail
them in the following, assuming the context of constructing clusters on
zoom level i from the clusters on level i+1.
Step 1: skew-resilient spatial partitioning. We use a KD-tree [6]
to spatially partition the 2D plane so that each resulting partition has
similar number of clusters from zoom level i+1. Note that each cluster
belongs to exactly one partition according to its centroid. A KD-tree is a
binary tree (Figure 7a) where every non-leaf tree node represents a split
of a subplane, and every leaf tree node is a final partition stored as a
table in one database node. KD-tree splits are axis-aligned and alternate
between horizontal and vertical as one goes down the hierarchy. For
each split, the median value of the corresponding axis is used as the
split point. We stop splitting when the number of clusters in a partition
can fit into the memory of one database node.
Step 2: processing partitions in parallel. Since each partition fits in
the memory of one database node, we can efficiently run the single-
node clustering algorithm on each partition in parallel. As a result, a
new set of clusters is produced in each partition where no two clusters
have an ncd smaller than q (Figure 7c).
Step 3: merging clusters on partition boundaries. After Step 2,
some clusters close to partition boundaries may have an ncd smaller
than q . Step 3 resolves these border cases by merging clusters along
KD-tree splits. We “process” (i.e. merging clusters along) KD-tree
splits in a bottom-up fashion, starting with splits that connect two leaf
partitions. After the KD-tree root is processed, we finish the layout
generation for level i.

When processing a given split, we make use of the fact that only
clusters whose centroid is within a certain distance to the split (WB ·q or
HB ·q depending on the orientation of the split) need to be considered.
Consider the horizontal split in Figure 8. The two horizontal dashed
lines indicate the range of cluster centroids that we need to consider.
Any cluster whose centroid is outside this range is at least q away (in
ncd) from any cluster on the other side of the split.

We use a greedy algorithm to process a KD-tree split. We iterate
over all clusters in the aforementioned range in the order of their
x coordinates (y if the split is vertical). We keep track of the last
added/merged cluster a . Let b be the currently considered cluster. If
ncd(a,b )� q , we add b and set a to b ; otherwise we merge a and b .
The one with the less important representative object is merged into the
other (g3-d). Then we update a accordingly.

Consider again Figure 8. There are five clusters A-E in decreasing
importance order. The boxes around clusters are their bounding boxes
scaled by a factor of q . So if two boxes overlap, two corresponding

5The distributed algorithm proposed here works with any multi-node
database that supports basic data partitioning (e.g. Hash-based) and 2D spatial
indexes.

clusters have an ncd smaller than q (see Figure 5). The above algorithm
iterates over the clusters in the following order: B,D,A,C,E. When
b = A, a = D. D is then merged into A because ncd(A,D)< q and D
has a less important representative object. For the same reason, E is
merged into C.
Optimizations and complexity analysis. Let M be the upper bound
on the number of clusters that can fit in memory. Hence there are
roughly T = n

M partitions, which means there are O(T ) KD-tree nodes.
Determining the splitting point can be done in O(logn), thus con-
structing the spatial partitions takes O(T · logn). Step 1 also involves
distributing the clusters to the correct database node, which is often
an expensive I/O bound process. So we do spatial partitioning only
once based on the bottom level, and reuse the same partition scheme
for other levels to avoid moving data around database nodes. Step 2
runs in O(M logM) because the single node algorithm is run in parallel
across partitions. Step 3 takes O(n logT ) because there are logT KD-
tree levels in total, and we need to consider for each KD-tree level n
clusters in the worst case. However, Step 3 is expected to run very fast
in practice because most clusters are out of the range in Figure 8.

6.4 Data Fetching
The data fetcher’s job is to efficiently fetch data in the user’s viewport
(G4-b). We make use of multi-node spatial indexes, which can help
fetch objects falling in a viewport-sized region with interactive response
times.
Creating multi-node spatial indexes. Suppose the j-th (1  j  T )
partition on zoom level i is stored in the database table ti, j, which has
roughly M clusters. We augment all such ti, j with a box-typed column
bbox, which stores the bounding box of cluster marks. We then build a
spatial index on column bbox, by issuing the following query:

CREATE INDEX sp_idx ON ti, j using gist(bbox);

In practice, these CREATE INDEX statements can be run in parallel by
the multi-node database.
Fetching data from relevant partitions. Given a user viewport V on
zoom level i, clusters from partition ti, j that are inside V can be fetched
by a query like the following:

SELECT * FROM ti, j WHERE bbox && V;

where && is the intersection operator. The spatial index on bbox ensures
that this query runs fast. We traverse the KD-tree to find out partitions
that intersect V , run the above query on these partitions and union the
results. Note that for top zoom levels that are small in size, there can
be too many partitions that intersect with the viewport, which can be
harmful for data fetching performance because we need to wait for
sequential network trips to many database nodes. Therefore, we merge
all partitions on each of the top L levels into one database table. L is an
empirically determined constant based on the relative size of the zoom
levels to the viewport size.

7 IMPLEMENTATION

We implement Kyrix-S as an extension to Kyrix [47], a general pan/-
zoom system we build.6 This enables the developer to both rapidly
author SSVs and reuse features of a general pan/zoom system in one
integrated system. For example, Kyrix supports multiple coordinated
views. Without switching tools, the developer can construct a multi-
view visualization in which one or more views are SSVs authored with
Kyrix-S. As another example, the developer can augment SSVs with
the semantic zooming functionality provided by Kyrix, where the user
can click on a visual mark and zoom into another SSV. Furthermore,
Kyrix provides APIs for integrating a pan/zoom visualization into a
web application, which are highly desired by the SSV developers we
collaborate with. Examples include programmatic pan/zoom control,
notifications of pan/zoom events, getting current visible data items, etc.

6Code available at https://github.com/tracyhenry/kyrix
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Figure 7. An illustration of the distributed clustering algorithm for zoom level i. (a), (b): clusters on zoom level i+1 are spatially partitioned and stored
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partition in parallel, merging clusters that have an ncd smaller than q ; (d): merging clusters close to partition boundaries.
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Figure 8. An example of merging clusters along a KD-tree split.

Specification compilation. Kyrix-S uses a Node.js module to validate
the JSON-based SSV specification. Validated specifications are com-
piled into low-level Kyrix specifications so that part of Kyrix’s frontend
code can be reused to handle rendering and pan/zoom interactions.
Layout generator and data fetcher. Kyrix-S’s layout generator and
data fetcher override respectively Kyrix’s index generator and data
fetcher. Both components are written in the same Java application,
using the Java Database Connectivity (JDBC) to talk to Citus7, an
open-source multi-node database built on top of PostgreSQL. The
layout generator uses PLV88, a PostgreSQL extension that enables
implementation of algorithms in Section 6 in Javascript functions,
along with parallel execution of those functions directly inside each
Citus database node.
Database deployment and orchestration. Kyrix-S provides useful
scripts for one-command deployment of Kyrix-S and database depen-
dencies (G1). We use Kubernetes9 to orchestrate a group of nodes
running containerized Citus and Kyrix-S built with Docker10.

8 EVALUATION
We conducted extensive experiments to evaluate two aspects of Kyrix-S:
1) performance and 2) authoring effort.

8.1 Performance
We conducted performance experiments to evaluate the online serving
and indexing performance of Kyrix-S. We used both example SSVs in
Figures 1 and 2 and a synthetic circle-based SSV SYN that visualizes a
skewed dataset where 80% of the objects are in 20% of the 2D plane,
and the rest of the 20% are uniformly distributed across the 2D plane.
For database partitioning, we set M = 2 million, i.e., each partition has
roughly 2 million objects. So for a dataset with N objects, there are
K =

⌃ N
M
⌥

partitions. Based on the number of partitions, we provision
a Google Cloud Kubernetes cluster with

⌃K
8
⌥
n1-standard-8 Post-

greSQL nodes (8 vCPUs, 30GB memory), each serving 8 partitions.

8.1.1 Online Serving Performance
To measure the online response times, we used a user trace where one
pans around to find the most skewed region on a zoom level, zooms in,

7https://www.citusdata.com/
8https://plv8.github.io/
9https://cloud.google.com/kubernetes-engine/

10https://www.docker.com/
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Data size (# of Objects)

In
de

xi
ng

 T
im

e 
(m

in
ut

es
)

0

50

100

150

1B512M256M128M64M32M

Spatial Index Step 3 Step 2 Redistribution KD Tree

Figure 10. Indexing scalability on the synthetic SSV SYN.

repeats until reaching the bottom level and then zooms all the way back
to the top level. We measured the 95-th percentile11 of all data fetching
time and network time.

Table 2 shows the results on five SSVs. The 95-percentile data
fetching times were all below 32ms. The reason was because we only
fetched data from the partitions that intersect with the viewport and
we built spatial indexes which sped up the spatial queries. Network
times were mostly negligible except for TAXI HEATMAP and TAXI
CONTOUR, where many more data items were fetched due to smaller
q values.

Figure 9 shows the response times on different sizes of the synthetic
SSV SYN. We can see that the response times remained stably under
20ms for data sizes from 32 million to 1 billion.

8.1.2 Offline Indexing Performance
Table 3 shows the indexing performance of the layout generator on
five example SSVs. We make the following observations. First, the
indexing phase finished in reasonable time: every example finished

11A 95-percentile says that 95% of the time, the response time is equal to or
below this value. This is a common metric for measuring network latency of
web applications.
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Table 2. Online serving time (95-th percentile, in milliseconds).
REDDIT TEXT

(Figure 2e,
1B objects)

REDDIT CIRCLE
(Figure 1,

1B objects)

TAXI HEATMAP
(Figure 2a,

178.3M objects)

TAXI CONTOUR
(Figure 2b,

178.3M objects)

LIQUOR
(Figure 2d,

17.3M objects)
Data Fetching 14 17 32 32 14

Network 1 1 223 254 1

Table 3. Offline indexing time (in minutes).
REDDIT TEXT

(Figure 2e,
1B objects)

REDDIT CIRCLE
(Figure 1,

1B objects)

TAXI HEATMAP
(Figure 2a,

178.3M objects)

TAXI CONTOUR
(Figure 2b,

178.3M objects)

LIQUOR
(Figure 2d,

17.3M objects)
Building KD-tree (Step 1) 11.8 10.5 2.7 2.4 0.7

Redistributing data (Step 1) 94.3 100.0 8.5 8.4 1.3
Parallel clustering (Step 2) 9.9 3.7 6.9 9.0 4.7
Merge partitions (Step 3) 61.3 18.2 1.1 0.8 0.1
Creating Spatial Indexes 2.4 1.3 1.2 1.2 1.3

Total 179.7 133.8 20.3 21.8 8.2

in less than 3 hours. Second, redistributing the data to the correct
spatial partition was the most time consuming part since it was an I/O
bound process. Fortunately, the same spatial partitions can be reused
for updatable data if the spatial distribution does not change drastically.
Third, parallel clustering and spatial index creation took the least time
because they could be run in parallel across partitions. Fourth, merging
clusters along KD-tree splits was mostly a cheap process. In fact, the
largest number of clusters along a KD-tree split was 16,647. The reason
that this step took longer on REDDIT TEXT than on REDDIT CIRCLE
was because it had more zoom levels (20 vs. 15) due to larger mark
size (text vs. circle). Moreover, iterating through objects along KD-tree
splits were much more time-consuming on the bottom five levels.

Figure 10 shows how indexing time changed for different sizes of the
synthetic SSV SYN. We can see that the indexing time scaled well as
the data size grew: as data size doubled, indexing time roughly doubled
as well.

8.2 Authoring Effort

In this experiment, we compared the authoring effort of Kyrix-S with
Kyrix [47], a state-of-the-art general pan/zoom system. To our best
knowledge, Kyrix is the only system that offers declarative primitives
for programming general pan/zoom visualizations. Former system-
s/languages such as D3 [8], Pad++ [3], Jazz [4] and ZVTM [43] re-
quire procedural programming which generally takes more authoring
effort [47]. We measured lines of specifications using both systems for
the two examples SSVs in Figures 2d and 2f. We used a code format-
ter12 to standardize the specifications, and only counted non-blank and
non-comment lines.13

Table 4. Comparison of lines of specifications when using Kyrix-S and
Kyrix to author the two example SSVs in Figure 2d and Figure 2f.

Kyrix-S Kyrix
Kyrix-S’s saving

over Kyrix
Figure 2d 62 lines 568 lines 9.2⇥
Figure 2f

w/ custom renderer
164 lines 610 lines 3.7⇥

Figure 2f
w/o custom renderer

68 lines 514 lines 7.6⇥

Table 4 shows the results. We can see that when authoring the two
example SSVs, Kyrix-S achieved respectively 9.2⇥ and 3.7⇥ saving
in specifications compared to Kyrix. In the second example, when we
excluded the custom renderer for soccer players (which has 96 lines),
the amount of savings was 7.6⇥. These savings came from Kyrix-S
abstracting away low-level details such as rendering of visual marks,
configuring zoom levels, etc.

12https://prettier.io/
13Code in this experiment is included in the supplemental materials.

The above comparison did not include the code for layout generation.
To enable the comparison, we stored the layouts generated by Kyrix-S
as database tables so that Kyrix could directly use them. However,
programming the layout was in fact a challenging task, as indicated by
the total lines of code of Kyrix-S’s layout generator (1,439). Therefore,
we conclude that Kyrix-S greatly reduced the user’s effort in authoring
SSVs compared to general pan/zoom systems.

9 LIMITATIONS AND FUTURE WORK

Other layout strategies. Kyrix-S’s layout generator assumes that the
location of a mark comes from an object. This can be relaxed to diver-
sify our layout generator. For example, supporting inexact placement of
marks such as binned aggregation [22] in SSVs is one future direction.
We also plan to investigate layout strategies that concern multi-class
scatterplots, e.g. how to preserve relative density orders among multiple
classes [9, 11].
More built-in templates. Our declarative grammar is designed to
enable rapid extension of the system with custom marks. This motivates
us to engage more with the open-source community and enrich our
built-in mark gallery with templates commonly required/authored by
developers.
Incremental updates. Currently, Kyrix-S assumes that data is static
and pre-materialize mark layouts. It is our future work to identify ways
to incrementally update our mark layout on dynamic data.
Animated transitions. A discrete-zoom-level model simplifies layout
generation, but can potentially lead to abrupt visual effect upon level
switching, especially for KDE-based renderers such as heatmaps. As
future work, we will use animated transitions to counter this limitation.
Raster Images-based SSVs. The visual density constraint, partly due
to limited processing capabilities of the frontend and the database,
forbids the creation of dense visualizations such as point clouds [42].
We envision the use of raster images to remove this constraint for these
visualizations where interaction with objects is not required.

10 CONCLUSION

In this paper, we presented the design of Kyrix-S, a system for easy
authoring of SSVs at scale. Kyrix-S contributed a declarative grammar
that enabled concise specification of a wide range of SSVs and rapid
authoring of custom marks. Behind the scenes, Kyrix-S automatically
generated layout of visual marks on zoom levels using a range of usabil-
ity guidelines such as maintaining a visual density budget and high data
abstraction quality. To scale to big skewed datasets, Kyrix-S worked
with a multi-node parallel database system to implement the layout
algorithm in a distributed setting. Multi-node spatial indexes were built
to achieve interactive response times. We demonstrated the expressivity
of Kyrix-S with a gallery of example SSVs. Experiments on real and
synthetic datasets showed that Kyrix-S scaled to big skewed datasets
with billions of objects and reduced the authoring effort significantly
compared to a state-of-the-art authoring system.
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