
Kyrix-J: Visual Discovery of Connected Datasets in a Data Lake
Wenbo Tao

wenbo@mit.edu
MIT CSAIL, Cambridge, MA

Adam Sah
asah@gmail.com
Independent

Leilani Battle
leibatt@cs.washington.edu

University of Washington, Seattle,
WA

Remco Chang
remco@cs.tufts.edu

Tufts University, Boston, MA

Michael Stonebraker
stonebraker@csail.mit.edu
MIT CSAIL, Cambridge, MA

A

B

C D E

F GH I

Figure 1:Kyrix-J facilitates the discovery of connected datasets in a data lake through interactive visualizations. Here we show
a typical usage flow of Kyrix-J deployed on theMONDIAL database[13] which involves identifying a table of interest using the
keyword search (a), inspecting data visualizations (b, d, f and i), performing “jumps” between visualizations (b→c→d, d→e→f
or b→h→i) and using the history panel to go back to a visited visualization (g).

ABSTRACT
Understanding data in large data lakes is becoming increasingly
challenging. While some existing systems help with data discovery
in data lakes, they are limited in surfacing connections between
datasets and helping users comprehend them, which is crucial for
many applications. To this end, we have built a system calledKyrix-J.
Kyrix-J uses interactive visualizations to enable rapid discovery of
connected datasets in data lakes. We allow a user to “jump” from
one visualization to another following connections between the
underlying data. Kyrix-J automatically generates these jumps so

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIDR ’22: Conference on Innovative Data Systems Research, Jan 10–13, 2022, Chaminade,
CA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

that the user can start using the system without a manual app-
authoring process. We also contribute a novel user interface with
Kyrix-J which facilitates a variety of database exploration tasks.
Finally, we conduct user study which shows that Kyrix-J is easy to
use and allows the users to effortlessly explore connected datasets
in a data lake.

ACM Reference Format:
Wenbo Tao, Adam Sah, Leilani Battle, Remco Chang, and Michael Stone-
braker. 2021. Kyrix-J: Visual Discovery of Connected Datasets in a Data
Lake. In Proceedings of CIDR ’22: Conference on Innovative Data Systems Re-
search. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
We are witnessing an explosion in the amounts of data being gener-
ated across domains. Within an organization, there are usually lots
of datasets that come from a variety of sources and are of different
quality and formats. Collectively, these datasets are often termed
“data lakes” [9, 11, 14, 19], which implies that the users of these
datasets are “drowned” in them, i.e., not being able to discover and
make sense of the datasets easily.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CIDR ’22: Conference on Innovative Data Systems Research, Jan 10–13, 2022, Chaminade, CA Tao et al.

Datasets in a data lake are typically highly interconnected, which
poses a major challenge to the users. Relational datasets are a ubiq-
uitous example where data tables represent different entities in the
business logic, and primary key-foreign key (PK-FK) links capture
the relationships between these entities[25]. There can be hundreds
to thousands of tables (sometimes without even a defined schema),
which makes it hard to comprehend what is in the data. For exam-
ple, the MIT data warehouse stores all information about entities at
MIT. It is a data lake with over 2,000 tables and even more PK-FK
connections, most of which the DBAs do not understand. Another
classic example of data connections involves derived datasets in
a data warehouse, where different teams within an organization
make derivations of the fact tables for different analytic purposes.
The derived tables commonly have a large overlap, which forms
data lineages[12]. Understanding those lineages is challenging yet
crucial for many use cases such as protecting user privacy[6] and
determining data staleness[10].

Given the need to understand datasets and their connections
in data lakes, organizations need effective data discovery systems.
Several existing systems[2, 9, 11] enable text-search-based data dis-
covery. Yet their ability to support exploration of connections be-
tween datasets is limited. Multiple lines of code or actions often
need to be taken to see one connected dataset. We posit that in
order to enable the user to fully understand data in data lakes, we
need to make those connections first-class citizens, i.e., to make
traversing along data connections effortless and to make it obvious
what datasets are connected.

In this paper, we present the design of Kyrix-J, a system that
enables visual data discovery for connected datasets in a data lake.
Kyrix-J employs data visualizations to present data and their rela-
tionships in a visual way, which is a key distinction compared to
prior data discovery systems. In particular, we make use of a “jump”
interaction which allows the user to quickly navigate between
visualizations of connected datasets.

We illustrate jumps inKyrix-J through an example usage scenario
(Figure 1) based on a public relational database calledMONDIAL[13]1,
which has 40 tables that correspond to real world entities (e.g.
country, lake, island) and their connections (e.g. lakeonisland).

1.1 A Usage Scenario
To start, a user types the search term China, a keyword of interest,
into a search box, sees a list of tables matching this keyword and
then clicks on the table country (Figure 1a). The visualization view
in the UI then switches to the default visualization for the table
country, which is a circle pack visualization of countries where
the color and size of circles encode the population (Figure 1b).

The user then clicks on the circle with the label China and sees
a menu showing a list of possible “jumps” from the current visual-
ization (Figure 1c), which are automatically generated by Kyrix-J.
The user chooses to perform a jump to the visualization called
Provinces and their Area for the table province. Prior to the
jump, another popover window appears upon hovering over the
jump option, allowing the user to examine the SQL query and filters
of the new visualization (Figure 1c).

1A demo can be accessed here: http://104.197.126.112:4000/

App generator

DBMS

User

Connection
collector

Vis authoring
engine

UI JSON

Vis
specifications

Figure 2: The Kyrix-J system architecture.

The target visualization (Figure 1d) is again a circle pack vi-
sualization showing provinces in China and their area, in which
the user is interested in the Sichuan province. After clicking on
Sichuan, the user decides to jump to a new visualization Province
Population Over Time for the provpops table (Figure 1e) to see
the population of Sichuan over time in a bar chart (Figure 1f).

Next, the user decides to see something about United States.
Recalling seeing United States in the visualization in Figure 1b,
the user opens up the history panel (Figure 1g) and clicks on the
item containing that visualization to go back to Figure 1b. From
there, the user clicks on United States and goes to the visual-
ization Percentage of Ethnic Groups in the Country for
the ethnicgroup table. The new visualization shows what ethnic
groups there are in the United States and what their percentages
are.

In this example, the user has performed two chains of jumps (b
→ c→ d→ e→ f and b→ h→ i in Figure 1), each of which allows
drilling into details of the data tables and seeing different facets of
the visualizations.

1.2 Key Contributions
A key contribution of Kyrix-J is an automaticmechanism to connect
visualizations through jumps (Section 5). No manual intervention
is required to start using the system for a new data lake. The jumps
are presented in a novel user interface (Section 6) which supports
the user in performing common database exploration tasks.

We have built a prototype system and conducted a user study
(Section 7). The results indicate that Kyrix-J is easy to use and learn
and helps the participants effortlessly understand the relationship
between datasets.

2 SYSTEM ARCHITECTURE
From the user’s point of view, Kyrix-J should offer an easy-to-use in-
terface which enables rapid discovery of connected data. To support
this user interface, Kyrix-J has a few components which perform
pre-processing steps such as collecting data connections, facilitat-
ing visualization authoring and building jump paths. Figure 2 shows
the system architecture.

First and foremost, we assume that the data resides in a DBMS.
As shown in Figure 2, there are three main components in addition
to the UI, which provides the pre-processing and services needed
to render the UI.
Connectionprofiler. Although some built-in connections between
datasets may exist (e.g. PK-FK links), in the real-world data con-
nections are often not given by default. The connection profiler

Kyrix-J: Visual Discovery of Connected Datasets in a Data Lake CIDR '22: Conference on Innovative Data Systems Research, Jan 10�13, 2022, Chaminade, CA

identi�es data connections that are useful to show to the users. See
Section 3 for details.
Vis authoring engine . We provide an engine for users to author
visualizations of data in the DBMS if desired. This engine is based
on a prior authoring system called Kyrix[24] we have built. We
detail it in Section 4.
App generator . To enable the users to perform jumps along data
connections, the app generator automatically generates meaningful
jump paths between data visualizations. The app generator also
serves as a server which sends necessary data to the client. In
Section 5 we detail the auto-jump solution.

Last but not least, we describe our UI in greater details in Section
6. A user study of this UI is presented in Section 7.

3 PROFILING DATA CONNECTIONS
We use a simple model to characterize connected datasets in a data
lake, where the data is organized into tables (such as those in an
RDBMS), and each connection links two columns from two tables
that are semantically similar/equivalent.2 This type of connections
often do not exist beforehand, although in some cases they are
available (e.g. PK-FK links in an RDBMS schema).

There is an extensive literature on identifying similar columns
between data tables. Many commercial and open source data inte-
gration tools also o�er such capability (e.g. Aurum[9], Tamr[21] and
Google's Goods[11]). These systems typically capture column simi-
larities by buildingcolumn pro�les, which summarize the content
of columns using set similarity metrics or ML-based embeddings.
A similarity search/join process is then performed to identify top-k
similar column pairs.

Kyrix-J treats the connection pro�ler as a black box that can
be implemented di�erently depending on the use case. By default,
the Aurum system[9] can be used as a generic method to identify
similar or equivalent columns. Aurum uses a two-step process
which �rst summarizes each column into a space-e�cient signature,
and then employs sketching techniques to identify column matches
in linear time. When a custom-method is used, the general guideline
is that the module needs to be scalable, and should not have a time
complexity that is quadratic in the number of columns.

4 SUPPORTING VISUALIZATION
AUTHORING

In Kyrix-J, we use data visualizations to present useful information
about tables. The jumps between data visualizations bring the user
from one visualization to another, enabling a visual data discovery
experience. To support quick cold starts, we provide default visu-
alizations for each table in the form of a word cloud or a tabular
visualization.

To enable the creation of custom visualizations, we also provide
a declarative language which the user can use to author a new
visualization in tens of lines of JSON code. In our prototype, we
support �ve custom visualizations: pie charts, bar charts, circle
packs, treemaps and scatterplots.3 This visualization language is

2Connections on the table level or record-level may also be of interest, but we focus
on column-level connections in this paper.
3See demos here: https://github.com/tracyhenry/Kyrix/wiki/Template-API-Reference#
static-aggregations

implemented on top of the Kyrix system[23, 24], which is a more
low-level visualization authoring system we have built. To support
more types of visualizations, we plan to integrate with established
visualization languages such as Vega-lite[17] in the future.

Currently, we o�er a JSON-based interface where the user com-
piles a custom visualization into the application using the com-
mand line. It is our future work to support authoring visualizations
directly in the UI with direct manipulation (e.g. similar to how
Tableau[20] works).

5 AUTOMATIC GENERATION OF JUMPS
Given a set of visualizations,Kyrix-Jaims to automatically identify
a set of jumps, each of which connects a pair of visualizations. As
illustrated in Section 1.1, a jump essentially allows the user to select
one object in one visualization, use the selected object to �lter the
jump-to visualization, and repeatedly do so to perform drill downs.
For each jump, there is an implicit join between two columns from
the tables that the visualizations are based on. Naturally, we can
construct the jumps based on the similar columns identi�ed by the
connection pro�ler. In this section, we formally de�ne the problem
and present a simple solution based on this idea.

5.1 Problem De�nition
Here, we use theauto jump problemto refer to the problem of
automatically identifying jumps between visualizations. To formally
de�ne the auto jump problem, we �rst introduce a few de�nitions.

Definition 1 (Visualizations). A visualization V is a tuple
¹+& •+� •+) •+% º.+& is the SQL query used to fetch the data items
for + from the DBMS.+� represents the query results of+& . +)
denotes the table used in+& . The primary key of a visualization V,
denoted as+% , is the set of data �elds in+� which uniquely identify
each object in V.

To get+% , i.e., the primary key for each visualization+ , we use
+& , i.e., the SQL query of+ . If +& is a SQLGROUP BYaggregation
query, we use theGROUP BYcolumns in+& as+% ; otherwise we
use the primary key of+) as+% .4

We illustrate De�nition 1 with Figure 3b.+2 is a bar chart show-
ing countries in South America and their area.+2) is a table called
encompasseswhere each data item denotes one continent encom-
passing a country and has a corresponding attributearea indicating
the area of the country.+2& is a SQLGROUP BYquery which groups
all data items by country and also computes the area of the country
using theMAXaggregate.5 Thus+2% is theGROUP BYcolumns of
+2& , i.e., thecountry column in tableencompasses. This suggests
that each object (bar) in+2 is a country.

Next, we de�ne a �lter function.

4We make two assumptions to simplify the presentation. First, each DBMS table has
exactly one primary key. Our techniques easily extend to the case where a table has
multiple primary keys. Second, the SQL query for a visualization is either aGROUP
BYquery, or simply aSELECTquery which selects some �elds from a table. If a SQL
query is too complex for this assumption, we assume that an expert (e.g. a database
administrator) materializes the query result into a table and rewrites the SQL query to
�t this assumption.
5Data items in the same group have the same area. TheMAXaggregate is only used to
get that number, and could be replaced byMINor AVG.

CIDR '22: Conference on Innovative Data Systems Research, Jan 10�13, 2022, Chaminade, CA Tao et al.

Figure 3: An example jump with annotations of the SQL
queries, data items, primary keys of the visualizations, the
�lter function and the corresponding data connection.

Definition 2 (Filter Functions). A �lter function � takes a
visual object> as input, and outputs a set of �lters. Each �lter is in
the form1 = >”0where1 is one column and>”0is the value of the0
�eld of >.

A jump is then de�ned as follows.

Definition 3 (Jump). A jump from+1 to+2 is a tuple (+1,+2, F)
that satis�es the following: 1)+1 and+2 are visualizations; 2) F is a
�lter function; and 3) the output of� when applied on an object in
+1 satis�es the following: a) there arej+1% j �lters in total; b) each
column in+1% appears on the right-hand side of exactly one �lter;
and c) the left-hand side of each �lter is a column in+2) .

In other words, requirement 3) says that the resulting �lters of�
applied on an object in+1 form a one-to-one mapping from columns
in +1% to a subset of columns in+2) .

Consider the example jump in Figure 3 where a user selects
South Americain the pie chart+1 and jumps to+2 to see coun-
tries in South Americaand their area. The �lter function returns
continent =>.namewhen applied on an object> in +1, which forms
a one-to-one mapping from the only column in+1% (thenamecol-
umn in tablecontinent) to one column in+2) (the continent
column in tableencompasses). When the user selects the object
South Americato start the jump, the �lter function returns the
�lter continent = South America.

While De�nition 3 is useful in characterizing a jump, note that
there could be many possible �lter functions that map columns in
+1% to columns in+2) . Not every mapping is useful. Therefore,
we need to de�ne what constitutes a meaningful jump.

Definition 4 (Meaningful Jumps). We say that a jump¹+1•+2• � º
is meaningful, if and only if any �lter generated by� connects two

columns from+1� and+2� that are semantically equivalent, i.e.,
representing the same real-world entity.

For example, the �ltercontinent = >.namemakes the jump in
Figure 3 meaningful because both columns represent continents.
Yet if the �lter function is changed to returncountry = >.name, the
jump would not be meaningful.

With De�nitions 1-4, we can now de�ne the auto jump problem.

Definition 5 (The Auto Jump Problem). Given a set of visual-
izationsV, identify all meaningful jumps¹+1•+2• � º such that+1 2 V
and+2 2 V.

5.2 The Auto-Jump Solution
The auto-jump solution makes use of data connections between
columns identi�ed by the connection pro�ler. The high-level strat-
egy is to search for meaningful jumps betweenall pair of visual-
izations. For each pair+1 and+2, we attempt to �nd one-to-one
mappings from+1% to +2) so that each pair of columns being
mapped are semantically equivalent according to the connection
pro�ler. We can then get a meaningful jump with each such map-
ping by constructing a �lter function (De�nition 4).

When we apply this solution to the example MONDIAL database
and get over 1,000 meaningful jumps between 70 visualizations for
40 tables.

6 USER INTERFACE
The high-level goal of the UI is to present the jumps generated by
the algorithm in Section 5 in an accessible way that facilitates rapid
discovery of data connections. Speci�cally, we should make it easy
to browse a large number of such jump paths and also help users
stay oriented during their exploration.

The Kyrix-JUI features multiple coordinated views (Figure 4).
The keyword search box (Figure 4a) allows a user to identify a
table to start their exploration. The visualization view (Figure 4b)
presents one visualization at a time. The graph view (Figure 4c) is
a simpli�ed Entity-Relationship diagram showing each table as a
graph node and data connections between tables as graph edges.
When hovering over a node/edge in the graph view, more infor-
mation shows up in a popover (Figures 4i-j). Informational views
(Figures 4d-f) show the current SQL query, �lters and mappings
from visual properties to data attributes. Figure 4g is a popover
appearing after the user clicks on an object, which contains a list
of jumps automatically generated byKyrix-J. Figure 4h shows a list
of bookmarked visualizations. In Figure 4k, data items show up in
a tabular format after the user clicks on the �raw data� button.

7 USER STUDY
We conducted an observational �rst-use study to evaluate the us-
ability of Kyrix-Jwith eight participants (5 females, 3 males, age
range 21-55, diverse experiences in DBMS and visualization tech-
nologies). We asked the participants to complete �ve search tasks
(Table 1) usingKyrix-Jand recorded the time taken and the accuracy.
After the completion of the tasks, we collected free-form feedback
from the participant in a semi-structured interview. The study con-
cluded with the participants �lling out a post-study questionnaire
where they rated how much they agree with statements about the

	Abstract
	1 Introduction
	1.1 A Usage Scenario
	1.2 Key Contributions

	2 System Architecture
	3 Profiling Data Connections
	4 Supporting Visualization Authoring
	5 Automatic Generation of Jumps
	5.1 Problem Definition
	5.2 The Auto-Jump Solution

	6 User Interface
	7 User Study
	7.1 Results and Discussions

	8 Related Works
	9 Discussions on Limitations and Future Work
	References

