
Kyrix-J: Visual Discovery of Connected Datasets in a Data Lake
Wenbo Tao

wenbo@mit.edu
MIT CSAIL, Cambridge, MA

Adam Sah
asah@gmail.com
Independent

Leilani Battle
leibatt@cs.washington.edu

University of Washington, Seattle,
WA

Remco Chang
remco@cs.tufts.edu

Tufts University, Boston, MA

Michael Stonebraker
stonebraker@csail.mit.edu
MIT CSAIL, Cambridge, MA

A

B

C D E

F GH I

Figure 1:Kyrix-J facilitates the discovery of connected datasets in a data lake through interactive visualizations. Here we show
a typical usage flow of Kyrix-J deployed on theMONDIAL database[13] which involves identifying a table of interest using the
keyword search (a), inspecting data visualizations (b, d, f and i), performing “jumps” between visualizations (b→c→d, d→e→f
or b→h→i) and using the history panel to go back to a visited visualization (g).

ABSTRACT
Understanding data in large data lakes is becoming increasingly
challenging. While some existing systems help with data discovery
in data lakes, they are limited in surfacing connections between
datasets and helping users comprehend them, which is crucial for
many applications. To this end, we have built a system calledKyrix-J.
Kyrix-J uses interactive visualizations to enable rapid discovery of
connected datasets in data lakes. We allow a user to “jump” from
one visualization to another following connections between the
underlying data. Kyrix-J automatically generates these jumps so

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIDR ’22: Conference on Innovative Data Systems Research, Jan 10–13, 2022, Chaminade,
CA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

that the user can start using the system without a manual app-
authoring process. We also contribute a novel user interface with
Kyrix-J which facilitates a variety of database exploration tasks.
Finally, we conduct user study which shows that Kyrix-J is easy to
use and allows the users to effortlessly explore connected datasets
in a data lake.

ACM Reference Format:
Wenbo Tao, Adam Sah, Leilani Battle, Remco Chang, and Michael Stone-
braker. 2021. Kyrix-J: Visual Discovery of Connected Datasets in a Data
Lake. In Proceedings of CIDR ’22: Conference on Innovative Data Systems Re-
search. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
We are witnessing an explosion in the amounts of data being gener-
ated across domains. Within an organization, there are usually lots
of datasets that come from a variety of sources and are of different
quality and formats. Collectively, these datasets are often termed
“data lakes” [9, 11, 14, 19], which implies that the users of these
datasets are “drowned” in them, i.e., not being able to discover and
make sense of the datasets easily.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CIDR ’22: Conference on Innovative Data Systems Research, Jan 10–13, 2022, Chaminade, CA Tao et al.

Datasets in a data lake are typically highly interconnected, which
poses a major challenge to the users. Relational datasets are a ubiq-
uitous example where data tables represent different entities in the
business logic, and primary key-foreign key (PK-FK) links capture
the relationships between these entities[25]. There can be hundreds
to thousands of tables (sometimes without even a defined schema),
which makes it hard to comprehend what is in the data. For exam-
ple, the MIT data warehouse stores all information about entities at
MIT. It is a data lake with over 2,000 tables and even more PK-FK
connections, most of which the DBAs do not understand. Another
classic example of data connections involves derived datasets in
a data warehouse, where different teams within an organization
make derivations of the fact tables for different analytic purposes.
The derived tables commonly have a large overlap, which forms
data lineages[12]. Understanding those lineages is challenging yet
crucial for many use cases such as protecting user privacy[6] and
determining data staleness[10].

Given the need to understand datasets and their connections
in data lakes, organizations need effective data discovery systems.
Several existing systems[2, 9, 11] enable text-search-based data dis-
covery. Yet their ability to support exploration of connections be-
tween datasets is limited. Multiple lines of code or actions often
need to be taken to see one connected dataset. We posit that in
order to enable the user to fully understand data in data lakes, we
need to make those connections first-class citizens, i.e., to make
traversing along data connections effortless and to make it obvious
what datasets are connected.

In this paper, we present the design of Kyrix-J, a system that
enables visual data discovery for connected datasets in a data lake.
Kyrix-J employs data visualizations to present data and their rela-
tionships in a visual way, which is a key distinction compared to
prior data discovery systems. In particular, we make use of a “jump”
interaction which allows the user to quickly navigate between
visualizations of connected datasets.

We illustrate jumps inKyrix-J through an example usage scenario
(Figure 1) based on a public relational database calledMONDIAL[13]1,
which has 40 tables that correspond to real world entities (e.g.
country, lake, island) and their connections (e.g. lakeonisland).

1.1 A Usage Scenario
To start, a user types the search term China, a keyword of interest,
into a search box, sees a list of tables matching this keyword and
then clicks on the table country (Figure 1a). The visualization view
in the UI then switches to the default visualization for the table
country, which is a circle pack visualization of countries where
the color and size of circles encode the population (Figure 1b).

The user then clicks on the circle with the label China and sees
a menu showing a list of possible “jumps” from the current visual-
ization (Figure 1c), which are automatically generated by Kyrix-J.
The user chooses to perform a jump to the visualization called
Provinces and their Area for the table province. Prior to the
jump, another popover window appears upon hovering over the
jump option, allowing the user to examine the SQL query and filters
of the new visualization (Figure 1c).

1A demo can be accessed here: http://104.197.126.112:4000/

App generator

DBMS

User

Connection
collector

Vis authoring
engine

UI JSON

Vis
specifications

Figure 2: The Kyrix-J system architecture.

The target visualization (Figure 1d) is again a circle pack vi-
sualization showing provinces in China and their area, in which
the user is interested in the Sichuan province. After clicking on
Sichuan, the user decides to jump to a new visualization Province
Population Over Time for the provpops table (Figure 1e) to see
the population of Sichuan over time in a bar chart (Figure 1f).

Next, the user decides to see something about United States.
Recalling seeing United States in the visualization in Figure 1b,
the user opens up the history panel (Figure 1g) and clicks on the
item containing that visualization to go back to Figure 1b. From
there, the user clicks on United States and goes to the visual-
ization Percentage of Ethnic Groups in the Country for
the ethnicgroup table. The new visualization shows what ethnic
groups there are in the United States and what their percentages
are.

In this example, the user has performed two chains of jumps (b
→ c→ d→ e→ f and b→ h→ i in Figure 1), each of which allows
drilling into details of the data tables and seeing different facets of
the visualizations.

1.2 Key Contributions
A key contribution of Kyrix-J is an automaticmechanism to connect
visualizations through jumps (Section 5). No manual intervention
is required to start using the system for a new data lake. The jumps
are presented in a novel user interface (Section 6) which supports
the user in performing common database exploration tasks.

We have built a prototype system and conducted a user study
(Section 7). The results indicate that Kyrix-J is easy to use and learn
and helps the participants effortlessly understand the relationship
between datasets.

2 SYSTEM ARCHITECTURE
From the user’s point of view, Kyrix-J should offer an easy-to-use in-
terface which enables rapid discovery of connected data. To support
this user interface, Kyrix-J has a few components which perform
pre-processing steps such as collecting data connections, facilitat-
ing visualization authoring and building jump paths. Figure 2 shows
the system architecture.

First and foremost, we assume that the data resides in a DBMS.
As shown in Figure 2, there are three main components in addition
to the UI, which provides the pre-processing and services needed
to render the UI.
Connectionprofiler. Although some built-in connections between
datasets may exist (e.g. PK-FK links), in the real-world data con-
nections are often not given by default. The connection profiler

Kyrix-J: Visual Discovery of Connected Datasets in a Data Lake CIDR ’22: Conference on Innovative Data Systems Research, Jan 10–13, 2022, Chaminade, CA

identifies data connections that are useful to show to the users. See
Section 3 for details.
Vis authoring engine. We provide an engine for users to author
visualizations of data in the DBMS if desired. This engine is based
on a prior authoring system called Kyrix[24] we have built. We
detail it in Section 4.
App generator. To enable the users to perform jumps along data
connections, the app generator automatically generates meaningful
jump paths between data visualizations. The app generator also
serves as a server which sends necessary data to the client. In
Section 5 we detail the auto-jump solution.

Last but not least, we describe our UI in greater details in Section
6. A user study of this UI is presented in Section 7.

3 PROFILING DATA CONNECTIONS
We use a simple model to characterize connected datasets in a data
lake, where the data is organized into tables (such as those in an
RDBMS), and each connection links two columns from two tables
that are semantically similar/equivalent.2 This type of connections
often do not exist beforehand, although in some cases they are
available (e.g. PK-FK links in an RDBMS schema).

There is an extensive literature on identifying similar columns
between data tables. Many commercial and open source data inte-
gration tools also offer such capability (e.g. Aurum[9], Tamr[21] and
Google’s Goods[11]). These systems typically capture column simi-
larities by building column profiles, which summarize the content
of columns using set similarity metrics or ML-based embeddings.
A similarity search/join process is then performed to identify top-k
similar column pairs.

Kyrix-J treats the connection profiler as a black box that can
be implemented differently depending on the use case. By default,
the Aurum system[9] can be used as a generic method to identify
similar or equivalent columns. Aurum uses a two-step process
which first summarizes each column into a space-efficient signature,
and then employs sketching techniques to identify column matches
in linear time.When a custom-method is used, the general guideline
is that the module needs to be scalable, and should not have a time
complexity that is quadratic in the number of columns.

4 SUPPORTING VISUALIZATION
AUTHORING

In Kyrix-J, we use data visualizations to present useful information
about tables. The jumps between data visualizations bring the user
from one visualization to another, enabling a visual data discovery
experience. To support quick cold starts, we provide default visu-
alizations for each table in the form of a word cloud or a tabular
visualization.

To enable the creation of custom visualizations, we also provide
a declarative language which the user can use to author a new
visualization in tens of lines of JSON code. In our prototype, we
support five custom visualizations: pie charts, bar charts, circle
packs, treemaps and scatterplots.3 This visualization language is

2Connections on the table level or record-level may also be of interest, but we focus
on column-level connections in this paper.
3See demos here: https://github.com/tracyhenry/Kyrix/wiki/Template-API-Reference#
static-aggregations

implemented on top of the Kyrix system[23, 24], which is a more
low-level visualization authoring system we have built. To support
more types of visualizations, we plan to integrate with established
visualization languages such as Vega-lite[17] in the future.

Currently, we offer a JSON-based interface where the user com-
piles a custom visualization into the application using the com-
mand line. It is our future work to support authoring visualizations
directly in the UI with direct manipulation (e.g. similar to how
Tableau[20] works).

5 AUTOMATIC GENERATION OF JUMPS
Given a set of visualizations, Kyrix-J aims to automatically identify
a set of jumps, each of which connects a pair of visualizations. As
illustrated in Section 1.1, a jump essentially allows the user to select
one object in one visualization, use the selected object to filter the
jump-to visualization, and repeatedly do so to perform drill downs.
For each jump, there is an implicit join between two columns from
the tables that the visualizations are based on. Naturally, we can
construct the jumps based on the similar columns identified by the
connection profiler. In this section, we formally define the problem
and present a simple solution based on this idea.

5.1 Problem Definition
Here, we use the auto jump problem to refer to the problem of
automatically identifying jumps between visualizations. To formally
define the auto jump problem, we first introduce a few definitions.

Definition 1 (Visualizations). A visualization V is a tuple
(𝑉𝑄 ,𝑉𝐷 ,𝑉𝑇 ,𝑉𝑃𝐾). 𝑉𝑄 is the SQL query used to fetch the data items
for 𝑉 from the DBMS. 𝑉𝐷 represents the query results of 𝑉𝑄 . 𝑉𝑇
denotes the table used in 𝑉𝑄 . The primary key of a visualization V,
denoted as𝑉𝑃𝐾 , is the set of data fields in𝑉𝐷 which uniquely identify
each object in V.

To get𝑉𝑃𝐾 , i.e., the primary key for each visualization𝑉 , we use
𝑉𝑄 , i.e., the SQL query of 𝑉 . If 𝑉𝑄 is a SQL GROUP BY aggregation
query, we use the GROUP BY columns in 𝑉𝑄 as 𝑉𝑃𝐾 ; otherwise we
use the primary key of 𝑉𝑇 as 𝑉𝑃𝐾 .4

We illustrate Definition 1 with Figure 3b. 𝑉2 is a bar chart show-
ing countries in South America and their area. 𝑉2𝑇 is a table called
encompasses where each data item denotes one continent encom-
passing a country and has a corresponding attribute area indicating
the area of the country.𝑉2𝑄 is a SQL GROUP BY query which groups
all data items by country and also computes the area of the country
using the MAX aggregate.5 Thus 𝑉2𝑃𝐾 is the GROUP BY columns of
𝑉2𝑄 , i.e., the country column in table encompasses. This suggests
that each object (bar) in 𝑉2 is a country.

Next, we define a filter function.

4We make two assumptions to simplify the presentation. First, each DBMS table has
exactly one primary key. Our techniques easily extend to the case where a table has
multiple primary keys. Second, the SQL query for a visualization is either a GROUP
BY query, or simply a SELECT query which selects some fields from a table. If a SQL
query is too complex for this assumption, we assume that an expert (e.g. a database
administrator) materializes the query result into a table and rewrites the SQL query to
fit this assumption.
5Data items in the same group have the same area. The MAX aggregate is only used to
get that number, and could be replaced by MIN or AVG.

https://github.com/tracyhenry/Kyrix/wiki/Template-API-Reference##static-aggregations
https://github.com/tracyhenry/Kyrix/wiki/Template-API-Reference##static-aggregations

CIDR ’22: Conference on Innovative Data Systems Research, Jan 10–13, 2022, Chaminade, CA Tao et al.

country MAX(area)
Argentina 2,766,890

Brazil 8,511,965

Paraguay 406,750

... ...

name area
Asia 44,614,500

Europe 10,523,000

South America 17,840,000

... ...

continent.name

Filters

encompasses.country

A

B

Data connection Filter function

continent

encompasses

Figure 3: An example jump with annotations of the SQL
queries, data items, primary keys of the visualizations, the
filter function and the corresponding data connection.

Definition 2 (Filter Functions). A filter function 𝐹 takes a
visual object 𝑜 as input, and outputs a set of filters. Each filter is in
the form 𝑏 = 𝑜.𝑎 where 𝑏 is one column and 𝑜.𝑎 is the value of the 𝑎
field of 𝑜 .

A jump is then defined as follows.

Definition 3 (Jump). A jump from 𝑉1 to 𝑉2 is a tuple (𝑉1, 𝑉2, F)
that satisfies the following: 1) 𝑉1 and 𝑉2 are visualizations; 2) F is a
filter function; and 3) the output of 𝐹 when applied on an object in
𝑉1 satisfies the following: a) there are |𝑉1𝑃𝐾 | filters in total; b) each
column in 𝑉1𝑃𝐾 appears on the right-hand side of exactly one filter;
and c) the left-hand side of each filter is a column in 𝑉2𝑇 .

In other words, requirement 3) says that the resulting filters of 𝐹
applied on an object in𝑉1 form a one-to-one mapping from columns
in 𝑉1𝑃𝐾 to a subset of columns in 𝑉2𝑇 .

Consider the example jump in Figure 3 where a user selects
South America in the pie chart 𝑉1 and jumps to 𝑉2 to see coun-
tries in South America and their area. The filter function returns
continent = 𝑜 .namewhen applied on an object 𝑜 in𝑉1, which forms
a one-to-one mapping from the only column in 𝑉1𝑃𝐾 (the name col-
umn in table continent) to one column in 𝑉2𝑇 (the continent
column in table encompasses). When the user selects the object
South America to start the jump, the filter function returns the
filter continent = South America.

While Definition 3 is useful in characterizing a jump, note that
there could be many possible filter functions that map columns in
𝑉1𝑃𝐾 to columns in 𝑉2𝑇 . Not every mapping is useful. Therefore,
we need to define what constitutes a meaningful jump.

Definition 4 (Meaningful Jumps). We say that a jump (𝑉1,𝑉2, 𝐹)
is meaningful, if and only if any filter generated by 𝐹 connects two

columns from 𝑉1𝐷 and 𝑉2𝐷 that are semantically equivalent, i.e.,
representing the same real-world entity.

For example, the filter continent = 𝑜 .name makes the jump in
Figure 3 meaningful because both columns represent continents.
Yet if the filter function is changed to return country = 𝑜 .name, the
jump would not be meaningful.

With Definitions 1-4, we can now define the auto jump problem.

Definition 5 (The Auto Jump Problem). Given a set of visual-
izationsV, identify all meaningful jumps (𝑉1,𝑉2, 𝐹) such that𝑉1 ∈ V
and 𝑉2 ∈ V.

5.2 The Auto-Jump Solution
The auto-jump solution makes use of data connections between
columns identified by the connection profiler. The high-level strat-
egy is to search for meaningful jumps between all pair of visual-
izations. For each pair 𝑉1 and 𝑉2, we attempt to find one-to-one
mappings from 𝑉1𝑃𝐾 to 𝑉2𝑇 so that each pair of columns being
mapped are semantically equivalent according to the connection
profiler. We can then get a meaningful jump with each such map-
ping by constructing a filter function (Definition 4).

When we apply this solution to the example MONDIAL database
and get over 1,000 meaningful jumps between 70 visualizations for
40 tables.

6 USER INTERFACE
The high-level goal of the UI is to present the jumps generated by
the algorithm in Section 5 in an accessible way that facilitates rapid
discovery of data connections. Specifically, we should make it easy
to browse a large number of such jump paths and also help users
stay oriented during their exploration.

The Kyrix-J UI features multiple coordinated views (Figure 4).
The keyword search box (Figure 4a) allows a user to identify a
table to start their exploration. The visualization view (Figure 4b)
presents one visualization at a time. The graph view (Figure 4c) is
a simplified Entity-Relationship diagram showing each table as a
graph node and data connections between tables as graph edges.
When hovering over a node/edge in the graph view, more infor-
mation shows up in a popover (Figures 4i-j). Informational views
(Figures 4d-f) show the current SQL query, filters and mappings
from visual properties to data attributes. Figure 4g is a popover
appearing after the user clicks on an object, which contains a list
of jumps automatically generated by Kyrix-J. Figure 4h shows a list
of bookmarked visualizations. In Figure 4k, data items show up in
a tabular format after the user clicks on the “raw data” button.

7 USER STUDY
We conducted an observational first-use study to evaluate the us-
ability of Kyrix-J with eight participants (5 females, 3 males, age
range 21-55, diverse experiences in DBMS and visualization tech-
nologies). We asked the participants to complete five search tasks
(Table 1) usingKyrix-J and recorded the time taken and the accuracy.
After the completion of the tasks, we collected free-form feedback
from the participant in a semi-structured interview. The study con-
cluded with the participants filling out a post-study questionnaire
where they rated how much they agree with statements about the

Kyrix-J: Visual Discovery of Connected Datasets in a Data Lake CIDR ’22: Conference on Innovative Data Systems Research, Jan 10–13, 2022, Chaminade, CA

B

A

C

D

F

E

G

H

I

J

K

Figure 4: The Kyrix-J user interface

Table 1: Search tasks used in the user study.

Task 1 Is the following statement true? The 3rd largest ethnic
group in the 4th largest country in the South America
continent is European.

Task 2
a: Find the 4th most populated country in the world.

b: Find the most populated city in that country.

c: Find one organization headquartered at that city.

Task 3 Find the population (in 2011) of the 3rd most populated
city in the most populated province in the world.

Task 4 Is the following statement true? Ukerewe is an island in
the 3rd largest lake in the world.

Task 5
a: Find the country with the 2nd largest average city
elevation.

b: Find the 2nd most spoken language in that country.

usability of Kyrix-J on a 5-point Likert scale (1 – strongly disagree
and 5 – strongly agree).

7.1 Results and Discussions
Task completion. All participants were able to complete all tasks
with minimal guidance. The completion times for the tasks are
shown in Table 2. The average total completion time for all tasks
was 11.4 minutes.

Completions of the tasks were mostly accurate. Only two par-
ticipants got one task wrong on the first try, which was due to
inaccurate numerical comparison (e.g. mistaking the 4th lengthiest
bar for the 3rd) and misunderstanding of the task. Both were able
to quickly correct themselves.
Ease of use and learning. In the questionnaire, participants rated
that Kyrix-J was easy to use (` = 4.63, 𝜎 = 0.52) and easy to learn
(` = 4.75, 𝜎 = 0.46). Many participants gave positive comments on

Table 2: Average task completion times and standard devia-
tions (in minutes).

Task 1 Task 2 Task 3 Task 4 Task 5
` 2.2 1.7 1.8 1.7 4.1
𝜎 0.6 0.7 0.6 1.0 2.0

the overall experience: “it’s very natural to jump from thing to thing
(P1)”,“this (Kyrix-J) helps me figure out what tables are related to
each other, what are the PK-FK relationships, where am I in filtering
(P2)”,“the jumps help data discovery (P7)”,“I want to use this tool
for my personal use if I can (P8)”. Participants especially liked the
ability to browse a lot of jump paths: “I like the options for drill
down (jumps), you can have multiple options so you are not limited
(P6)”,“it helps showcase the possible ways you can filter different tables
(P7)”,“the pace at which I can quickly jump from one visualization to
another is amazing (P8)”.
Comparison with alternative techniques. Not all participants
had prior experiences with jumps, but they still provided insights
on what alternative techniques they might use to complete similar
tasks. Many participants mentioned using the SQL command-line
interface offered by the DBMS as an alternative. However, they also
pointed out that using a graphical interface like Kyrix-J would be
easier andmore intuitive: “that (using a SQL command-line interface)
would require knowing the schema a lot better. I need to pay a lot
more attention (P1)”,“it (Kyrix-J) automates all the painful coding you
have to do (P2)”,“I don’t have to write 10 to 20 lines of code, everything
(in Kyrix-J) is a click away. It’s like shopping on Amazon (P4)”.

One participant (P6) had used a variety of tools (e.g. Tableau[20],
Chartio[1] and SSIS[4]) to perform jump-based data discovery in
professional settings. She noted that a common limitation of the
tools she used was that they only supported jumps in the same
table: “going to another chart is challenging because when they (tool
creators) are building it, they often will grab the only the values you
can find in that chart (table). When you want to grab something

CIDR ’22: Conference on Innovative Data Systems Research, Jan 10–13, 2022, Chaminade, CA Tao et al.

outside that chart (table), it’s not easy to do”. P6 further commented
that “Having drill down (jump) like Kyrix-J in one of those tools I’m
using would be amazing.” P8 also compared using Tableau to do
jumps versus using Kyrix-J and echoed that Kyrix-J offers a better
experience.

8 RELATEDWORKS
Prior data discovery systems such Aurum[9], Lyft’s Amundsen[2]
andGoogle’s Goods[11]mainly allow users to discover data through
text search. To our best knowledge,Kyrix-J is the first data discovery
system that focuses on visual navigation of data connections.

A number of visualization systems[3, 5, 7, 8, 15, 16, 18, 20, 24]
have been developed to support visual jumps. These systems mostly
focus on jumps between visualizations for one data table. As such,
they generally cannot be easily extended to a multi-table data lake
setting. Moreover, pivoted search or simply pivoting are commonly
used terms. In our data lake setting, we use the term jump to indicate
that the interaction “jumps” across the table boundaries.

Kyrix[24] is a details-on-demand system we have built that can
also support jumps. However, it requires writing tens of lines of
Javascript to create a jump. Also, it does not offer UI support to
help users stay oriented. Kyrix-J advances Kyrix by automatically
generating jumps based on data connections, and offering a novel
UI to enable effective exploration of a data lake.

9 DISCUSSIONS ON LIMITATIONS AND
FUTUREWORK

Enabling visualization authoring. A desirable feature is to en-
able authoring/editing visualizations in the UI. Although it is straight-
forward to bring the current JSON-based command-line authoring
paradigm into the UI, it currently only supports simple SELECT and
GROUP BY queries as discussed in Section 5.1. We plan to lift this
restriction in the future to support more types of SQL queries.
Tackling data lakes in the wild. Data lakes in the wild are very
complex, consisting of a large number of tables that often lack
maintenance[22]. To deploy Kyrix-J in the wild, we face the follow-
ing challenges.

First, table and column names are often machine-generated. The
quality of visualization titles may not be high if they are authored
by users in a multi-user environment. These will make it harder
to comprehend the meaning of a jump. We plan to address this
challenge by integrating with metadata management systems (e.g.
Google’s Goods[11] and Lyft’s Amundsen[2]) to ensure that popular
tables are more visible to the users and get more quality crowd-
sourced annotations of tables and columns. We will also investigate
quality control mechanisms such as allowing custom-made data
visualizations by users to be rated by a pool of users so that we can
make highly-rated jumps more visible and vice versa.

Second, the amount of jumps will grow tremendously at scale
when there are hundreds of even thousands of visualizations. The
current way of browsing the jumps is limiting in that it requires
a user to scroll through a list of jumps. To enable more efficient
browsing of the jumps, we plan to offer a functionality to allow the
user to search a jump using keywords.

REFERENCES
[1] Chartio. https://chartio.com/. accessed: 2021/03.
[2] Lyft amundsen. https://eng.lyft.com/amundsen-lyfts-data-discovery-metadata-

engine-62d27254fbb9. accessed: 2021/03.
[3] More powerful data drilling. https://help.looker.com/hc/en-us/articles/

360023589613--More-Powerful-Data-Drilling. accessed: 2021/03.
[4] Sql server integration services. https://docs.microsoft.com/en-us/sql/integration-

services/sql-server-integration-services?view=sql-server-ver15. accessed:
2021/03.

[5] C. Ahlberg. Spotfire: an information exploration environment. ACM SIGMOD
Record, 25(4):25–29, 1996.

[6] M. Backes, N. Grimm, and A. Kate. Data lineage in malicious environments. IEEE
Transactions on Dependable and Secure Computing, 13(2):178–191, 2015.

[7] M. Dörk, N. H. Riche, G. Ramos, and S. Dumais. Pivotpaths: Strolling through
faceted information spaces. IEEE transactions on visualization and computer
graphics, 18(12):2709–2718, 2012.

[8] C. Dunne, N. Henry Riche, B. Lee, R. Metoyer, and G. Robertson. Graphtrail: Ana-
lyzing large multivariate, heterogeneous networks while supporting exploration
history. In Proceedings of the SIGCHI conference on human factors in computing
systems, pp. 1663–1672, 2012.

[9] R. C. Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden, and M. Stonebraker.
Aurum: A data discovery system. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE), pp. 1001–1012. IEEE, 2018.

[10] A. Gupta, I. S. Mumick, et al. Maintenance of materialized views: Problems,
techniques, and applications. IEEE Data Eng. Bull., 18(2):3–18, 1995.

[11] A. Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis, S. Roy, and S. E. Whang.
Goods: Organizing google’s datasets. In Proceedings of the 2016 International
Conference on Management of Data, pp. 795–806, 2016.

[12] R. Ikeda and J. Widom. Data lineage: A survey. Technical report, Stanford InfoLab,
2009.

[13] W. May. Information extraction and integration with Florid: The Mondial case
study. Technical Report 131, Universität Freiburg, Institut für Informatik, 1999.
Available from http://dbis.informatik.uni-goettingen.de/Mondial.

[14] N. Miloslavskaya and A. Tolstoy. Big data, fast data and data lake concepts.
Procedia Computer Science, 88:300–305, 2016.

[15] C. North and B. Shneiderman. Snap-together visualization: a user interface for
coordinating visualizations via relational schemata. In Proceedings of the working
conference on Advanced visual interfaces, pp. 128–135, 2000.

[16] C. Partl, A. Lex, M. Streit, H. Strobelt, A.-M. Wassermann, H. Pfister, and
D. Schmalstieg. Contour: data-driven exploration of multi-relational datasets
for drug discovery. IEEE transactions on visualization and computer graphics,
20(12):1883–1892, 2014.

[17] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite: A
grammar of interactive graphics. IEEE transactions on visualization and computer
graphics, 23(1):341–350, 2016.

[18] M. Spenke and C. Beilken. Infozoom-analysing formula one racing results with an
interactive data mining and visualisation tool. WIT Transactions on Information
and Communication Technologies, 25, 2000.

[19] B. Stein and A. Morrison. The enterprise data lake: Better integration and deeper
analytics. PwC Technology Forecast: Rethinking integration, 1(1-9):18, 2014.

[20] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis, and
visualization of multidimensional relational databases. IEEE Transactions on
Visualization and Computer Graphics, 8(1):52–65, 2002.

[21] M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales, M. Cherniack, S. B. Zdonik,
A. Pagan, and S. Xu. Data curation at scale: The data tamer system. In Cidr, vol.
2013. Citeseer, 2013.

[22] M. Stonebraker, D. Deng, and M. L. Brodie. Database decay and how to avoid
it. In 2016 IEEE International Conference on Big Data (Big Data), pp. 7–16. IEEE,
2016.

[23] W. Tao, X. Hou, A. Sah, L. Battle, R. Chang, andM. Stonebraker. Kyrix-s: Authoring
scalable scatterplot visualizations of big data. IEEE Transactions on Visualization
and Computer Graphics, 2020.

[24] W. Tao, X. Liu, Y. Wang, L. Battle, Ç. Demiralp, R. Chang, and M. Stonebraker.
Kyrix: Interactive pan/zoom visualizations at scale. In Computer Graphics Forum,
vol. 38, pp. 529–540. Wiley Online Library, 2019.

[25] M. Zhang, M. Hadjieleftheriou, B. C. Ooi, C. M. Procopiuc, and D. Srivastava.
On multi-column foreign key discovery. Proceedings of the VLDB Endowment,
3(1-2):805–814, 2010.

https://chartio.com/
https://eng.lyft.com/amundsen-lyfts-data-discovery-metadata-engine-62d27254fbb9
https://eng.lyft.com/amundsen-lyfts-data-discovery-metadata-engine-62d27254fbb9
https://help.looker.com/hc/en-us/articles/360023589613--More-Powerful-Data-Drilling
https://help.looker.com/hc/en-us/articles/360023589613--More-Powerful-Data-Drilling
https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services?view=sql-server-ver15
http://dbis.informatik.uni-goettingen.de/Mondial

	Abstract
	1 Introduction
	1.1 A Usage Scenario
	1.2 Key Contributions

	2 System Architecture
	3 Profiling Data Connections
	4 Supporting Visualization Authoring
	5 Automatic Generation of Jumps
	5.1 Problem Definition
	5.2 The Auto-Jump Solution

	6 User Interface
	7 User Study
	7.1 Results and Discussions

	8 Related Works
	9 Discussions on Limitations and Future Work
	References

