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Abstract

Antibodies are capable of potently and specifically binding individual antigens and, in some

cases, disrupting their functions. The key challenge in generating antibody-based inhibitors

is the lack of fundamental information relating sequences of antibodies to their unique prop-

erties as inhibitors. We develop a pipeline, Antibody Sequence Analysis Pipeline using Sta-

tistical testing and Machine Learning (ASAP-SML), to identify features that distinguish one

set of antibody sequences from antibody sequences in a reference set. The pipeline extracts

feature fingerprints from sequences. The fingerprints represent germline, CDR canonical

structure, isoelectric point and frequent positional motifs. Machine learning and statistical

significance testing techniques are applied to antibody sequences and extracted feature fin-

gerprints to identify distinguishing feature values and combinations thereof. To demonstrate

how it works, we applied the pipeline on sets of antibody sequences known to bind or inhibit

the activities of matrix metalloproteinases (MMPs), a family of zinc-dependent enzymes that

promote cancer progression and undesired inflammation under pathological conditions,

against reference datasets that do not bind or inhibit MMPs. ASAP-SML identifies features

and combinations of feature values found in the MMP-targeting sets that are distinct from

those in the reference sets.

Author summary

The availability of machine learning techniques and the exponential growth of sequencing

data presents new opportunities to identify features that endow antibodies with the ability

to disrupt the functions of biological targets. We have created a pipeline that uses statisti-

cal testing and machine learning techniques to determine features that are overrepre-

sented in a specified set of antibody sequences in comparison to a reference set. The

pipeline is referred to as Antibody Sequence Analysis Pipeline using Statistical testing and

Machine Learning (ASAP-SML). We demonstrate the use of ASAP-SML by analyzing sets

of antibodies that inhibit matrix metalloproteinases (MMPs) against reference sets.

ASAP-SML performs within and across set similarity analysis. As in prior studies, our
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analysis of these datasets shows that features associated with the antibody heavy chain are

more likely to differentiate MMP-targeting antibody sequences from reference antibody

sequences. Further, ASAP-SML identifies several features in the MMP-targeting set that

are distinct from the reference sets. Using design recommendation trees, ASAP-SML sug-

gests combinations of features that can be included or excluded to augment the targeting

set with additional candidate MMP-targeting antibody sequences.

This is a PLOS Computational BiologyMethods paper.

Introduction

Antibodies play an important role in treating diseases such as cancer and autoimmunity disor-

ders by blocking specific protein-protein interactions and recruiting the immune system to

specific cells and tissues. While experimental methods for antibody discovery, including

hybridoma technology [1] and phage and yeast display [2], have allowed for significant

advances in discovering specific binding proteins, difficulties remain in establishing general

strategies for designing antibodies that disrupt enzymatic activity or other biological functions.

In particular, relating the amino acid sequences of these antibodies to their unique abilities in

disrupting biological functions remains a challenge. Data-driven computational approaches

may shed light on such fundamental information. Recent computational tools provide first

steps towards elucidating structural information that can guide rational antibody design. Sev-

eral numbering tools (e.g., AbNum [3], DomainGapAlign [4], PyIgClassify [5], ANARCI [6],

and AbYsis [7]) annotate an antibody sequence to identify the Complementary Determining

Regions (CDRs) and the Framework Regions (FRs). There are also tools (e.g., IgBLAST [8]

and SAbDab [9]) to select templates from databases for the variable domains VH and VL.

Other tools (e.g., PIGS [10], FREAD [11], PyIGClassify) predict the structures of CDR loops.

Efforts to partially design antibody sequences that bind to specific targets have been made uti-

lizing several computational tools (e.g. OptMaven [12] and RAbD [13]). These tools graft

designed CDRs on backbones, and then utilize energy minimization and optional docking

procedures to obtain complete antibody sequences. Despite these and other efforts [14,15],

there remains a critical gap in linking antibody sequences directly to biological consequences

such as target inhibition.

We address in this paper the challenge of identifying features of antibodies that may influ-

ence antibody function. We design a pipeline for analyzing antibody sequences and extracting

features (e.g., germline, positional motifs, etc.) and feature values (e.g., the specific sequence of

residues in the CDR-H3 region) that are overrepresented in one dataset, referred to here as a

targeting set, as compared to a reference dataset. Our approach is data-driven, enabled by the

increasing availability of amino acid sequences of functional antibodies in databases (e.g. Pro-

tein Data Bank (PDB) [16], IMGT [17]) and in patents. The pipeline is termed Antibody

Sequence Analysis Pipeline using Statistical testing and Machine Learning (ASAP-SML). The

pipeline extracts features associated with each antibody sequence, as well as features specific to

the CDR-H3 region due to its role as the primary specificity determinant of most antibodies

[18,19]. ASAP-SML then utilizes several machine learning techniques and statistical testing to

determine important and statistically significant features that distinguish the sequences of tar-

geting antibodies from the sequences within the reference antibodies and, if appropriate, to

recommend combinations of design features that can be utilized during efforts to improve the
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binding properties of existing antibodies or to search for new antibodies that target an antigen

of interest.

The pipeline can be applied to contrast any two antibody data sets. For example, the target-

ing set may contain antibodies that interfere with their biological targets, collected through

experiments, patents and/or database searches, while the reference set may contain antibody

sequences that are curated from the Protein Data Bank and other reference sources. In this

context, and for large and diverse target and reference sets, ASAP-SML operates to identify

features that are overrepresented or underrepresented within the target set in comparison to

the reference set. To demonstrate the use of ASAP-SML, we apply it to analyze eight datasets

of antibodies that inhibit matrix metalloproteinases (MMPs). The MMPs are a family of zinc-

dependent enzymes that play numerous roles in normal physiology and development, but

under pathological conditions, dysregulated MMPs can facilitate cancer progression [20,21],

undesired inflammation [22], and other conditions. Among hundreds of features, ASAP-SML

identified several salient feature values for the MMP-targeting antibody data sets that distin-

guish it from reference data sets. We note that analysis via our pipeline may be confounded by

limited data availability, or differences in antibody sequences that arise for reasons outside of

function disruption (e.g., the specific antibody libraries, or screening procedures used to iso-

late antibodies of interest).

Methods

ASAP-SML overview

The ASAP-SML pipeline comprises five steps (Fig 1). In the Data Preparation step, amino acid

sequences for both targeting antibodies and reference sequences are prepared for use within

the pipeline. In the Sequence Numbering step, each antibody sequence is annotated with a

numbering scheme to allow for the identification of the six Complementary Determining

Fig 1. ASAP-SML pipeline overview. Antibody sequences in the targeting and reference sets are inputted into the pipeline to perform sequence

numbering, feature extraction, sequence and feature analysis, and design recommendations.

https://doi.org/10.1371/journal.pcbi.1007779.g001
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Regions (CDRs), three on the heavy chain (H1-H3) and three on the light chain (L1-L3)

directly involved in antigen binding [23], and the remaining Framework Regions (FR). In the

Feature Extraction step, features associated with each antibody sequence (predicted germline

and canonical structures of CDRs) and features specific to the CDR-H3 region (Isoelectric

point (pI) and frequent positional motifs) are extracted. In the Analysis step, salient features

are identified using statistical testing and machine learning techniques. Finally, in the Design

Recommendation step, decision trees [24] are used to identify combinations of salient feature

values for inclusion in targeting antibody sequence design. The ASAP-SML pipeline was

released as an open-source python code. The pipeline and all datasets are available on GitHub

(https://github.com/HassounLab/ASAP-SML).

Data, and data preparation

The user inputs two data sets, a targeting set and a reference set. The user may partition sequences

within each set into groupings, each referred to as a dataset. Such datasets, for example, may be

collected through different experiments or data sources. ASAP-SML accommodates various size

sets and datasets. The numbering and feature extraction steps of our pipeline analyze every

sequence within each set. In the analysis and design recommendation steps, sequences are sam-

pled, and analysis results are aggregated across a large number of sampling iterations, k. We

assume a default iteration number k = 100. To facilitate sampling, the median size among the

datasets within the targeting set is selected as a desired dataset size. Each dataset is then either sam-

pled or duplicated to achieve the desired dataset size. When sampling is required, the number of

sampled sequences in the targeting set is set to the product of the desired dataset size times the

number of datasets. This size is also used for the number of desired sampled sequences in the ref-

erence set and drives the numbers of samples per dataset in the reference set. The sampling

parameters for the targeting and reference datasets can be overridden by the user.

Antibody sequence numbering

Aligning antibody sequences to a consensus sequence through a numbering scheme enables

dividing an antibody sequence into six Complementary Determining Regions (CDRs), which

are directly involved in antigen binding, and Framework Regions (FRs). We elected to use the

Chothia numbering scheme [25] rather than other common numbering schemes, e.g., IMGT

[26], Kabat [27], Martin [28], and AHo [29]. This decision facilitated further downstream anal-

ysis when predicting CDR-H3 canonical structures using PIGS, which depends on the Chothia

numbering scheme. ANARCI [6] is used to assign the Chothia numbering scheme to each

antibody sequence in the targeting and reference sets.

Feature extraction

We extract four types of features in this step, germline, CDR canonical structure, pI (isoelectric

point) range, and frequent positional motifs in CDR-H3. For each sequence, values for each

feature are determined and recorded in a vector we refer to as a feature fingerprint. Each entry

in the fingerprint is assigned either a "1" or "0," indicating the presence or absence of a particu-

lar feature value within the antibody sequence. The number of possible feature values, and

therefore the width of the fingerprint, is dependent on the sequences in the reference and tar-

geting sets.

Germlines are encoded in immature B cells and are used as templates for generating diver-

sity during selection of antibodies against specific targets [25]. Putative germlines for each

heavy and light antibody sequences on the V and J regions (HV, HJ, LV, and LJ) are assigned

using ANARCI. ANARCI performs an alignment between the query antibody sequence and
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multiple pre-built Hidden Markov Models (HMMs). The putative germline is determined for

an antibody sequence by the most significant alignment among all HMMs for a domain type

of a particular species (Human, Mouse, Rat, Rabbit, Pig or Rhesus Monkey). ASAP-SML

allows germline assignments from any of the species included in ANARCI. As some allelic var-

iations involve a single base change, they were ignored for all germline assignments.

Structural conformations for the highly variable CDRs are known as canonical structures.

These structures can be predicted based on both loop length and amino acid identities at spe-

cific position [25]. Here, we use the canonical structure determination rules introduced in the

Prediction of ImmunoGlobulin Structure (PIGS) database [10] to determine if a CDR canoni-

cal structure assignment can be made for a given sequence, and, if so, the specific canonical

structure is assigned.

Due to the important role of the CDR-H3 region in antibody-antigen interaction specific-

ity, two types of features, pI and frequent positional motifs, are generated to characterize anti-

body sequences. The isoelectric point (pI) is defined as the pH value when net positive and

negative charges of an amino acid sequence are balanced. pI values impact protein properties

including solubility and stability [29]. pI values of CDR-H3 sequences are calculated using bio.

sequtils.isoelectricpoint from the biopython package [30]. PI values are binned with a data-

driven method. The range [0, 14] is initially divided into two equal sized bins, and then recur-

sively halved. Bin halving is terminated if a bin contains less than 10% of antibody sequences

or if the bin size reaches a range of pI values equal to or less than 0.3. This range is assumed as

the minimum range that provides specificity differentiation.

We define motifs as sequential amino acid sequences ranging from 2 to 10 amino acids in

length within the CDR-H3 region. We consider motifs along with their positional information.

The starting point of a positional motif is defined using the position of the first amino acid

within the motif. Each positional motif is labeled with its starting point, an underscore, and

the amino acid sequence. For example, positional motif "4_AL" indicates that there is a motif

of length two consisting of sequence "AL" that starts at position four of the CDR-H3 region.

For each antibody sequence in the targeting and reference subsets, the two most frequent posi-

tional motifs of each length in the CDR-H3 region are included in the feature fingerprint, thus

allowing for a variety of subsequence lengths for the positional motifs.

Sequence and feature analysis

Several analysis methods are used to contrast the sequence and feature fingerprints for the tar-

geting and non-targeting sets. First, pairwise similarity is computed based on both sequence

similarity and also on fingerprint similarity for each pair of sequences. Pairwise similarity of

the heavy chain and light chain sequences is calculated for the Chothia-numbered sequences.

When comparing two sequences, the similarity of amino acids in each position is looked up in

the BLOSUM62 matrix, which provides a match/mismatch score between two amino acids in

reference to protein sequences in the BLOCKS database [31]. An amino-acid insertion

between two numbered positions or a deletion at a numbered position is considered as a gap

at the position in question. Default gap penalties are applied. The match/mismatch scores are

summed and rescaled based on min-max normalization [32]. The feature rescaling step com-

putes a score that is first adjusted by the minimum set score over the set of match/mismatch

scores for each chain, and then normalized by dividing the adjusted score by the difference

between the minimum and maximum set scores. The rescaling step thus eliminates contribu-

tions to the similarity scores due to constant region sequences within the light chains and

within the heavy chains. The rescaled normalized score is used as the pairwise sequence simi-

larity score.
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When comparing feature fingerprints, pairwise similarity is computed per fingerprint seg-

ment corresponding to each feature (pI and frequent positional motifs) or feature region

(germline-HV, germline-HJ, germline-LV, germline-LJ, CDR-H1, CDR-H2, CDR-H3,

CDR-L1, CDR-L2, and CDR-L3). For each segment, the similarity score is computed using the

Jaccard index, which computes the size of the common features divided by the number of fea-

tures present in either feature fingerprint. Each segment score is given a weight of 1. The

weighted sum of the segment scores, normalized to the maximum possible score, provides the

pairwise fingerprint similarity score.

Pairwise similarity scores are visually inspected using heat maps. Statistical testing is then

used to quantify sequence and feature similarity trends. Our first statistical test examines the

within-set similarity in the targeting set against the within-set similarity for the non-targeting

set. Our null hypothesis assumes that the pairwise similarity scores in the targeting set have the

same statistical distribution as those in the reference set. Our second test examines how the

extracted features correlate with the heavy-chain antibody sequences and with the light- chain

antibody sequences. Our null hypothesis assumes that there are no differences in how the

extracted features correlated with the heavy and light chain sequences. A one-tailed Wilcoxon

rank-sum test from the scipy.stats.mannwhitneyu python package is used to perform these sta-

tistical tests. The test is repeated for k iterations, where representative datasets are created each

time through either sampling or duplication. The test is significant if all iterations report a p-

value less than 0.05.

The second analysis method identifies salient feature values that differentiate the targeting

and reference sets. Statistical testing for each feature value for the features in Table 1 using

Fisher Exact Test (FET) identifies statistically significant feature values with p-values less than

0.05. Additionally, feature selection is performed using a random forest algorithm (sklearn.

ensemble python package), and importance scores are calculated. FET analysis and random

forest analysis are repeated for k iterations. The reported p-value and rank for each feature are

averaged across k iterations. Unlike FET, a frequentist approach, feature selection evaluates

the contribution of feature values to classification. Therefore, the two tests provide comple-

mentary analysis.

Table 1. Extracted features. Listing of (a) features in the fingerprint vector, (b) regions within antibody that exhibit the feature, (c) software extraction method, and (d)

number of possible feature values for the MMP-targeting set test case.

Feature

(a)

Region

(b)

Extraction

method

(c)

Number of possible

feature values for

MMP-targeting set

(d)

Germline HV ANARCI 110

HJ 6

LV 99

LJ 11

CDR Canonical Structure H1 PIGS 5

H2 5

H3 4

L1 4

L2 1

L3 1

Isoelectric Point (pI)

(CDR-H3)

biopython package 8

Frequent Positional Motifs

(CDR-H3)

ASAP-SML script 46

https://doi.org/10.1371/journal.pcbi.1007779.t001
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While salient feature analysis identifies feature values that differ between sets, a third analy-

sis method evaluates the contributions of features or combination of features in classifying

MMP-targeting and non-targeting sequences. We evaluate the contributions using all features

or using only one type of feature. To ensure that the results are consistent regardless of the

classification method, three classification techniques are used: Support Vector Machine

(SVM) [33], random forest [34] and Adaptive Boosting (AdaBoost) algorithms [35]. The classi-

fication accuracy is measured using AUC, the area under the Receiver Operating Characteris-

tic (ROC) curve, based on ten-fold cross-validation. Therefore, the set of sequences is

randomly partitioned into 10 equal-size subsamples. Of the 10 subsamples, a single subsample

is used for validation while the remaining 9 subsamples are used as training data. To achieve

ten-fold validation, this process is repeated 10 times, where a different subsample is selected

each time for validation. Further, the AUC is averaged across k sampling iterations.

Design recommendation using design recommendation trees

The prior analysis step identifies salient features in the targeting antibody set. The design rec-

ommendation step identifies combinations of presence/absence of such feature values that are

distinct within each set. To this end, ASAP-SML learns a decision tree, a flow-chart like struc-

ture that segments the data into sets that have particular features. The decision tree therefore

identifies combinations of non-conflicting salient features that are distinct when comparing

the targeting dataset with the reference dataset. Further, we augment the decision tree to show

the percentage of existing sequences with such combination features in both reference and tar-

geting set. With the exception of leaf nodes, each node in the tree tests the presence or absence

of a particular feature value. The feature value with the lowest misclassification rate, the Gini

impurity [36], is used to partition the node into two child nodes. Left branches represent the

true outcome of the test, while the right branch represents the false outcome. Decision tree

branching is stopped when at least one leaf has less than 5% of the total number of antibody

sequences associated with the root node.

The decision tree algorithm outputs a colored-tree diagram (S3 Fig). Each node in the deci-

sion tree is colored based on the ratio of its number of sequences from each targeting and ref-

erence sets. Nodes with more targeting antibody sequences are colored in blue, and nodes with

more reference antibody sequences are colored in orange. A path from the root node to a par-

ticular tree node represents a combination of feature values that are either mostly excluded or

included for the sequences associated with the tree node. The true branches along such a path

thus correspond to feature values that are present in the leaf-node sequences, while false

branches correspond to excluded feature values. The sklearn.tree.DecisionTreeClassifier [37]

python package is used to construct the decision tree.

While the decision tree identifies a model that best classifies the sequences, our intention is

to utilize the decision tree to identify combinations of feature values to use when designing target-

ing sequences. We therefore augmented the tree with two new metrics, split efficiency (SE) and

error rate (ER). Split efficiency is calculated as the number of targeting antibody sequences in the

current node divided by the number of targeting antibody sequences in the root node. Split effi-

ciency reflects the portion of sequences in the targeting set that has the combination of valid fea-

ture value following the path from root to current node. The split efficiency of a node is less than

or equal to that of its parent node. Error rate is calculated as the number of reference antibody

sequences in the current node divided by the number of antibody sequences from both the target-

ing and reference sets in the current node. Error rate tells the likelihood of having a non-targeting

sequence when including the design features from the root to the current node. Error rates are

independent of tree depth (distance from root). To identify the best combination of design
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features, all paths from root to nodes that are dominated by the targeting sequences are analyzed

with the goal of identifying node(s) that maximizes split efficiency and minimizes error rate. We

refer to this newly labeled decision tree as a design recommendation tree.

Results

MMP-targeting and reference data

The data used to illustrate the functionality of ASAP-SML is composed of publicly available

amino acid sequences of antibodies reported to inhibit MMPs and two reference datasets. A

summary of the MMP-targeting antibody datasets is listed in Table 2, ordered in decreasing

number of antibody sequences available in each dataset. Seven of the eight datasets were col-

lected from patents in which experimental data is presented confirming the inhibitory activity

of at least a portion of the antibody sequences that bind to a member of the human MMP fam-

ily. We note that MMP-targeting datasets 1–5 all originated from work conducted at a single

company (Dyax) and these datasets contain sequences almost exclusively based on the

IGHV3-23 germline [38]. An additional dataset, labeled MMP-targeting 8, was collected from

the PDB by searching for MMP-targeting antibodies using the keywords "MMP" and "anti-

body". The identified antibody sequences were deposited by Udi et al [39]. The sizes of the

MMP targeting datasets are highly variable. The largest dataset, MMP-targeting set 1, has 621

antibody sequences, while MMP-targeting datasets 7 and 8 only have 4 antibody sequences

each. Antibody sequences collected here target MMP-2, -9, -12, -13, -14, -26. MMP-targeting

datasets 2 and 5 are culled from the same patent [40], where sequences in dataset 5 inhibit

MMPs, while sequences in dataset 2 are known to only bind to MMPs.

Upon initial analysis, there were 24 antibody sequences in the MMP-targeting set that were

assigned by ANARCI to non-human or to non-murine germlines. These sequences were

removed from the MMP-targeting set. Additionally, high sequence similarity was observed

within some of the individual datasets due to the presence of antibody sequences from in vitro
affinity maturation campaigns in which point mutants of a single parent antibody were evalu-

ated for improved affinity. BLAST-CLUST [46] was used to cluster highly similar sequences

(up to 95% similarity in residues after sequence alignment), and to select a representative

sequence for each cluster. Clustering revealed that the largest dataset, MMP-targeting dataset

1, contains only 16 distinct clusters from the 621 antibody sequences extracted from the

US8013125B2 patent. MMP-targeting dataset 2, which includes 69 antibody sequences

extracted from patent US8114968, still contained 64 distinct sequences after clustering, MMP-

targeting dataset 3 contains 43 distinct sequences after clustering. A total of 160 representative

Table 2. The MMP-targeting antibody set comprises 8 datasets.

MMP-targeting Dataset Number Targeted MMPs Sequence source Reference Number of sequences Number of representative sequences

1 MMP-2,

MMP-9

US8013125B2 [41] 621 16

2 MMP-12 US8114968 [40] 69 64

3 MMP-26 US20060036076A1 [42] 44 43

4 MMP-14 US7745587B2 [43] 12 12

5 MMP-12 US8114968 [40] 12 12

6 MMP-13 WO2007065037A2 [44] 11 11

7 MMP-9 US8377443 [45] 4 1

8 MMP-14 Protein Data Bank [39] 4 1

Total Number of sequences 777 160

https://doi.org/10.1371/journal.pcbi.1007779.t002
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sequences were merged into a combined MMP-targeting set for further analysis. This repre-

sentative set is referred to as theMMP-targeting set.
To identify a set of antibody sequences that do not bind to or inhibit MMPs, the PDB was

queried on May 24, 2017 for human and murine sequences that do not bind to or inhibit

MMPs. The inclusion of both human and murine sequences in this reference set was deliber-

ate, as some of the MMP-targeting antibodies present in the datasets are murine in origin due

to the immunization-based strategies used to generate the sequences. To avoid overrepresenta-

tion of highly similar antibody sequences in the reference dataset, the database was queried for

representative sequences with 95% or fewer identical residues. Only antibody sequences with

paired heavy and light chains and complete variable regions were selected. Sequences that

were assigned by ANARCI to non-human or to non-murine germlines were excluded. The

resulting reference dataset consisted of 183 human antibody sequences and 197 murine anti-

body sequences. This reference dataset is referred to as the PDB-reference set.
When analyzing the MMP-targeting set against the PDB-reference set, we observed that

92.50% of the MMP-targeting set sequences were assigned to IGHV3-23, consistent with the

origination of MMP-targeting sets 1–5 from Dyax [38]. This feature is therefore not likely to

be functionally significant. To remove the potentially confounding effects of this germline

overrepresentation, we selected a subset of the MMP-targeting set that contains only the subset

of sequences with the IGHV3-23 germline and then used BLASTCLUST to select representa-

tive sequences. This reduced set is referred to as theMMP-IGHV-targeting set. Instead of com-

paring this set against the PDB-reference set, which contains a large variety of germlines, we

compared the MMP-IGHV-targeting set against IGHV3-23 human antibody heavy-chain

sequences from former studies (European Molecular Biology Laboratory accession numbers

AM076988–AM083316) [47–50]. These sequences, which were utilized to study CDR diversity

within a controlled germline context, are not known to bind to any specific targets. This refer-

ence set is referred to as the IGHV-reference set. As only the heavy chain sequences were avail-

able for the IGHV-reference set, ASAP-SML was applied to compare the MMP-IGHV-

targeting and the IGHV-reference sets. MMP-IGHV-targeting set has 134 representative

sequences and the IGHV-reference dataset has 4673 representative sequences.

We applied ASAP-SML to these sets. For each set, sequences were numbered and then

extracted. The analysis is reported below first for the MMP-targeting against the PDB-refer-

ence set, followed by the MMP-IGHV-targeting against the IGHV-reference set. The design

recommendation step is only demonstrated for the MMP-targeting against PDB-reference set.

The MMP set described in Table 1, its features, and the mapping from the original set to the

MMP-targeting set and the MMP-IGHV-targeting set, are provided in S1 Table. Sequence

details and analysis of the MMP-targeting set against the PDB-reference sets are provided in

S2 Table. Sequence details and analysis of the MMP-IGHV-targeting set against the IGHV-ref-

erence set are provided in S3 Table.

Similarity analysis for MMP-Targeting vs PDB-reference sets

Heat maps. To analyze similarities within and between MMP-targeting vs PDB-reference

sets, heat maps were constructed using heavy-chain pairwise sequence similarity (Fig 2A),

light-chain pairwise sequence similarity (Fig 2B), and feature value pairwise similarity (Fig

2C). For all heat maps, datasets within the MMP-targeting set exhibit high pairwise similarity,

despite the fact that the datasets include sequences that target a variety of MMPs (e.g., MMP-2,

MMP-9, etc.). This trend appears stronger in the heat map for feature values (Fig 2C), but less

so in the heat map for the light-chain sequences (Fig 2B). Further, heavy-chain pairwise simi-

larity tracks the extracted-feature similarity more so than the light-chain pairwise similarity.
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Statistical testing. ASAP-SML provided a statistical test to confirm that within-set simi-

larity in the MMP-targeting set is higher than within-set similarity for the reference set. The

testing was performed for the targeting pairwise similarity data for heavy-chain sequences,

light-chain sequences, and extracted features, against their respective pairwise similarity data

of the reference set, ASAP-SML performed a one-tailed Wilcoxon rank-sum test to evaluate

the similarities within sets. The test was repeated k = 100 times. The average p-values for each

of the three heat maps was less than 0.001, indicating statistical significance. Therefore, pair-

wise within-set similarity scores for the MMP-targeting set are higher than those for the refer-

ence set, confirming the observation that the relationships among the set of antibody

sequences in the MMP-targeting set are closer than those sequences found in the reference set.

ASAP-SML also provided a statistical test to confirm that the extracted features better cor-

relate with the heavy chain antibody sequences than with the light chain antibody sequences,

as indicated by visual inspection of the heat maps. Differences between heavy-chain pairwise

sequence similarity and feature-value pairwise similarity, as computed for Fig 2A and 2C, and

differences between light-chain pairwise sequence similarity and feature-value pairwise simi-

larity, as computed for Fig 2B and 2C were computed. Our null hypothesis assumes that these

two computed differences have the same statistical distribution. A one-sided Wilcoxon rank-

sum test was then performed on the differences to evaluate the alternate hypothesis that the

computed differences between heavy-chain pairwise sequence similarity and feature-value

pairwise similarity is more significant than the computed differences between light-chain

Fig 2. Heat maps comparing the reference set, consisting of human and murine antibody datasets, with the MMP-

targeting set, consisting of datasets 1–8. (a) Heavy-chain sequence similarity heat map, (b) Light-chain sequence

similarity heat map, (c) Extracted-feature similarity heat map. To visualize within-set similarity for the reference set

and within-set similarity for the MMP-targeting set, the sets are marked with Block 1 and Block 2, respectively, on the

extracted-feature heat map.

https://doi.org/10.1371/journal.pcbi.1007779.g002
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pairwise sequence similarity and feature-value pairwise similarity. The test was performed for

k = 100 repetitions. The p-value was less than 0.001 for each repetition. Therefore, the

extracted-feature heat map (Fig 2C) is more correlated with the heavy-chain heat map (Fig

2A) than with light-chain heat map (Fig 2B). With the limited sequence diversity present

within the targeting set, the observed correlations may be artifactual in nature. Larger and

more diverse collections of targeting sets would be needed to fully validate the correlations

observed in our analyses.

Salient feature-value identification for MMP-Targeting vs PDB-reference

sets

ASAP-SML sought to identify individual extracted feature values associated with the MMP-

targeting set (S2F Table). For the 300 extracted features, the FET identified 35 significant fea-

tures, while the random forest model for feature selection identified 60 features as important.

Of these feature values, 26 were identified by both methods. Out of these 26 features, 8 germ-

lines, 5 CDR canonical structures, 2 pI ranges and 11 frequent positional motifs were identi-

fied. The FET identified 18 of the 184 possible heavy chain features as significant, while only 7

of 116 possible light chain features were identified as such.

To analyze frequencies of salient feature values, frequency analysis is applied to the MMP-

targeting and PDB-reference sets (S2E Table). The frequency of the most important distin-

guishing feature based on both FET and importance analysis, germline IGHV3-23, is 92.50%

in the MMP-targeting sequences but only 5.26% in the reference dataset sequences. This is

likely the result of the datasets used as inputs for the pipeline in this work and may not be

directly attributable to functional differences. The frequency of the second most important fea-

ture, CDR-H2 canonical structure type 6, is 94.38% in the MMP-targeting sequences and

27.11% in the reference sequences. The differences in frequency of the remaining top 5 fea-

tures (Tables 3 and 4) were less than ~40%. The absolute differences in the frequency of feature

values in the reference and MMP-targeting set are reported (S2E Table). A feature value with

high differences in frequency (> 50%) is considered a biasing feature, a feature that can

Table 4. Top 5 salient feature values as determined by feature selection.

Rank Feature Feature value Importance score Frequency in

PDB-reference set

Frequency in

MMP-targeting set

1 Germline HV IGHV3-23 0.2605 5.26% 92.50%

2 CDR Canonical Structure H2 Type 6 0.1084 27.11% 94.38%

3 CDR Canonical Structure H2 Type 5 0.0699 39.47% 0.00%

4 Germline HJ IGHJ2 0.0266 1.25% 18.95%

5 Germline LJ IGKJ3 0.0150 2.11% 16.25%

https://doi.org/10.1371/journal.pcbi.1007779.t004

Table 3. Top 5 salient feature values as determined by Fisher Exact Test.

Rank Feature Feature value Average p-value Frequency in

PDB-reference set

Frequency in

MMP-targeting set

1 Germline HV IGHV3-23 4.51E-60 5.26% 92.50%

2 CDR Canonical Structure H2 Type 6 4.02E-34 27.11% 94.38%

3 Germline LJ IGKJ3 2.64E-05 2.11% 16.25%

4 Germline HJ IGHJ6 1.64E-04 16.05% 36.25%

5 Germline LV IGKV1-39 1.74E-04 3.95% 17.50%

https://doi.org/10.1371/journal.pcbi.1007779.t003

PLOS COMPUTATIONAL BIOLOGY ASAP-SML: An antibody sequence analysis pipeline

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007779 April 27, 2020 11 / 21

https://doi.org/10.1371/journal.pcbi.1007779.t004
https://doi.org/10.1371/journal.pcbi.1007779.t003
https://doi.org/10.1371/journal.pcbi.1007779


distinguish two sets with high classification accuracy. Germline IGHV3-23 and CDR-H2

canonical structure type 6 are the two biasing features when analyzing the MMP-targeting ver-

sus PDB-reference sets. We emphasize that these features are biasing within the context of our

datasets. However, these features may not be biasing when considering a different MMP-tar-

geting dataset and/or different reference sets.

To explore if any of the salient features are correlated, associations amongst pairs of features

from the MMP-targeting and the PDB-reference sets were computed (S2G Table). The Jaccard

coefficient is used to compute the co-occurrence of each pair of binary (0 or 1 depending on fea-

ture presence or absence) features [51]. Given two feature vectors for sequences within a partic-

ular dataset, the Jaccard coefficient represents the proportion of sequences that have both

features present relative to the total number of sequences where at least one of the two features

are present. A high Jaccard coefficient score (> 0.8) suggests strong association relationship

between two feature values. Within the MMP-targeting set, the two biasing features identified

in previous frequency analysis, germline IGHV3-23 and CDR-H2 canonical structure type 6,

have strong association with a Jaccard coefficient score of 0.90. Additionally, CDR-H1 canonical

structure type 1, CDR-L2 canonical structure type 0 and CDR-L3 canonical structure type 0

have strong association with each of the two biasing features. There were also highly associated

features within the PDB-reference set (S2G Table). All of these observations confirm that our

pipeline is able to identify features that are distinct between two datasets.

Contribution of features to classification for MMP-Targeting vs PDB-

reference sets

To assess if extracted features can distinguish targeting and reference sequences, ASAP-SML

analyzed the performance of three classification algorithms, SVM, random forest, and Ada-

Boost, in separating MMP-targeting from reference antibody sequences using all features or

based on one type of feature only. To assess the impact of the biasing features, classification

was re-run with the exclusion of biasing features and their associated features. In both cases,

AUC data using all three algorithms yielded similar ROCs. The following discussion explicitly

refers to the results based on the SVM AUC data, but it is generalizable to other algorithms.

Classification using all features with SVM yielded an AUC of 0.9812 (S1A Fig). Classifica-

tion was re-run while retaining one feature-at-a-time (S1B–S1E Fig) yielding the following

AUC values: germline, AUC = 0.9750; CDR canonical structures, AUC = 0.8414; pI,

AUC = 0.6383, and frequent positional motifs, AUC = 0.6960. Due to the biasing features, the

AUC was high when using germline and CDR canonical structure features.

We further investigated classification when including subsets of features (Fig 3). The bias-

ing features are germline IGHV3-23 and CDR-H2 canonical structure type 6, while CDR-H1

canonical structure type 1, CDR-L2 canonical structure type 0 and CDR-L3 canonical struc-

ture type 0 are deemed associated features. Excluding biasing features and their associated fea-

tures and using the remaining features that are included in S2E Table, SVM classification

yielded an AUC of 0.8668 (Fig 3A). Classification while retaining one feature-at-a-time (Fig

3B–3E) yielded a range of AUC values: germline, AUC = 0.8396; CDR-canonical structure,

AUC = 0.6248; pI, AUC = 0.6383, and frequent positional motifs, AUC = 0.6960. Despite

excluding the biasing germline (IGHV3-23), the germline AUC was surprisingly high. Exam-

ining the frequencies of the non-excluded germlines, HJ, LV, and LJ, showed that the germ-

lines of the two datasets were mutually exclusive (S2E Table), thus providing two groupings of

germline features. The AUC for the CDR canonical structure was significantly lower when

excluding the biasing features due to the removal of CDR-H2 canonical structure type 6 and

other associated CDR canonical structure features (CDR-H1, CDR-L2 and CDR-L3) as
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Fig 3. Area Under ROC Curves (AUC) for classification of MMP-targeting vs PDB-reference sets using SVM, random forest AdaBoost algorithms, while

excluding biasing features and their associated features. (a) AUC based on all included features, (b) AUC based on germline features, (c) AUC based on CDR

canonical structure features, (d) AUC based on pI features, (e) AUC based on frequent positional motifs features, (f) AUC based on all features excluding all

germline features and associated CDR canonical structure features.

https://doi.org/10.1371/journal.pcbi.1007779.g003
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classification features. The AUC for pI and the frequent positional motifs were identical to

those in the prior classification case. We further investigated the impact of removing all germ-

line features and associated CDR canonical structure features and retaining the remaining

CDR canonical structure features, pI features and frequent positional motifs features. Classifi-

cation yielded an AUC of 0.7599 (Fig 3F). The group of features utilized in Fig 3F proved an

important orthogonal predictor for classification. Further, many such features were identified

earlier as important using FET and importance feature selection. These findings suggest that

combinations of extracted features can distinguish the sequences in our MMP-targeting vs

PDB-reference sets. For larger and more diverse datasets than what we have analyzed herein,

the ASAP-SML classification procedure can highlight features for further biological characteri-

zation to determine their exact roles in binding to targets and disrupting biological function.

Salient feature-value identification for MMP-IGHV-targeting and IGHV-

reference sets

For the 57 extracted features, FET identified 17 significant features, while the random forest

model for feature selection identified 19 features as important; 7 of these feature values were

identified in both methods (S3F Table). Out of these 7 features, 1 germline, 1 CDR canonical

structure, 1 pI range, and 4 frequent positional motifs were identified. Frequency analysis of

features within the MMP-IGHV-targeting and IGHV-reference sets (S3E Table) showed that

none of the salient features identified in FET or feature selection have high frequency (> 80%)

or high difference in frequency between the two sets (>50%). This result suggests that there

are no biasing features when analyzing the MMP-IGHV-targeting and IGHV-reference sets.

Some identified important features, such as Germline IGHJ4, had small percentages of differ-

ences of frequency between the MMP-IGHV-targeting and the IGHV-reference set when per-

forming feature selection. It was possible to identify such features as important because feature

selection identifies combinations of important features and not independent important

features.

Contribution of features to classification for MMP-IGHV-targeting vs

IGHV-reference sets

Since no biasing features are identified in the MMP-IGHV-targeting and IGHV-reference

sets, the full set of extracted features are used in classification (S2 Fig). SVM yielded an AUC of

0.6941 (S2A Fig). Classification while retaining one feature-at-a-time (S2B–S2E Fig) yielded a

range of AUC values: germline, AUC = 0.5658; CDR-canonical structure, AUC = 0.6023; pI,

AUC = 0.5648, and frequent positional motifs, AUC = 0.6434. The AUCs when retaining one

feature-at-a-time were lower than the AUCs when using all features. The classification yielded

AUCs for CDR-canonical structure and frequent positional motifs that are higher than AUCs

for germline and pI. These findings suggest that combinations of extracted features can better

distinguish MMP-IGHV-targeting vs IGHV-reference set antibody sequences than a single

type of feature.

Comparing analyses on MMP-targeting vs PDB-reference sets and

MMP-IGHV-targeting vs IGHV-reference sets

The first case study, MMP-targeting vs PDB-reference sets, aimed to compare the MMP-tar-

geting set against a diverse set of non-targeting sequences culled from the PDB. Frequency

analysis identified biasing features and their associated features, which were removed for sub-

sequent ASAP-SML analysis. To provide a more impartial analysis, we sought a second case
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study, where the reference set consisted of sequences with the HV germline that was predomi-

nant in the MMP-target set. Salient features identified for the two data sets were compared (S4

Table). When using FET, there were 7 features that were common among the 28 significant

heavy-chain features identified in MMP-targeting vs PDB-reference analysis and among the

17 significant heavy-chain features identified in MMP-IGHV-targeting vs IGHV-reference

analysis. When using importance analysis, there were 12 features that were common among

the 40 important heavy chain features identified in MMP-targeting vs PDB-reference analysis

and among the 19 important heavy chain features identified in MMP-IGHV-targeting vs

IGHV-reference analysis. Four features were identified in common across FET and impor-

tance analysis (CDR-H3 canonical structure type 2, pI range 0.0–3.5, and motifs 2_YG and

5_YY), indicating that these features are consistently distinct when comparing the MMP sets

against either of the two reference sets. However, this analysis alone cannot directly determine

whether these features possess biological significance.

AUC plots (Fig 3 vs S2 Fig) for the two case studies are compared. Overall, AUCs in the

MMP-IGHV-targeting vs IGHV-reference sets were lower than those in the MMP-targeting vs

PDB-reference sets. In the germline case, mutually exclusive features contributed heavily to

the classification of the MMP-targeting vs PDB-reference sets, while there were no such mutu-

ally exclusive features in the MMP-IGHV-targeting vs IGHV-reference sets. When classifying

using only CDR canonical structures, classification accuracy was lower for the MMP-IGHV-

targeting vs IGHV-reference sets than for the

MMP-targeting vs PDB-reference sets. The latter analysis used features associated with

both the heavy and light chains, while the former analysis used only the heavy-chain features.

Classification using pI features yielded similar AUC results. The low frequency of positional

motifs within MMP-IGHV-targeting and IGHV-reference sets contributed to low AUC result.

Importantly, for both analyses, using combinations of features was more effective in classifica-

tion than using any one single feature. Determining how these combinations affect biological

function requires more diverse and detailed experimental datasets than the ones utilized in

this study.

Design recommendations using decision trees for the MMP-targeting vs

PDB-reference sets

To explore how the output of the ASAP-SML analysis could guide antibody design, a design

recommendation tree (Fig 4) was constructed for the comparative data based on the corre-

sponding decision tree (S3 Fig). Each path from root to a blue node highlights combinations of

feature values, which are either present or absent, that are more likely to be associated with the

targeting antibody sequences based on the statistical analyses described above. Each combina-

tion provides a recommendation for feature values to include (those along true branches) and

to exclude (those along false branches). Since some combinations of these features appear in

MMP-targeting antibodies, decision trees may have value in designing collections of additional

sequences in search of further function-disrupting sequences. Split efficiency, error rate, and

the root-to-node path length are considered when identifying the best design recommendation

or when analyzing design tradeoffs. As expected from identifying the IGHV3-23 germline as a

biasing feature, utilizing the presence of feature-value SC1 (IGHV3-23 germline for HV)

results in identifying 92.50% of MMP-targeting sequences, with a 5.67% error rate. Utilizing

the presence of SC1 and absence of SC2 (IGLJ3 germline for LJ) results in identifying 78.75%

of sequences with 4.04% error rate. The lowest error rate for the targeting set is the result of a

combination consisting of the presence of SC1 (IGHV3-23 germline for HV), absence of SC2

(IGLJ3 germline for LJ), absence of SC5 (IGKJ1 germline for LJ), and absence of SC8 (IGLJ1
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germline for LI) and absence of SC10 (PI 3.9375–4.375) resulting in a node with a 0% error

rate for 49.38% of the MMP-targeting set. Design variations based on decision recommenda-

tions (including SC1 while avoiding other conditions) may lead to additional testing candi-

dates. We note however that these recommendations are specifically based on our datasets and

are only provided to depict the decision tree functionality of ASAP-SML.

Fig 4. Design recommendation tree for the MMP-targeting antibody test case. Each node lists the number of MMP sequences (X), and the number of reference

sequences (Y), along with the splitting efficiency and error rate. The label under each node, when present, reflects the splitting feature value and is expanded in the legend.

Blue nodes are dominated with targeting antibody sequences, while orange nodes are dominated with reference antibody sequences.

https://doi.org/10.1371/journal.pcbi.1007779.g004
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Discussion

This paper describes the implementation of ASAP-SML, a pipeline for identifying features

common in one set of antibodies in reference to another set. This pipeline extracts residue-

based and CDR-H3 region features from primary amino acid sequences and supports several

analyses to identify features and feature values that are significantly overrepresented in a tar-

geting antibody set when compared to a reference set. Further, ASAP-SML builds a design rec-

ommendation tree to aid in identifying and evaluating combinations of feature values for

inclusion or exclusion when designing further candidate targeting antibody sequences. We are

not aware of any other analysis pipelines that analyze antibody sequences in the ways described

within. As with all data-driven approaches, however, the value of the analyses and generaliz-

ability of the findings depend heavily on the availability of sufficient quantities of high-quality

data. In analyzing sets of MMP-targeting antibody sequences against PDB-reference

sequences, we found that features associated with the antibody heavy chain are much more

likely to differentiate MMP-targeting sequences from the selected PDB-reference antibody

sequences. This result is consistent with experimental findings that show that antibody heavy

chains play dominant roles in antigen recognition [19,42]. Comparing the MMP-IGHV-tar-

geting set against the IGHV-reference antibody set, ASAP-SML identified several salient fea-

tures that were in agreement with those identified when analyzing the MMP-targeting vs

PDB-reference sets. While we utilized sequence clustering to minimize redundancy and identi-

fied correlation between variables, we note that biases in the available datasets may explain

these specific observations. The use of the pipeline enabled identification of some frequently

occurring dipeptide motifs; however, the presence of such motifs does not necessarily imply

any functional consequence. The analysis shows that the ASAP-SML pipeline is capable of

identifying salient features between targeting and reference sequence sets.

We developed design recommendation trees to identify combinations of feature values that

can be used to generate additional sequences with features that distinguish between targeting

and reference datasets. We expect that identified features and combinations thereof will be

useful for the purpose of augmenting existing antibody libraries by identifying related

sequences that have a higher probability of yielding antibodies that inhibit their targets, or for

enhancing the affinities of existing targeting antibodies through affinity maturation. Further,

for a sufficiently diverse targeting data set, identified features can be incorporated into various

antibody computational synthesis approaches including de novo design or the redesign of

existing antibodies [52]. Expanding the ASAP-SML pipeline to include properties of targeted

epitopes (if known), antibody subtypes, and/or more properties that can be determined via

computational antibody prediction [6,53] and utilizing this approach in combination with

experimental data will enable further refinements to the pipeline.

While we evaluated the utility of ASAP-SML for an MMP-targeting set, we expect that

ASAP-SML will be utilized as a general analysis pipeline for the identification of antibody fea-

tures that alter the biological functions of their targets, conditional on the availability of data-

sets that support such analyses. This includes both antibodies targeting enzymes from other

protein families and antibodies that disrupt additional biological processes such as viral entry.

The ASAP-SML approach should be compatible with any antibody discovery effort as long as

a diverse and representative set of sequencing data is available for both targeting and reference

sets.
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S1 Fig. Contribution of features to classification for MMP-targeting vs PDB-reference set.
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features, (b) only germline features, (c) only CDR canonical structure features, (d) only pI fea-

tures, and (e) only frequent positional motif features, (f) all features excluding germline fea-

tures.

(PDF)

S2 Fig. Contribution of features to classification for MMP-IGHV-targeting vs IGHV-refer-

ence set. AUC data is reported for classification when using (a) all features, (b) only germline

features, (c) only CDR canonical structure features, (d) only pI features, and (e) only frequent

positional motif features.

(PDF)

S3 Fig. Decision tree output during design recommendation step when analyzing the

MMP-targeting set vs PDB-reference set. With a desired dataset size of 160, which is the size

of representative MMP-targeting sequences, and k = 100 sampling iterations, each set had

160�100 sequences. The label within each node reflects the following: the feature value, the

Gini impurity score, the number of samples within the tree rooted at that node, a value provid-

ing a listing of the number of samples that are from the reference set followed by the number

of samples that are from the MMP-targeting set, and a node classification label indicating if

the node is dominated by reference or MMP-targeting sequences.

(TIF)

S1 Table. Detailed data for the collected MMP-targeting antibody sequences. (a) original

sequences, (b) extracted features, (c) representative MMP-targeting set sequence IDs after

BLASTCLUST and corresponding sequences in the original set, (d) representative MMP-

IGHV-targeting set heavy chain sequence IDs after BLASTCLUST and corresponding

sequences in the original set.

(XLSX)

S2 Table. Detailed data for representative sequences in MMP-targeting vs PDB-reference

sets. (a) sequences for MMP-targeting set, (b) extracted features for MMP-targeting set, (c)

sequences for PDB-reference set, (d) extracted features for PDB-reference set, (e) distribution

of features, (f) statistical testing and feature selection scores for features in MMP-targeting and

PDB-reference sets, (g) Jaccard coefficient association scores for features within the MMP-tar-

geting set and within the PDB-reference set.

(XLSX)

S3 Table. Detailed data for representative sequences in the MMP-IGHV-targeting and

IGHV-reference sets. (a) sequences for MMP-IGHV-targeting set, (b) extracted features for

MMP-IGHV-targeting set, (c) sequences for IGHV-reference set, (d) extracted features for

IGHV-reference set, (e) distribution of features, (f) statistical testing and feature selection

scores in the MMP-IGHV-targeting and IGHV-reference sets, (g) Jaccard coefficient associa-

tion scores for features within the MMP-IGHV-targeting set and within IGHV-reference set.

(XLSX)

S4 Table. Comparison of salient features for the two comparative sets: the MMP-targeting

vs PDB-reference sets and the MMP-IGHV-targeting vs IGHV-reference sets.

(XLSX)
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