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Synopsis Despite efforts to integrate research across different subdisciplines of biology, the scale of integration remains
limited. We hypothesize that future generations of Artificial Intelligence (AI) technologies specifically adapted for biological
sciences will help enable the reintegration of biology. AI technologies will allow us not only to collect, connect, and analyze
data at unprecedented scales, but also to build comprehensive predictive models that span various subdisciplines. They will
make possible both targeted (testing specific hypotheses) and untargeted discoveries. AI for biology will be the cross-cutting
technology that will enhance our ability to do biological research at every scale. We expect AI to revolutionize biology in the
21st century much like statistics transformed biology in the 20th century. The difficulties, however, are many, including data
curation and assembly, development of new science in the form of theories that connect the subdisciplines, and new predictive
and interpretable AI models that are more suited to biology than existing machine learning and AI techniques. Development
efforts will require strong collaborations between biological and computational scientists. This white paper provides a vision
for AI for Biology and highlights some challenges.

Introduction
Artificial intelligence (AI) as an idea is old. It can be
dated back to ancient times around 700 B.C. in Greek
mythology, for example, with the giant Talus made of
bronze and created, not born, to protect Europa, the
mother of King Minos in Crete (Mayor 2018). From
then to more modern and scientific times, the main
restriction to produce machines capable of thinking
has been technology, as recognized by Alan M. Turing
(Turing 1936) who, ahead of his time, was asking
questions about machines, behavior, consciousness, and
using discrete processes to mimic nervous systems
that operate continuously. John von Neuman (von
Neuman 1958), also ahead of his time, proposed in 1945
a computer architecture in which both the program
instructions and the data are located in random-access

memory. This design was the precursor of the modern
computer, but it was not until the advent of the fast
microchip that AI became a practical reality. Since
its early beginnings in 1956 (McCarthy et al. 2006;
Kaplan and Haelein 2019) as a field of research and
development, AI has evolved and suffered setbacks,
until early in the 21st century when it finally flourished
with successful applications in academia and industry.
A combination of new methods and availability of
powerful computers along with vast collections of data
brought large investment and widespread interest in AI.

In biology, AI has evolved from the symbolic ap-
proach where complex rules are coded in computer
language to enable machines to execute coordinated
sequences of operations. A typical example of symbolic
AI is the game of chess, with relatively simple rules, but
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a wide range of possible outcomes after the move of one
piece. In this case, the rules are set, and a computer can
be programmed to analyze all the possibilities before the
next move, and then choose the option that produces
the most beneficial outcome. A well-known example of
successful symbolic AI is IBM’s Deep Blue computer
that in 1997 beat the then world chess champion
Garry Kasparov. Before Deep Blue, computers were
not capable of performing computations fast enough
to outpace a well-trained human brain. Just as a
reference, a smart phone today has a computational
speed comparable to that of the Deep Blue.

Powerful as it is, symbolic AI is limited to systems
that operate by well-defined sets of rules (Haugeland
1985), which is not necessarily the case in the realm of
living systems. Additionally, there is not much resem-
blance between symbolic AI and biological intelligence
as far as their operation and functioning are concerned.
Symbolic AI can only make choices based on an a
priori established set of rules. Biological intelligence,
however, can learn on the fly and make decisions based
on information acquired by experience and by seeing
objects, for example.

A similar feature was introduced with Artificial
Neural Networks (ANNs) and Machine Learning (ML),
inspired by the networked neurons of the biological
brain. For instance, the mechanism behind memory
in the biological brain is known to be related to the
strength of the connections, or synapses, between neu-
rons (Hebb 1949). The remarkable Hopfield network
model with associative memory (Hopfield 1982) has
provided essential insights into neuronal computation.
In the Hopfield model, each node is assigned a binary
unit, and the strengths of the connections between
nodes are quantified in terms of weights, and it has been
successfully implemented in a number of applications,
including the enhancement of the network capability
for coding and information retrieval (Follmann et al.
2014).

Another branch in AI is the Hidden Markov Model
(HMM), applicable to stochastic processes occurring
in systems with behaviors displaying no recurrence of
fixed patterns. It has been implemented for example
in unequal and unknown evolution rates at different
sites in molecular sequences where the HMM allows for
rates to differ between sites and for correlations between
the rates of neighboring sites (Felsenstein and Churchill
1996).

A noticeable step up in AI is ML, where the computer
is given samples of data with different but related
patterns in connection with a topic of interest. The
computer then learns about those patterns by searching
features that will distinguish between diverse categories
of patterns or tries to identify features that are common

among the various categories. After this learning phase
the computer’s task is to classify a given new pattern
that it is presented with, or to predict a future behavior
of system being studied (Rawlings and Fox 1994;
Follmann and Rosa Jr 2019). The network used in ML
has been extended in Reservoir Computing to include
layers of connections which makes the process more
efficient.

Major recent advances in AI are due to Deep
Learning (DL), consisting of multiple processing layers
in artificial neuronal networks aimed at pattern recog-
nition and modeling complex relationships between
input and output. In addition, DL has enhanced the
potential for using computer-assisted discovery in
prediction of protein structure, molecular design and
macromolecular target identification for drug discovery
(Gimenez-Luna et al. 2020).

The need for AI to reintegrate biology
Concern about the fragmentation of biology into
specialized subdisciplines, and calls for its reintegration,
have been appearing in the scientific literature for
years (Hayes 2005; Drew and Henne 2006; Noble 2013;
Sukumaran and Knowles 2018). So far, though, a grand
reunification has remained elusive. Human intellectual
limits in collecting data, integrating data, and testing
hypotheses spanning multiple subdisciplines are the
primary reason biology became fragmented in the
first place. Reintegration will be impossible without
overcoming these limitations. Stated differently, key
biological systems and related information, at all levels
of biological organization, are simply too complex
for humans to understand with sufficient depth to
elicit generalized, human-driven reintegration. Here,
we make the case that advances in AI methods and
technologies will provide our best hope for overcoming
the human cognitive limitations that have splintered
biology into ever-more-specialized subdisciplines.

Our vision for reintegrating biology recognizes the
enormous potential of existing AI techniques to accel-
erate biological research. Current AI and ML methods
are already having an impact in biology (discussed in
more detail below), but there is room for improvement
on the existing methods and techniques for data inte-
gration. While technological advances have made great
strides in hardware for processing speed, inadequate
input/output performance in the case of large amounts
of data may result in severe limitations on the overall
process (Isakov et al. 2020).

We envision new suites of AI tools, developed for
biological inquiry and perhaps even inspired by biolog-
ical systems (Drumond et al. 2019; Follmann and Rosa
Jr 2019; Yanguas-Gil et al. 2019; Chance et al. 2020),
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powering biological investigation at unprecedented
scales.

What is the potential impact?
The development of statistics and electronic computers
transformed 20th-century biology, and we foresee AI
having a similarly transformative impact on 21st-
century biology (Yu and Kumbier 2018). AI-driven
reintegration of biological disciplines will establish a
new kind of biology that will allow us to answer deep
biological questions in ways that are impossible today.
Such questions will cut across biological subdisciplines
and integrate across the scales of biological inquiry
(spatial, temporal, and organizational). We offer some
examples as illustrations, arranged in approximate
order of increasing difficulty of implementation.

Example 1: Biological knowledge discovery and
assembly

Surely all research biologists have at some point spent
countless hours searching for relevant literature and
sifting through various data sources to assemble infor-
mation relevant to a particular research question. As
the volume of published literature and data continues to
grow at a nearly exponential rate, this process becomes
increasingly difficult and frustrating. In fact, for human
researchers, comprehensive collection, assembly, inte-
gration, and analysis of published literature and data
at even modest scales is nearly impossible today. We
predict that AI-driven data generation and integration
across the spectrum of data modalities and sources will
eventually largely solve this problem. AI will utilize a
variety of known and new techniques to collect and
assemble these data: text mining (Cohen and Hunter
2008), semantic analysis (Berners-Lee et al. 2001), and
missing link prediction (Ahmad et al. 2020) in existing
multilevel and hierarchical knowledge graphs. Simply
put, we need a next-generation search engine capable of
unearthing known and predicted biological knowledge.
Ultimately, we envision a system that can aid biological
research by retrieving all known information relevant
to a particular question, organized and visualized in a
coherent and potentially customizable way, while also
highlighting missing information. We do not anticipate
AI to perform biological research totally independent
from human supervision and control. However, there
is potential for AI to become a powerful and necessary
tool for information discovery.

Example 2: Behavioral ecology

Suppose that, for some species of bird, we would
like to understand the relationship between individual

fitness and environment, including the birds’ social
environment (Hawkins and DuRant 2020). Ideally, this
task would draw upon data from a wide range of
biological and spatial scales (e.g., vocalizations and
communication, social networks, movement, morpho-
metrics, parasite loads, genetics, biomarkers, and so
on) and sources (e.g., images, videos, audio recordings,
tracking tags, DNA sequencers, and so on). Currently,
such analysis is usually done using one or a few data
modalities with relatively small numbers of individuals
(e.g., using radio-frequency identification (RFID) tags
to collect movements and social network analysis to
understand social behaviors of birds). We hypothesize
that simultaneous advances in AI and automated
data collection will make it possible to answer these
questions using a holistic approach that goes far beyond
current capabilities, which will allow us to answer ever
more complicated biological questions; for example:
How does genetics affect social behaviors that in turn
affect collective behaviors like migration (Sukumaran et
al. 2016)? Another example would be the integration of
AI in hierarchical decision-making models of behavior
extended to the foraging of large herbivores (Saarenmaa
et al. 1988).

Example 3: Genes to phenotypes

Predicting an organism’s phenotype is extraordinarily
difficult because it requires integrating processes and
information across multiple scales of biological orga-
nization, from molecules to an organism’s environment
(Burnett et al. 2020). The general solutions to this prob-
lem are beyond the grasp of today’s AI technologies,
but future advances in machine reasoning, learning,
and causal inference, combined with continual growth
in data, collection, and computational capacity, will
help transform our understanding of how phenotypes
emerge. Specifically, these technologies will allow us
to use heterogeneous data (e.g., DNA sequence data,
phylogenetic information, and environmental data) and
knowledge (e.g., gene function and results of prior
experiments) to elucidate and test hypotheses about the
inputs that shape phenotypes. For instance, we could
investigate how data collected over diverse labs and
fields (e.g., imaging of cells, genomics, epigenomics,
proteomics, metabolomics, and metagenomics in soils)
can predict the cellular decision making or pheno-
typic changes that affect productivity of crops like
corn.

Example 4: Prediction, evolution, and control of
infectious diseases

Infectious diseases are caused by pathogenic mi-
croorganisms, and their spread may be based on
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direct (i.e., human-to-human) and/or indirect (such as
environment-to-human and vector-to-human) trans-
mission routes. Infectious diseases can be deadly, very
contagious, and display incubation periods of days or
weeks with no visible symptoms. Add to this equation
the lack of knowledge or means to detect and treat novel
diseases, and we have a problem that can be as big
as the situation we are living today with the COVID-
19 pandemic. While traditional mathematical and
statistical models are capable of making predictions,
albeit limited, developing strategies for disease control
may require more elaborate approaches for making
well-informed decisions. A number of recent studies
have already started applying AI and ML methods to the
investigation of COVID-19 (Abd-Alrazaq et al. 2020;
Lalmuanawma et al. 2020).

COVID-19 in particular, as a current dramatic
example, not only has led to unprecedented cases and
deaths, but also exhibited a high level of unpredictability
from the classical modeling point of view. Most (if not
all) of the traditional epidemic models based on early
COVID-19 data have failed to correctly predict the
pandemic progression, often by an order of magnitude
(Kuhl 2020). These traditional modeling and comput-
ing techniques do not possess the capability to react or
adapt when an unexpected situation is encountered, and
they generally have difficulty in handling heterogeneous
sources of data. In contrast, AI could enable machines
to better act or react to evolving and heterogeneous
pandemic data (Agrebi and Larbi 2020; Wiemken and
Kelly 2020). With the fast improvement of compu-
tational power and wide availability of demographic,
epidemic and human mobility data, the application
of AI to infectious diseases, particularly COVID-
19, has become increasingly popular and practically
indispensable. Furthermore, AI and ML methods can
be integrated with classical mechanistic models to infer
critical disease parameters in real time from reported
case data, which could lead to more accurate fore-
casts of the pandemic progression and, consequently,
more effective policy making. Given all these new
developments, we believe that AI has become a vital
tool in epidemiology where potential breakthroughs
will soon take place with the application of AI and
its integration with other cutting-edge computational,
mathematical and statistical approaches. However, we
also note that many recently published applications of
AI techniques to COVID-19 are of limited use due
to methodological flaws or bias issues (Roberts et al.
2020). Nevertheless, facing a sea of data in the digital
age, it is imperative that we leverage the power of AI
to deepen our understanding of infectious diseases, to
improve our practice in the control and management of
disease outbreaks, and to help promote public health.

This is especially important for the prevention of and
intervention on future pandemics.

Meanwhile, state-of-the-art supercomputing mod-
els can give us a glimpse of what to expect from
the implementation of AI in epidemiological studies
(ALCF). Given the recent technological advances in
capability for data collection, analysis and storage,
AI has the potential not only for forecasting the
outbreak of new diseases but also for helping in the
implementation of methods and techniques for tracking
(AlGaradi et al. 2016), diagnosis and treatment, leading
to effective control and potential termination of a
pandemic.

In summary, the new AI-augmented biology we en-
vision will generate tools, methods, and knowledge that
will translate to a host of biology-adjacent disciplines,
such as bioengineering, biophysics, biochemistry and
medicine. In particular, new developments in drug
discovery using AI will play a seminal role in disease
prevention and treatment (Fleming 2018; Smith et al.
2018). Additionally, we anticipate that new AI tools, in
concert with open data, will help democratize partic-
ipation in biology, allowing researchers at institutions
with more limited resources to participate in cutting-
edge biological research.

Why now?
The time for AI in biology has arrived. There are
now sensors, Internet of Things (IoT), and environ-
mental monitors that allow the collection of data at
unprecedented scales. Large, heterogeneous datasets
at the confluence of multiple information streams are
rapidly growing in size. We now have multivariate
data across time, space, and biological scales that need
to be analyzed in an integrated manner to discover
system-wide, multiscale phenomena that can lead us
to understand fundamental rules of life and their
application to other systems. The AI infrastructure to
support these efforts is beginning to emerge. There
are now unprecedented computational capabilities in
the form of storage, CPU/GPU computing, and large-
scale distributed computing which, combined with
the increasing availability of software tools for AI,
is enabling the rapid exploration and development
of novel techniques and applications. These resources
continue to grow and will enable the next generation
of AI for the most complex problems in biology.
However, all these features are not free from challenges
which include, for example, still limited computational
input/output capability (Meena et al. 2014; Ben-David
et al. 2016) as well as critical ethical issues (Tonkens
2009). Both these topics are further discussed below.
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State-of-the-art technologies and
applications
Although ML has recently entered the popular lexicon
and is often conflated with AI in general, AI is a broad
field with a long history, and it provides a diverse
set of tools and approaches that encompass much
more than ML. A variety of these tools have already
been used to help solve some biological problems. For
example, methods from symbolic AI have been used to
develop sophisticated software pipelines for integrating
highly heterogeneous sources of information about
plant development and to help elucidate possible links
between gene function and phenotype (Edmunds et
al. 2015; Stucky et al. 2018; Braun and Lawrence-Dill
2020). Statistical learning, and DL (Lamba et al. 2019)
in particular, have recently found application in the
automated analysis of biological imagery at various
scales including unmanned aerial vehicle (UAV) and
field photographs of plants (Gao et al. 2020), satellite
imagery (Kislov and Korznikov 2020), biomedicine
(Tian et al. 2021), bioacoustic data (Bermant et al.
2019), genomic analyses (Libbrecht and Noble 2015),
and classifying protein function from amino acid
sequences (Nikam and Gromiha 2019).

Barriers
Many important barriers need to be addressed to enable
the next generation of AI for biology.

Data are critical to all aspects of this vision

New technologies need to be developed for the au-
tomatic collection of biological data with varied data
modalities (e.g., images, videos, and molecular profiles)
and comprehensive measurements of biological systems
at various biological, spatial, and temporal scales.
Furthermore, data quality is a concern with large, noisy
datasets, so data scientists must work with biologists to
ensure the data we generate are as useful as possible.
Key challenges include identifying outliers and biases,
mitigating known biases, understanding variation, and
improving signal-to-noise ratios. To enable the open
sharing of data, tools should be developed to allow for
transparent data sharing, with consideration of prove-
nance, security, privacy, and fairness. Other researchers
can use these shared data to form new hypotheses
and build new theories. Beyond new technologies
for gathering biological data, high-quality reference
datasets for benchmarking AI applications in biology
will also be critical. For example, over the last decade,
the availability of the ImageNet dataset has been a
major factor in the development of new AI methods
for image processing (Deng et al. 2009; Russakovsky et

al. 2015). Similarly, reference datasets for evaluating AI
methods across a range of biological applications will
be needed to support future innovation in the biological
domain.

Theory

Development of theory from multiple disciplines will
enable the development of new AI technologies for
biology. For example, theory in biology, chemistry,
physics, and social sciences could be utilized to de-
velop more appropriate AI models for understanding
biological systems. Mathematical and statistical theory
should be developed to not only design new AI methods
but also further our understanding of the fundamental
principles (Deisenroth et al. 2020) underlying current
and emerging AI technologies. Novel development and
incorporation of evolving and updated theory will be
conducted in a feedback loop, with AI data analysis
and evaluation leading to the development of improved
methods.

Models

Novel AI models need to be developed that are bio-
meaningful, bio-inspired, and bio-integrated at scale
(Alber et al. 2019). AI models should incorporate
biological hierarchical structures and feedback/loops.
Notably, DL, which dominates current AI research,
arose from biological inspiration. DL systems are based
on ANNs, which originated with efforts to mimic
the way computation happens in biological brains.
Many other biological systems are characterized by
highly complex interactions leading to system-level
emergent properties and behaviors, and we suspect the
mechanisms behind such systems might present op-
portunities for new approaches to AI. Although black-
box models are appropriate for some types of modeling
tasks, AI models that are interpretable, explainable,
and visualizable should be encouraged. AI models
should be robust and resilient, allowing for redundancy
and plasticity. AI models should enable unsupervised
learning or semi-supervised learning when labeled data
are missing, limited or insufficient.

AI models and software should be open-source to
allow not only accessibility for all but also for taking
advantage of collaborative public efforts that can bring
a plethora of perspectives and development contribu-
tions. Open availability of scientific data will directly
benefit society as a whole by promoting transparency,
reproducibility, and more efficient use of information.
However, challenges exist including limited control over
how the data will be used, and lack of recognition and of
incentive to the generators of data. These challenges are
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not simple problems and will take some time to resolve
(Molloy 2011).

Computing Infrastructure

Current computing storage and throughput will be
challenged by the amount and scale of future bi-
ological data. Accordingly, storage and performance
of computing systems must also scale. Traditional
computing models (von Neumann architectures; von
Neumann 1958) may not be well suited for biological
tasks. Emerging technologies such as quantum and
neuromorphic computing might provide appropriate
alternatives. Focusing AI on biology will open up novel
opportunities for developing hardware, software, and
new computing mediums that are more appropriate
for biological applications. There are also exciting
opportunities to explore novel computing–biological
interfaces at the intersection of biology and computing.

Whatever new technologies might be realized in
the future, it will be critical to ensure that leading-
edge computing infrastructure is available to as many
researchers as possible, not just researchers fortunate
enough to be affiliated with the most well-funded uni-
versities, government agencies, and NGOs. As an exam-
ple, the NSF-funded Extreme Science and Engineering
Discovery Environment (XSEDE—https://www.xsede.
org) is a virtual organization that provides advanced
computing infrastructure to researchers across the
United States, including many who might not otherwise
have access to high-performance computing resources.
Efforts like XSEDE will be crucial in the future to
help democratize access to AI-related computing tools
and to facilitate the pooling of resources required for
extremely large-scale projects. The cost associated with
the development of this infrastructure is expected to
be a barrier for its implementation, unless private
investors and public sectors can foresee the benefits of
the investment.

In the context of the last two subsections, it is
imperative for a mechanism to be created to ensure long
term maintenance and updating of data storage and
coding. This should guarantee reproducibility of results
and also that the scientific community as a whole will
have easy access to the methods and tools to stay up-to-
date with potentially fast-paced developments.

Ethics

In a wide range of fields, biology included, a growing
number of functions are being outsourced to AI with
less direct human participation and control. This raises
concerns about biases, unfairness and discrimination,
and effort must be made to guarantee equitability (Piano
2020). Central to this effort is to develop mechanisms

that ensure transparency, fairness, access, equity, di-
versity, shared governance, privacy, and security of
data at all development stages. There are already well-
known cases of biases in ML data and algorithms
(Garcia 2016), which can then be exacerbated as data
and models become more complicated. Black box
models, for example, restrict shared-decision and make
it difficult to effectively implement real-time error-
checking. One venue to tackle ethics in AI would be
through governance. However, while AI is evolving
rather quickly, the governance of AI is in its infancy
(Renda 2019; Taeihagh 2021). Ethical issues in AI
must be addressed head-on as a first-class concern.
Developers and users need to be trained to be aware
of these issues, and our workforce must be sufficiently
diversified to ensure no one is left behind. Further, we
all should be aware of potential misuse of AI to harm
humans or the environment and the utmost care must
be taken to assess and address these issues.

Training

Training must be addressed in a more systematic
and cross-institutional/disciplinary manner. A new
generation of diverse scientists must be trained at the
intersection of biology and computer science, start-
ing with undergraduate studies and through graduate
and postdoctoral opportunities. In line with much of
the recent NSF-funded STEM educational research,
training of future AI/ML researchers may need to
commence even earlier (Paul and Jefferson 2019; Jones
et al. 2020). According to a Brookings Institute Report
on the Future of Education in the AI Age, America’s
early education must reflect a deliberately tuned and
calibrated system that proactively emphasizes AI/ET,
big data analytics, and super-computing. (Allen 2019).
As energy-efficient neural coding is required to control
individual neurons and brain circuits, so too is balance
and inputting-outputting of AI and ML data. Balance
requires distribution and diversity. Users of AI systems
must be trained to interpret the results and use the
various tools judiciously. Vocational pathways need to
reward cross-disciplinary work.

Concluding remarks
The rapid growth and consequent fragmentation of
biology has created a wealth of subdisciplines that
would benefit greatly from being part of an integrated
collective rather than remaining individualized. Given
the overwhelming complexity of contemporary biolog-
ical knowledge, placing subdisciplines of biology under
a single umbrella has become a task of insurmountable
proportions. Nevertheless, certain technological tools
available today and still evolving, can help amalgamate
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different subdisciplines of biology, each realizing the in-
herent advantages of working in unison with the others.
AI is one such a tool. It has the potential for broad and
long-lasting impacts on biological science and beyond.
AI will equip biologists with powerful tools to ask and
solve ambitious questions, such as investigating and
integrating complex mechanisms across a wide range of
scales (from genes, to cells, to organisms, populations,
and ecosystems), and developing theoretical machines
to understand biological and ecological systems at
extremely large scales, all of which would be severely
limited without AI. Meanwhile, feedback from biology
will help to re-define AI concepts and improve AI com-
puting. We expect these developments will lead to better
integration of biological knowledge and enable exciting
new collaborations among researchers across biology
and adjacent disciplines, including computer science
and engineering. Such interdisciplinary collaborations
are critical in promoting the next generation of AI in
biology, and in addressing the barriers of data, theory,
model development and various other challenges the AI
field is currently facing.
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