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Abstract
Motivation: Accurately predicting the likelihood of interaction between two objects (compound–protein sequence, user–item, author–paper,
etc.) is a fundamental problem in Computer Science. Current deep-learning models rely on learning accurate representations of the interacting
objects. Importantly, relationships between the interacting objects, or features of the interaction, offer an opportunity to partition the data to
create multi-views of the interacting objects. The resulting congruent and non-congruent views can then be exploited via contrastive learning
techniques to learn enhanced representations of the objects.

Results: We present a novel method, Contrastive Stratification for Interaction Prediction (CSI), to stratify (partition) a dataset in a manner that can
be exploited via Contrastive Multiview Coding to learn embeddings that maximize the mutual information across congruent data views. CSI
assigns a key and multiple views to each data point, where data partitions under a particular key form congruent views of the data. We showcase
the effectiveness of CSI by applying it to the compound–protein sequence interaction prediction problem, a pressing problem whose solution
promises to expedite drug delivery (drug–protein interaction prediction), metabolic engineering, and synthetic biology (compound–enzyme
interaction prediction) applications. Comparing CSI with a baseline model that does not utilize data stratification and contrastive learning, and
show gains in average precision ranging from 13.7% to 39% using compounds and sequences as keys across multiple drug–target and
enzymatic datasets, and gains ranging from 16.9% to 63% using reaction features as keys across enzymatic datasets.

Availability and implementation: Code and dataset available at https://github.com/HassounLab/CSI.

1 Introduction

Predicting the likelihood of interaction between two objects (e.g.
user–item, spectator–movie, author–paper, label–image, com-
pound–protein, and other pairs) is a fundamental problem in
Computer Science. Recommender systems, e.g. utilize methods
based on matrix-factorization to predict unknown interactions
between users and items (He et al. 2017, Xue et al. 2017). In net-
work graphs, link prediction methods can anticipate potential
connections between two collaborators, or authors and papers
(Vamathevan et al. 2019). Image captioning is achieved by rec-
ognizing objects within an image and characterizing interactions
among them (Yao et al. 2018). Predicting the interaction be-
tween a compound and protein sequence elucidates drug–pro-
tein interactions (Bagherian et al. 2021) and promiscuous
enzymatic activities on substrates (Visani et al. 2021). Across
various tasks, the success of interaction prediction hinges on
learned representations of the interacting objects, as high-quality
representations capture key features of interest. Multiple strate-
gies have been developed in the machine-learning literature to
generate compressed representations of data (Hinton et al.
2011, Bengio et al. 2013, Goodfellow et al. 2020). Importantly,
the availability of multi-modal data that represent different

aspects of the same object creates opportunities for multi-view
learning techniques (Li et al. 2019), which have proven to be a
powerful way to learn representations, especially in the com-
puter vision literature (Tian et al. 2020a, Radford et al. 2021).
Some such techniques attempt to minimize the distances between
congruent (same object) views, while others contrast congruent
and non-congruent views of the data to push away embeddings
of differing data points.

When addressing the interaction prediction problem, multi-
modal representation learning can be applied on each object
involved in the interaction. In this case, each object is embed-
ded within its own latent space. In some tasks, deriving con-
gruent data views is a common place task, e.g. image
cropping, chrominance, and luminance for image-related
tasks. However, in other cases, identifying congruent multi-
views of data is challenging or non-trivial (e.g. drugs, disease,
etc.). To address this issue, and to further improve on
representation learning for interactions, we use stratification
(data partitioning) to generate multiple views of the data and
to establish congruent and non-congruent views. Contrastive
learning methods can then be applied on the stratified data to
enhance learning.
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More specifically, we explore how the “relationship be-
tween two interacting objects” provides an opportune data
stratification strategy that allows representation learning in a
joint latent space. Many-to-many interaction relationships
among objects allow data to be stratified into congruent views
for each object—the object itself is one view and all other
objects related to it are another view. For example, in a spec-
tator–movie interaction scenario, a set of movies preferred by
the spectator becomes an alternate view of the spectator.
Similarly, a set of spectators could provide an alternate view
on the movie. Spectator and movie embeddings can then be
learned in a joint latent space. Furthermore, “features of the
interaction itself” can provide alternative views on the inter-
acting objects. For example, where and when the interaction
occurs can provide information about movies and spectators.
Rational stratification of the training data enables generating
congruent and non-congruent views of the objects and/or
their interactions. We refer to this data stratification strategy
as Contrastive Stratification for Interaction Prediction, or
CSI.

To demonstrate the effectiveness of CSI, we focus on the
problem of compound–protein interaction prediction, a fun-
damental problem in biochemistry that is prominent in drug
discovery (drug–protein interaction prediction) and in under-
standing and engineering metabolism (compound–enzyme in-
teraction prediction). State-of-art machine-learning methods
for drug–target interaction prediction have been extensively
reviewed in recent survey papers (e.g. Chen et al. 2016, Zhou
et al. 2019, Abbasi et al. 2021, Bagherian et al. 2021).
Related deep-learning methods broadly perform two tasks:
representation learning of compounds and of protein sequen-
ces, and using the learned representations to predict interac-
tions. Molecular representations can be learned from
molecular fingerprints (Feng et al. 2018, Lee et al. 2019, Lin
2020) or learned on the corresponding molecular graphs us-
ing Graph Neural Networks (GNNs) (Tsubaki et al. 2019,
Nguyen et al. 2021). Deep-learning models, such as
Convolutional Neural Networks (CNNs) (Lee et al. 2019),
and transformers (Huang et al. 2021, Min et al. 2021) are
used to generate embeddings on protein sequences.
Interaction models however remain simple, where representa-
tions are concatenated, with or without attention, to predict
interaction likelihood. Unlike 3D docking simulations
(Decherchi and Cavalli 2020), deep-learning models allow
screening a large number of putative interactions efficiently.
In addition to its importance, the problem of compound–pro-
tein interaction prediction was selected to demonstrate the ef-
fectiveness of CSI because of rich available data on enzymatic
interactions. Compound–enzyme interactions are derived
from known biochemical reactions, and therefore information
regarding the interaction itself allow us to evaluate CSI when
stratifying based on interaction features.

The core idea in CSI is intuitive. Each data point is assigned
a “key” and multiple views. When learning molecular repre-
sentations, each “key” is the molecule itself, and the corre-
sponding views are the molecule and a set (or subsets) of
interacting sequences. Similarly, when learning sequence rep-
resentations, the “key” is the sequence itself, and the corre-
sponding views are the sequence and the set (or subsets) of
interacting molecules. When stratifying by interaction feature,
the “key” is the interaction feature (e.g. all reactions that per-
form a specific biotransformation, such as the addition of car-
boxyl group), and three views of each reaction (or reaction

group, if the key places multiple reactions within a strata) are
readily available: reactant–product pairs associated with the
reaction (View 1), compound–sequence pairs (View 2), and
sequences that catalyze the reaction (View 3), where the com-
pounds are either reaction substrates or products. Other inter-
action features can also be selected as keys (e.g. reactions
sharing homologous sequences). Views under the same key
form congruent views of the data, while views across different
keys become non-congruent views. Once congruent and non-
congruent data views are established, it is possible to apply
any contrastive learning technique to learn the joint represen-
tation. In our case, we use Contrastive Multiview Coding
(CMC) (Tian et al. 2020a), which simultaneously maximizes
the mutual information present among the congruent views of
the data while discarding features that are not shared among
the views. Importantly, our work demonstrates the impor-
tance of view selection when applying contrastive learning
(Tian et al. 2020b).

We train and evaluate CSI models for three datasets. The
BindingDB dataset (Gilson et al. 2016) contains purchasable
drugs and their protein targets that exhibit an affinity higher
than 10 lM, and is larger and more diverse than earlier drug–
protein interaction datasets. The BRENDA dataset is derived
from the BRENDA database (Chang et al. 2021), which pro-
vides continued manual and automated curation on enzymes
and compounds interacting with enzymes. The KEGG dataset
is derived from the KEGG database (Kanehisa et al. 2021),
which catalogues biochemical reactions for a large set of
organisms. The contributions of this article are:

• A generalizable data stratification method, CSI, for view
selection on interacting objects, where stratification is ap-
plied either on each of the items involved in the interaction
in the context of the other object, or on features of the in-
teraction itself.

• Congruent and non-congruent data views allow CSI to be
paired with contrastive learning schemes, such as CMC,
resulting in learned embeddings suited for downstream
tasks.

• Demonstrating how CSI applies to the compound–protein
interaction prediction task for protein–drug and to en-
zyme–compound datasets. The latter dataset is rich in aux-
iliary interaction information that lends itself to
stratification on interaction features.

• Showing that CSI significantly outperforms a baseline
model that does not use CSI, where average precision (AP)
is improved by 18.2% on the BindingDB dataset, 39% on
the BRENDA dataset, and 13.7% on the KEGG dataset,
when stratifying by compound and by sequence. When
stratifying by reaction features for the KEGG dataset, an
AP improvement of 16.9% is achieved over baseline, thus
outperforming stratification by compound and by
sequence.

2 Materials and methods
2.1 Stratification on interaction data—congruent

views of compounds and of protein sequences

An interaction dataset consists of compound–protein pairs
known to interact. A compound may interact with multiple
proteins, and a protein may have interactions with multiple
compounds (Fig. 1). For data stratified using compounds as
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the key, the set of all protein sequences that interact with the
given compound presents a view congruent with the com-
pound. Assuming a lock-and-key-based binding model
(Tripathi and Bankaitis 2017), the rationale for these views
being congruent is that the interacting proteins have common
features that enable binding with the same compound.
Subsets, or even pairs, of the protein sequences therefore offer
a view that is congruent with the compound. To simplify our
formulation and implementation, we use two sequences as a
congruent view of a compound. Increasing that number
would result in encoders with a higher number of trainable
weights. Assuming that I is the set of known interactions on
compounds C and a set of sequences S, the set of congruent
views, VC, for all compounds in C is:

VC ¼ f½c; ðsi; sjÞ�; si; sj 2 S; c 2 C; 8ðc; siÞ; ðc; sjÞ 2 Ig; (1)

where the square brackets denote views.
Stratification using sequences as keys is used to define con-

gruent views for each sequence. A set of compounds, or a sub-
set thereof, presents a congruent view of a sequence. Using a
pair of compounds as a congruent view of a sequence, the set
of congruent views, VS, for all sequences in S is:

VS ¼ f½s; ðci; cjÞ�; s 2 S; ci; cj 2 C; 8ðci; sÞ; ðcj; sÞ 2 Ig: (2)

2.2 Stratification on reaction data—congruent views

on interaction features

Compound–protein interactions within enzymatic datasets
are associated with biochemical reactions. The auxiliary data
available on the reactions can be used as keys for stratifying
by interaction features (and not by compounds and sequences
as presented in the prior section). Each reaction represents a
set of reactants that undergo a biochemical transformation
into a set of products. Homologous enzyme sequences (e.g.
enzymes from different organisms catalyze the same reaction)
and multiple enzymes performing similar function can cata-
lyze the same reaction. A biochemical reaction, b, is assumed
to be bidirectional and can be represented as:

R$E P; (3)

where R is the set of reactants, P is the set of products, and E
the set of enzyme sequences that catalyze the reaction. A reac-
tion can therefore be defined as, b ¼ fR;E;Pg, where the sub-
scripts on R, E, and P are omitted for clarity. Each reaction
therefore lends itself to three congruent views: a list of
corresponding reactant–product pairs, a list of compound–
sequence interactions, where a compound maybe a reactant
or a product, and a list of catalyzing sequences. The set of
congruent views, VB, for the set of biochemical reactions, B, is
given by:

VB ¼ f½ðri;pjÞ; ðci; skÞ; ðsk; slÞ�;

8ri 2 R;pj 2 P; ci 2 R [ P; sk; sl 2 E;

b ¼ fR;E;Pg;8b 2 Bg:

(4)

2.3 CSI on interacting objects

CMC (Tian et al. 2020a) arrives at data representations by
learning embeddings for each view, and a function, hh, that
discriminates a congruent pair among a set of non-congruent
views based on the learned embeddings. Once the embeddings
are learned via encoders, their parameters are frozen and can
be used for the downstream task. We adopt a similar method-
ology for CSI.

CSI is trained in two phases (Fig. 2). In the first phase,
Phase 1A and 1B, we learn embeddings on compound views
and, independently, on sequence views. In Phase 1A, for com-
pound as key, each of the congruent views of the compounds,
Vc, consist of one compound and two sequences. We there-
fore train encoders to generate embeddings for these two
views, ensuring that they produce same-dimension embed-
dings. As compounds can be represented as graphs, we utilize
a GNN [Graph Convolutional Networks (GCNs)] to encode
the compounds:

zv1;comp ¼ GCNðcÞ: (5)

For the protein sequence, we use a 1D CNNs on the
encoded FASTA (Lipman and Pearson 1985) sequence, F,
normalized to a fixed length (e.g. 1000). As we need to learn
the representation of two sequences at-a-time to represent the
compound, we utilize a Siamese CNN network that uses the
same weights. The twin CNNs are trained in tandem on two
encoded input sequences and compute the final embedding
for the view, zv2. That is,

zv2;comp ¼ CNNðFiÞ� CNNðFjÞ; (6)

where � is the concatenation operation.
In Phase 1B, for sequence as key, congruent views of a se-

quence, Vs, comprise one sequence, s, and two compounds, ci

and cj. To learn the embeddings for these views, we utilize a
CNN for the encoded sequence, and a Siamese GCN network
for the two compounds. That is,

zv1;seq ¼ GCNðciÞ� GCNðcjÞ; (7)

Figure 1. Many-to-many interactions between compounds and protein

sequences allow data stratification by: (A) compound, and (B) sequence
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zv2;seq ¼ CNNðsÞ: (8)

Independent GCNs and CNNs are trained in Phase 1A and
1B.

The discriminator function, hh, between embeddings for
pairs of n-th and m-th objects from two views v1 and v2 is de-
fined as in prior work (Tian et al. 2020a) as the cosine simi-
larity between their embeddings modulated by a temperature
parameter s:

hhðzn
v1; z

m
v2Þ ¼ exp

zn
v1:z

m
v2

jjzn
v1jj:jjzm

v2jj
:
1
s

� �
; (9)

where s is a hyper-parameter that controls the importance of
non-congruent views in pushing the embeddings apart in the
latent space. We define the contrastive loss over a batch of
size k as:

LV1;V2
contrastive ¼

1
k

Xk

n¼1

�E log
hhðzn

v1; z
n
v2ÞPk

m¼1
hhðzn

v1; z
m
v2Þ

2
64

3
75

2
64

3
75: (10)

Defining the contrastive loss in the context of a batch facili-
tated the CSI implementation and avoided complex strategies
to select the non-congruent views (Tian et al. 2020a). In es-
sence, we select non-congruent views within a batch, instead
of considering all possible non-congruent views within the en-
tire dataset. As the contrastive loss LV1;V2

contrastive treats V1 as the
anchor view and iterates over V2, it is not symmetrical. We
can similarly anchor V2 and iterate over V1 to arrive at
LV2;V1

contrastive. The total contrastive loss (Tian et al. 2020a), giving
equal weight to both views, is then,

LðV1;V2Þ ¼ LV1;V2
contrastive þ LV2;V1

contrastive: (11)

Once the encoders are trained to minimize the loss, their
parameters are frozen during Phase 2. The interaction

predictor is an MLP neural network that utilizes the learned
embeddings for the compound views, and for the sequence
views. The interaction predictor is trained on known positive
interactions and on negative interactions, which consists of
randomly selected compound–sequence pairs. For the con-
trastive loss [Equation (10)], views from different keys within
a batch (e.g. one compound and two sequences for the
compound-based stratification) are taken as non-congruent,
while for the final predictor training, randomly selected com-
pound–sequence pairs are taken as negative data. The final
predictor ŷ is given by,

ŷ ¼MLPððzv1;comp � zv2;compÞ� ðzv1;seq � zv2;seqÞÞ: (12)

The prediction loss is the cross entropy loss between ŷ and
the ground truth y weighted by the ratio of negative-to-
positive labeled data.

2.4 CSI on interaction features

When data are keyed by interaction features (Fig. 3), we apply
contrastive loss on three data views: a set of compound–com-
pound pairs representing substrates–products, a set of paired
compound-sequences and a set of sequences. The framework
of CSI can be easily adapted to maximize the mutual informa-
tion across the three views, as was suggested for CMC (Tian
et al. 2020a), and to perform interaction prediction on the
concatenated learned embeddings. In the first phase of CSI,
Siamese GCN and CNN networks are used to learn the com-
pound–compound and sequence–sequence embeddings, and a
GCN–CNN are used to learn the embeddings for the com-
pound–sequence embeddings. The contrastive loss is calcu-
lated pairwise, over all the views, as defined previously
[Equation (10)]. In the second phase, encoder parameters are
fixed, and the embeddings from all the neural networks are
concatenated and used to train an MLP for interaction
prediction.

Figure 2. CSI model when stratifying each interacting object. (A) Phase 1A for compounds as keys—compound representation, zv1 is generated through a GCN

and sequence–sequence representation, zv2 is generated using a Siamese CNN. (B) Similarly, in Phase 1B for sequences as keys, compound–compound

representation, zv1, is generated through a Siamese GCN, while sequence representation, zv2, is generated through a CNN. (C) In Phase 2, the trained encoders

from Phases 1A and 1B are fixed. The representations are concatenated to train an MLP for final prediction
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3 Experiments and results
3.1 Dataset details

Three datasets, Binding DB, BRENDA, and KEGG, were used
to evaluate CSI (Table 1A). BindingDB, www.bindingdb.org/

bind/chemsearch/marvin/SDFdownload.jsp?download\_file=/
bind/purchase\_target\_10000.tsv, provides interaction data
for purchasable BindingDB compounds. The KEGG dataset,
www.kegg.jp/kegg/download/, is processed to extract the

Figure 3. CSI model when stratifying by interaction feature. (A) Phase 1. Contrastive loss is applied to the three data views: compound–compound pairs,

compound–sequence pairs, and sequence–sequence pairs to generate three embeddings, zv1 ; zv2 , and zv3 . (B) Phase 2. Trained encoders from Phase 1

are used to generate representations for compounds and sequences. These representations are concatenated together to train an MLP for the final

prediction

Table 1. Statistics for the three evaluation datasets.a

BindingDB BRENDA KEGG

(A) Statistics for the interaction dataset

Number of
interactions

68 347 40 693 127 884

Unique compounds 29 149 8891 6087
Unique sequences 3120 13 330 21 367
Compound-to-se-

quence ratio
9.34 0.67 0.28

(B) Stratification on compounds (reported in sequences per strata)

Average strata size 2.18 7.2 21
Standard deviation 6.85 31.7 64.1
Maximum strata size 339 1518 2065
Minimum strata size 1 1 1
Average sharing among

strata
0.01 0.01 0.06

Average Jaccard similarity
among strata

0.004 0.001 0.001

(C) Stratification on sequences (reported in compounds per strata)

Average strata size 20.4 3.5 5.9
Standard deviation 47.4 4.1 8.9
Maximum strata size 623 107 331
Minimum strata size 1 1 1
Average sharing among

strata
0.14 0.04 0.06

Average Jaccard similarity
among strata

0.003 0.001 0.001

(D) Number of positives per data split

Training 49 746 32 536 100 999
Validation 6142 4095 12 626
Test 7833 4925 14 261
Unseen test 1609 885 1636

a (A) Base statistics. (B) Strata statistics when stratifying by compound. (C) Strata statistics when stratifying by sequence. (D) The number of positive
examples for various data splits.
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interaction and reaction data. The BRENDA dataset, www.
brenda-enzymes.org/download.php, was downloaded as a
text file. We used our own tool, PerBRENDA (https://github.
com/HassounLab/PER_BRENDA) to process the entries and
extract the interaction information for enzymes and
substrates.

Binding DB has the highest number of compounds and the
highest number of compounds per sequence (9.34 ratio), as
expected from a drug–target interaction dataset. For the
BRENDA dataset, we extracted interactions between enzymes
and ligands as positive interactions. The listed inhibitor inter-
actions were included as labeled negative interactions for the
interaction predictor training (Visani et al. 2021). For the
KEGG dataset, the interactions were extracted from reactions
available in the KEGG database. The two enzymatic datasets,
the BRENDA and KEGG datasets, have overlap as the
BRENDA database covers enzymes interacting with both nat-
ural and non-natural substrates, while the KEGG database
covers natural interactions found in living organisms. The
KEGG database provides detailed information on the under-
lying biochemical reactions, which enabled stratification on
interaction features. The two datasets have 757 compounds
that had the same canonical SMILES. Of the 21 367 unique
sequences in KEGG dataset, 10 948 are in the BRENDA data-
set. The KEGG dataset has �3� more interactions than the
BRENDA dataset.

For compound-based stratification (Table 1B), we report
the size of each strata. Within each strata, the number of
views is the square of the number of sequences divided by two
as CMC is applied to pairs of sequences within each strata. A
large size therefore indicates rich views within the strata. To
assess the overlap among the strata, we report the average
sharing among the strata and their Jaccard similarities. This
latter metric gives a sense of how varied the views are across
keys while also considering the strata size. We similarly sum-
marize these metrics for sequence-based stratification
(Table 1C). The KEGG dataset has more average shared
sequences across compound keys (0.06) compared to the
others, while the BindingDB dataset had more average shared
compounds across sequence keys (0.14). When considering
the Jaccard score, BindingDB has the highest similarities per
strata for both compound- and sequence-based stratification.

For the interaction prediction task (Table 1D), the training
data consists of positive examples comprising protein–com-
pound pairs that are known to interact. The negative exam-
ples are randomly selected compound–sequence pairs. The
selection strategy of the negatives reflects nature as most com-
pounds and proteins do not interact. For training, we used a
negative-to-positive ratio as 5:1, taking care to appropriately
weight the loss during training. We created two kinds of test
sets. The “Test” set included both positive and negative exam-
ples taken from the same distribution as the training set. We
also generated test sets with 5�, 10�, and 25� the number of
negatives as positives to evaluate the impact of negative-to-
positive ratio in test. To test the generalizability of the model,
we created an “Unseen Test” set that comprised the 5% least
frequent compounds and sequences in each dataset, which
were held out from the training dataset. We assume a 1:1
negative-to-positive ratio for the Unseen Test.

3.2 Baseline model

While our proposed data stratification strategy can be applied
to any interaction model, we create a baseline model

(Supplementary Section S1) that utilizes GNNs to encode the
molecules, and CNNs to encode the sequences. Compounds
represented in SMILES format are converted to a molecular
graph using rdkit (Landrum 2013). For our baseline, we use
node features as the atom type, atomic mass, valence, is atom
in ring, formal charge, radical electrons, chirality, degree,
number of hydrogens, and aromaticity. Bond features are the
bond type, whether the bond is part of a ring, conjugacity,
and one hot encoding of the stereo configuration of the bond.
Compound embeddings are learned using a multi-layer GNN
encoder. The network consists of GCNs (Kipf and Welling
2016) that aggregate information at each node. The GCNs
are followed by a pooling layer and two fully connected
layers. Our baseline (Supplementary Fig. S1) is the same as
the GraphDTA model (Nguyen et al. 2021), which is reported
to outperform other state-of-art models like Öztürk et al.
(2018), He (2016), and Cichonska et al. (2017), and thus pro-
vides a strong baseline. Since GraphDTA is a regression
model that predicts the binding affinity, we modified the final
layer of GraphDTA to enable binary prediction as needed for
our interaction prediction problem.

3.3 Experimental setup

To evaluate the CSI model, we measure the model’s perfor-
mance in ranking positive examples ahead of negative exam-
ples, as well as the model’s ability to rank a molecule or
sequence that has the highest probability of interacting with a
sequence or molecule, respectively. We used AP, mean aver-
age precision, and R-precision as the metrics, the details of
which are available in Supplementary Section S2.

The CSI model was trained in two steps. In the contrastive
learning step, the encoders generating zv1 and zv2 were trained
using CMC on the congruent and non-congruent data views.
The model was trained for 700 epochs. The best temperature
s was found to be 0.07 (we tried a range of 0.05–0.08). Adam
(Kingma and Ba 2014) was used as the optimizer. In the inter-
action prediction step, the training set was divided into train-
ing, validation, and test sets in ratio 8:1:1. In this step, the
predictor model was trained for 200 epochs, with early stop-
ping on validation loss. The optimizer used was Adam.

3.4 Results on stratification by compounds and

sequences

The results for the three datasets are reported for test set with
a negative-to-positive ratio of 1:1 (Table 2A). The CSI model
shows improved performance across all datasets and across
all metrics. CSI significantly outperforms the baseline model
that does not use CSI, where AP is improved by 18.2% on the
BindingDB dataset, 39% on the BRENDA dataset, and
13.7% on the KEGG dataset, when stratifying by compound
and by sequence. The improvement in MAP over baseline is
maximum on the BindingDB dataset (23.8%) for test data
sorted by sequences while it is maximum on KEGG (26.2%)
for test data sorted by compounds. For the Unseen Test set,
CSI also shows improved performance across all metrics, and
across all datasets (Table 2B). Specifically, AP improvements
are 2.6%, 18.2%, and 1.6% for BindingDB, BRENDA, and
KEGG datasets, respectively. Clearly the quality of these data-
sets are different, and hence the performance. The richness of
the strata within each dataset, measured by the variety (i.e.
less sharing) across views, impacts how contrastive learning
performs on each dataset.
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The CSI model uses embeddings learnt based on compound
and sequence stratification. To determine which of the two
stratification strategies contributes more to performance gains
over the baseline model, we performed ablation studies on
BindingDB (non-enzymatic) and KEGG (enzymatic) datasets
(Table 2C). Independently, compound and sequence stratifi-
cation each contribute significantly to CSI’s performance over
the baseline. For BindingDB, with sequence-based stratifica-
tion alone, the AP drops from 0.992 (with both stratification)
to 0.972. The drop is minimal (0.992–0.991) when using only
compound-based stratification. These results indicate that for
BindingDB, the compound-based stratification contributes
maximally to the CSI model’s performance. For KEGG, the
AP drops from 0.969 when using both stratification strategies
to 0.953 when using only compound-based stratification. The
drop is lesser when switching to sequence-based stratification
(0.969–0.960). This indicates that for KEGG, the sequence-
based stratification contributes maximally to the CSI model’s
performance. The performance of the CSI model also scales
well when the ratio of negative-to-positive examples in in-
creased to mimic what happens in nature (Supplementary
Section S3).

3.5 Results on stratification by reaction features

For the KEGG dataset, three interaction features were used to
produce three stratification strategies. The first strategy parti-
tions the data based on enzymes catalyzing the same reaction
(e.g. homologs). The second strategy divides the interactions
by the underlying biotransformation pattern associated with
the substrate–product pairs. KEGG classifies reactions based
on this property, and each class is referred to as an RCLASS
(Kotera et al. 2014). Multiple reactions can belong to the
same class and result in similar biotransformations. The third
strategy divides the interaction data by the Enzyme

Commission (EC) number associated with the interaction. EC
numbers provide hierarchical classification on enzymes and
are represented as four numbers separated by periods (e.g. L-
lactate dehydrogenase is assigned EC number 1.1.1.27). Each
such EC number is associated with one or more biochemical
reactions. The three keys used to partition the KEGG interac-
tion data are therefore: the reaction, RCLASS, and the EC
numbers. Further details and analysis are provided in
Supplementary Section S4.

The results are reported using AP (Table 3) as this metric
was well correlated in earlier analysis with other metrics. AP
was reported for the baseline model on three datasets (1:1
negative-to-positive ratio, 5:1 ratio, and the Unseen Test) as

Table 2. Interaction prediction results for a negative data ratio of 1:1 for the baseline (GraphDTA with a binary predictor instead of a regressor) and CSI

models for the BindingDB, BRENDA, and KEGG datasets.a

Overall Compound Sequence

AP R-precision MAP R-precision Map@3 Precision@1 MAP R-precision Map@3 Precision@1

(A) Test set

BindingDB GraphDTA 0.839 0.783 0.914 0.844 0.913 0.842 0.802 0.709 0.799 0.681
CSI 0.992 0.971 0.996 0.993 0.996 0.993 0.993 0.993 0.994 0.993

BRENDA GraphDTA 0.778 0.713 0.804 0.680 0.804 0.680 0.874 0.803 0.874 0.791
CSI 0.991 0.970 0.995 0.990 0.996 0.993 0.978 0.993 0.978 0.975

KEGG GraphDTA 0.852 0.770 0.755 0.627 0.739 0.610 0.757 0.857 0.755 0.701
CSI 0.969 0.902 0.953 0.918 0.956 0.939 0.809 0.968 0.808 0.793

(B) Unseen test

BindingDB GraphDTA 0.975 0.918 0.995 0.991 0.995 0.991 0.920 0.879 0.911 0.879
CSI 1.000 0.992 1.000 0.999 1.000 0.999 0.997 0.995 0.997 0.995

BRENDA GraphDTA 0.845 0.703 0.934 0.891 0.927 0.891 0.901 0.857 0.897 0.841
CSI 0.999 0.985 1.000 1.000 1.000 1.000 0.982 1.000 0.982 0.982

KEGG GraphDTA 0.873 0.771 0.779 0.682 0.753 0.676 0.730 0.963 0.730 0.718
CSI 0.886 0.773 0.915 0.878 0.908 0.869 0.718 0.934 0.717 0.697

(C) Ablation study

BindingDB CSI Seq Strat 0.972 0.921 0.982 0.973 0.978 0.969 0.971 0.960 0.983 0.982
CSI Comp Strat 0.991 0.971 0.987 0.989 0.996 0.991 0.983 0.982 0.982 0.982

KEGG CSI Seq Strat 0.960 0.894 0.942 0.901 0.952 0.931 0.807 0.958 0.808 0.791
CSI Comp Strat 0.953 0.882 0.923 0.869 0.931 0.900 0.798 0.951 0.802 0.778

a AP and R-precision are reported for the entire dataset. MAP, mean R-precision, MAP@3, and R-precision@1 are reported for data sorted by compounds
and by sequences. (A) Test set. (B) Unseen test. (C) Ablation study to determine the individual contributions of each stratification strategy against using both
strategies together.

Table 3. AP results on stratification for the baselines (no stratification,

compound/sequence stratification) and by the three interaction features:

reaction, RCLASS, and EC.a

Model Test Test (5:1) Unseen test

(A) Summary of prior results

Baseline (no stratification) 0.852 0.587 0.873
Compound/sequence stratification 0.969 0.906 0.886

(B) Interaction features

Reaction (V1, V2, V3) 0.989 0.963 0.982
RCLASS (V1, V2, V3) 0.990 0.913 0.954
EC (V1, V2, V3) 0.988 0.943 0.979

(C) Ablation study

Reaction Strat (V1, V2) 0.980 0.874 0.941
Reaction Strat (V2, V3) 0.962 0.751 0.904
Reaction Strat (V1, V3) 0.983 0.902 0.947

a The three views, V 1, V 2, and V3, correspond to substrate–product
pairs, compounds–sequences, and pairs of sequences. The ablation study
considers only two of the views at a time.
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well as for the CSI model for the same datasets. All stratifica-
tion strategies yield improved results over the baseline model
and stratification by compound and sequence across all test
sets, where stratification by reaction outperforms the baseline
by 16.9%, 62.6%, and 13% on the 1:1, 5:1, and Unseen Test
sets, respectively. Comparing with stratification by compound
and sequence, stratification by reaction yields AP improve-
ments over the compound and sequence stratification by
2.1%, 6.3%, and 10.8% on the 1:1, 5:1, and Unseen Test
sets, respectively.

To evaluate how each of the views contributes to improve-
ments over the baseline, we perform an ablation study
(Table 3B). As stratification by reaction resulted in higher per-
formance over RCLASS- and EC-based stratification, the ab-
lation study is applied to the reaction-based stratification
model. The model was successively trained on each combina-
tion of two views (instead of all 3). Removing V1 (substrate–
product view) contributed the most, when compared to re-
moving the other two views, in reducing model performance,
e.g. for the 5:1 positive-to-negative Test set, the AP perfor-
mance is reduced from 0.963 to 0.751. The substrate–product
view therefore contributes the most to the CSI model perfor-
mance when stratifying by reaction features. We conjecture
that the high similarity between substrate–product pairs con-
tributes to higher mutual information when compared to the
other views.

4 Conclusion

CSI is a generalizable data stratification technique that exploits
relationships among interacting objects to define congruent (and
non-congruent) views. Paired with CMC, CSI learns representa-
tions that maximize the mutual information among congruent
views, leading to enhanced representations for the downstream
interaction prediction task. In addition to advancing the state-of-
the-art in interaction prediction in the broader field of deep
learning, CSI also advances interaction prediction between pro-
tein and molecules, as evidenced by our results. CSI was applied
to three compound–protein sequence datasets, involving both
enzyme–molecule and protein–target datasets. Our results show
significant improvement in AP, in the range of 13.7%–39%
over comparable baselines that do not utilize stratification. We
further demonstrated that, for our datasets, stratification by in-
teraction features results in improved performance over stratifi-
cation on object relationships. Data stratification as described
herein is the new paradigm of “Data-Centric AI” (https://spec
trum.ieee.org/andrew-ng-data-centric-ai), where data stratifica-
tion methods will complement advances in deep learning. A vari-
ety of contrastive learning methods, including CSI, have the
potential to further advance protein–ligand interaction
predictions.

Supplementary data

Supplementary data are available at Bioinformatics online.
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